Welcome to School of Aeronautics and Astronautics Purdue University

Graduate Program School of Aeronautics and Astronautics Purdue University

Wayne Chen

Associate Head for Graduate Education wchen@purdue.edu, +1-765-494-1788

Linda Flack

Graduate Program Administrator flack@purdue.edu, +1-765-494-5152

What to do (academically)?

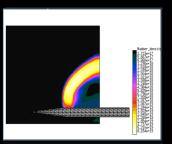
- Find your major area of study
- Find a faculty advisor
- Select classes (math, major, minor)
- Sign up for the classes (on-line, paper)
- Switch classes before 9/22
- Find financial support (TA, RA, Fellowship)

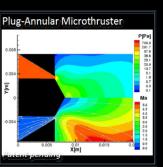
Study/Research Areas in AAE (Major/Minor)

- Aerodynamics
- Aerospace Systems
- Astrodynamics and Space Applications
- Dynamics and Control
- Propulsion
- Structures and Materials

Aerodynamics

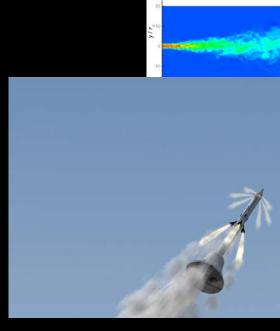
Alina Alexeenko

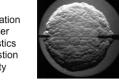



Methods

- · DSMC for high-speed rarefied flows with chemistry and thermal non-equilibrium
- · Deterministic Boltzmann methods for low-speed flows
- Uncertainty Quantification for computational models

Applications

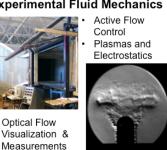

- · High-altitude aerodynamics of satellites and space vehicles
- Micropropulsion
- · Atmosphere/thruster plume interactions at high-altitudes
- Aerodynamic damping in MEMS
- Vacuum technology: ultra-highvacuum deposition of thin-film materials; condensation pumping for pharmaceutical freeze-drying


Greg Blaisdell

Sally Bane

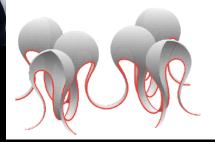
Propulsion & Combustion

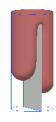
- Combustion and Detonation
- Combustion Ignition and Safety
- Hydrogen Energy
- High-Speed Optical Visualization and Laser Diagnostics
- Combustion Instability

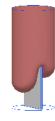


- Combustion Control Using Plasma Actuation / Plasma-Assisted Combustion
- Liquid rocket propulsion
- Pressure-Gain Combustion

Experimental Fluid Mechanics

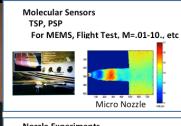

Optical Flow


Steven Collicott



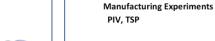
- Low-gravity fluid dynamics
- Liquid propellant control and gauging in spaceflight
- Low-gravity experimentation

Aerodynamics



Steve Schneider

- hypersonic laminar-turbulent transition.
- only hypersonic tunnel in the world with laminar nozzle-wall boundary layers and low noise comparable to flight
- aeroheating on reentry vehicles (Space Shuttle, Orion manned capsule, Prompt Global Strike, Mars Science Laboratory, etc), on scramjet-powered vehicles (Air Force X-51), on ballistic interceptor missiles, etc.
- quiet-tunnel measurements have affected the design of the X-51 scramjet vehicle, the HiFire-1 flight vehicle (joint with Australia), and the DARPA/Lockheed-Martin HTV-2 gliding reentry vehicle.
- international cooperations with Germany, Japan, Belgium, and Italy.



John Sullivan

Nozzle Experiments Supersonic Plug Nozzle Ejector Nozzle

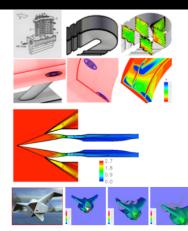
Vehicle Design

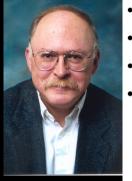
UAV's

High Altitude Airships

Tom Shih

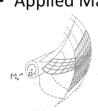
CFD

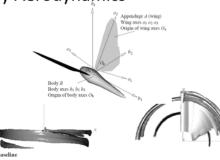

- grid gen & flow solvers
- V&V and UQ in CFD


Aerodynamics

- control of shock-wave/ boundary-layer interactions
- aircraft icing

Propulsion and Power


- cooling of gas turbine components
- thermoelectric power genautomotive torque
- converters



Marc Williams

- Unsteady Aerodynamics and Aeroelasticity
- Turbomachinery Aerodynamics
- CFD
- Applied Math

Dominick Andrisani

Barrett Caldwell

Bill Crossley

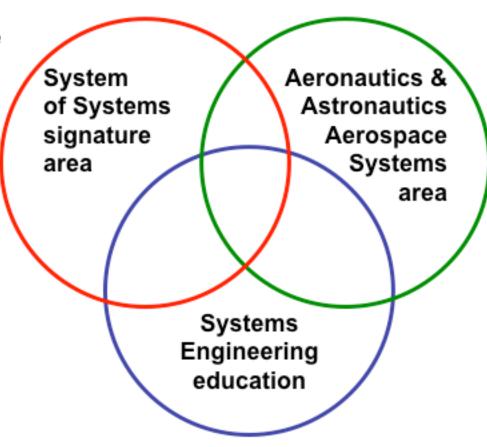
Dan DeLaurentis

Mike Grant

Inseok Hwang

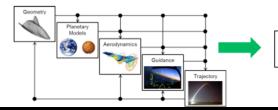
Karen Marais

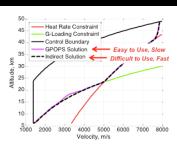
John Sullivan

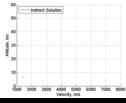


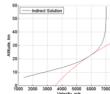
Dengfeng Sun

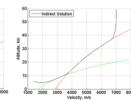
AeS in Context at Purdue


- System of Systems signature area
 - "Trans-disciplinary" research initiative originated by AAE faculty member
 - College-level, involves faculty in several schools & colleges
- Aeronautics & Astronautics Aerospace Systems area
 - Research and curriculum for design, development, operation of aerospace systems (aircraft, spacecraft, etc.)
 - Within AAE; involves plans of study, shared research interests, PhD qualifying examination
- Systems Engineering education
 - Educational support to SoS research
 - Address external stakeholder needs for graduate education in SE
 - Currently IE / AAE led effort to establish graduate concentration


Mike Grant


- Rapid Simultaneous Design
 - The conceptual design of complex aerospace systems generally involves computationally intensive iteration among various disciplinary analyses
 - · Disciplinary advancements often performed in isolation
 - Recent research focused on collapsing the iterative design framework into a single, unified mathematical framework
 - Enables rapid simultaneous hypersonic aerodynamic and trajectory optimization for conceptual design
 - Framework constructed from two enabling advancements:
 - Analytic hypersonic aerodynamics
 - · Rapid trajectory optimization



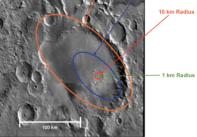

Unified Mathematical Framework

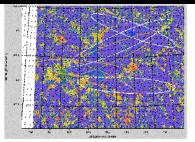
- Rapid Trajectory Optimization
 - Due to challenges of determining an optimal trajectory, general (slow) methods are often used
 - · Fast optimization methods have disappeared from hypersonic design
 - Recent research has capitalized on the fundamental connectedness of optimal hypersonic design solutions
 - · Enables optimal solutions to be rapidly evolved to new solutions of interest

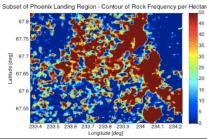
- Analytic Hypersonic Aerodynamics
 - Conceptual hypersonic aerodynamics of vehicles are often computed numerically
 - Likely required for complex geometries (Space Shuttle Orbiter, X-38)
 - However, many vehicle geometries are not complex

MPF/MER/

Spherical Forebody

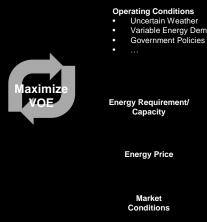

High Performance / Slender Bodies

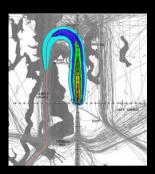

The analytic geometries of these hypersonic vehicles enable the construction of analytic hypersonic aerodynamic coefficients

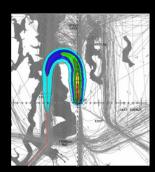

- · Database of analytic solutions created for many hypersonic vehicles of interest
 - Evaluation nearly instantaneous
 - Provides exact solutions approximated today by numerical methods
 - Enables vehicle shape to be incorporated into rapid trajectory optimization methods

- Game-changing EDL architecture design
 - Phoenix landing site selection dominated by safety concerns
 - What if want to travel to more dangerous regions?
 - · Place footprint over dangerous regions if vehicle had capability to Smart Divert

Develop and operate complex engineering systems safely, sustainably, and profitably.

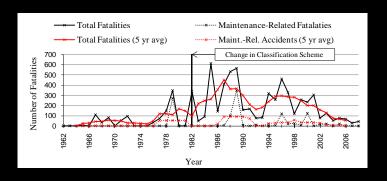

Aviation Environmental Impact


- System-level trade studies
- **Aircraft Operations**
- **Airport Operations**


Karen Marais

Financial Aspects of Engineering Design

- Reliability and Maintenance
- Aircraft Design
- Wind Energy



Safety and Risk Management

- **Aviation Safety**
 - Maintenance
- **Risk Assessment in Complex** Socio-Technical Systems

- Variable Energy Demand

Cost of Energy

Engineering Levers

Location

Strategy

Performance

Reliability & Maintenance

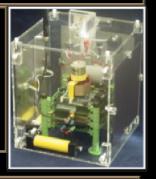
- Operating cost

Market Levers

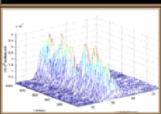
- Contract design

Astrodynamics and Space Applications

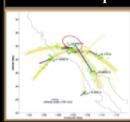
Dave Filmer


Spacecraft and Subsystem Design

Satellite Ground Station at Zucrow (uplink+downlink)


- Tracking antennas
- Radio send/receive
- Auto Doppler correction for radio
- Control for antennas+Doppler
- Capability for different modulation and demodulation techniques on uplink/ downlink

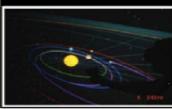
Satellite Systems

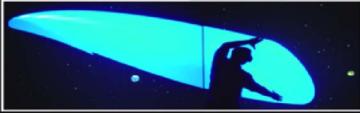

- AAE 590Ž (spring)
- Mission analysis (includes sizing, environment, materials)
- Vehicle and subsystem design (includes) ops, comm, thermo,...)

GNSS Reflection and occultation measurements for Earth remote sensing

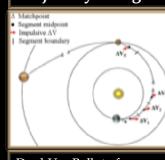
GNSS sensing of seismicallyinduced ionospheric disturbances

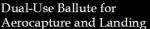
Kathleen Howell

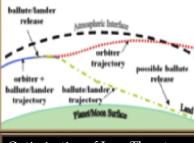


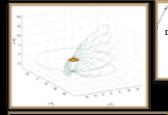

Jim Longuski

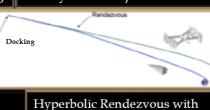
Visualization Lab (Envision


Supports Projects

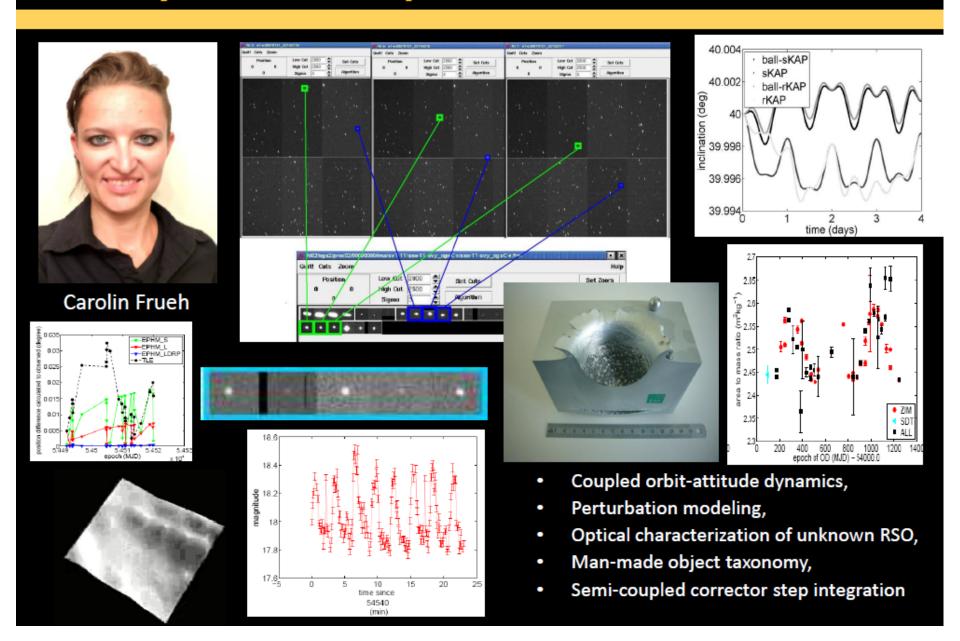

- dynamical structure of the solar system
 - mission design
- astronomy applications
- interactive partners
- spacecraft dynamics and control
- other researchers




Trajectory Design and Optimization



Optimization of Low-Thrust Gravity-Assist Trajectories


Encore and End of Life Studies for Cassini Mission

Hyperbolic Rendezvous with Cycler Vehicle

Astrodyamics and Space Situational Awareness

Dynamics and Controls

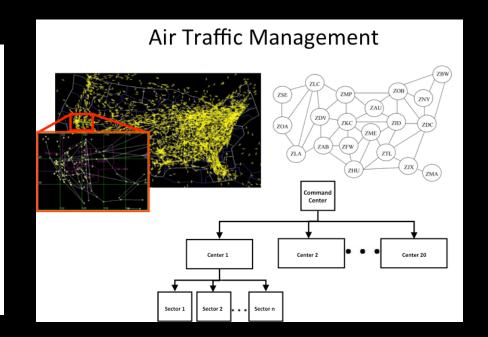
Dominick Andrisani

Air Traffic Management

- Aircraft travel in virtual tubes (highway-in-thesky)
- Tube network adjusts hourly to traffic and weather
- Airspace capacity and schedule reliability are enhanced
- Precision Navigation and Targeting
 - Inertial Navigation
 - Optical sensors for navigation
 - Optical sensors improve navigation and targeting accuracy

Martin Corless

- Analysis and robust control of uncertain systems
- Nonlinear systems (applications to robotics, vehicles)
- Networked dynamical systems
- Vehicle rollover
- Continuous control of spacecraft trajectories
- Congestion avoidance especially in communication networks.


Dan DeLaurentis

Dynamics of networks

- Developing network topologies to enhance the performance of transportation system-of-system
- Command, control and communication architectures

Dynamics on networks

- Control of vehicle swarms using shared autonomy (human and machine)
- Modeling processes that take place on networks
 - · Risk propagation in networks of engineered systems
 - · Disease propagation models
- Dynamic performance of new aircraft configurations especially in NextGen (Next Generation Air Transportation System)

Dynamics and Controls

Art Frazho

Control Systems

- Robust and H-infty control
- Delay and infinite dimensional control

Signal Processing

- Filtering theory
- Filter banks and data compression
- System identification and sinusoid estimation

Network Analysis

Search algorithms, Google PageRank

Inseok Hwang

- Modeling, information inference, and decision making for networked dynamical systems with uncertainty
 - Air traffic control
 - Navigation/control of autonomous systems/ combined human-machine systems (e.g., UAVs, UGVs, etc)
- Safety monitoring for safety critical embedded systems (e.g., aircraft/ spacecraft, transportation systems)
- Space applications: control and tracking of low-thrust spacecraft

Dengfeng Sun

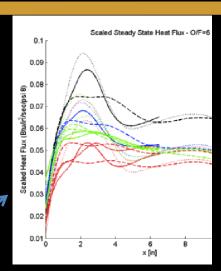
Air Traffic Management

- Modeling and optimization for strategic (global long-term) traffic flow management
- Modeling and optimization for tactical (local short term) traffic flow management
- Airspace capacity estimation using weather translation
- Application of modeling and optimization techniques to practical air traffic control
- Intelligent Transportation Systems
 - Optimal metering of highway ramps
 - Multi-modal transportation systems

Total # flights	56,653
Total Delay	200,000 minutes
Delay < 2 hours	7408 flights
Delay > 2 hours	1899 flights

Propulsion

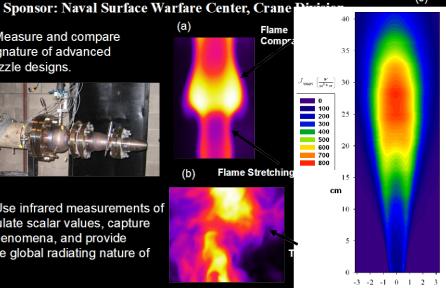
Bill Anderson


combustion instability, heat transfer, advanced propulsion cycles for space transportation, propellants, combustor design theory

1st time- and spaceresolved measurements of heat flux in large rocket combustor

Steve Heister

aerospace propulsion systems, airbreathing and rocket engine combustors, liquid propellant injection systems, two-phase and capillary flows


- Benchmark tests in highpressure LOX/H2 combustor provide validation data for SOA CFD models of Constellation upper stage engine
- Test configuration mimicked actual rocket engine combustors
- Data shared with NASA, contractors, and other researchers

Thermal Imaging and Analysis of Combusting Flows David Blunck, Jay Gore, Steve Heister, Scott Meyer, and Yuan Zheng

Objective 1: Measure and compare the infrared signature of advanced gas turbine nozzle designs.

Objective 2: Use infrared measurements of flames to calculate scalar values, capture combustion phenomena, and provide insights into the global radiating nature of the flame.

Figures: (a) instantaneous image of an unsteady laminar hydrogen flame, (b) instantaneous images of the Sandia H3 flame (turbulent), (c) averaged radiance measurements of the Sandia H3 flame.

Propulsion

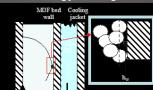
Tim Pourpoint

Li Qiao

Haifeng Wang

aerospace propulsion systems, rocket engine combustors, liquid propellant injection systems, hypergolic propellants, high pressure and hydrogen storage systems

- Novel fuels and propellants: To understand the rheology and combustion characteristics of alternative fuels and highperformance fuels (for hypersonics).
- Chemically reacting flows: To understand the complex interactions between chemistry and turbulence in propulsion systems.
- High-speed imaging techniques and advanced laser diagnostics
- New combustion concepts


Hydrogen storage in metal organic frameworks can provide a means of portable energy storage.

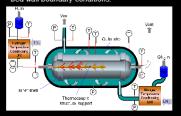
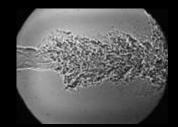
Challenges

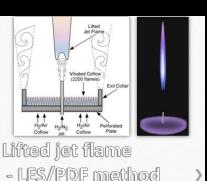
- Develop a porous media model with hydrogen flow to characterize the heat transfer in a test bed
- Experimentally verify model results under cryogenic and high pressure conditions

MOF Physics

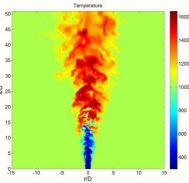
- Physisorption is the primary means for adsorption of hydrogen into metal organic frameworks (MOFs).
- Hydrogen is stored in the structural gaps and held within the voids with Van der Waals forces.
- Other solid compounds store hydrogen through a chemisorption process which chemically bonds hydrogen to the adsorbing material.
 In general, chemical bonds require more energy to form and/or break than covalent bonds.

r 0 R_w Figure 1: Two-dimensional sketch of the model test bed which shows possible MOF bed wall boundary conditions.


Figure 2: Physical component of the experimental system.

Approach


- Models must be developed to include convection effects of hydrogen flow through voids, adsorption site availability/ occupancy, and the reaction rate dependency on temperature and pressure
- The models will be developed to facilitate parameter estimation
- Develop a test vessel that allows a variety of tests including continuous hydrogen flow under pressure, single port pressurization, near adiabatic boundary, isothermal boundary, cryogenic, and ambient temperatures
- Cryogenic conditions will be achieved with careful consideration of the test bed thermal boundary condition
- Results from the experiments will be used to quantify MOF properties and reaction characteristics

Interests

- > Turbulence and combustion modeling
- > Fluid mechanics and computational modeling
- > Multi-phase flows
- > Propulsion and energy systems

Structures and Materials

Wayne Chen

Research

- Develop novel experimental methods for material characterization
- Determine material and structural responses under severe conditions
- Relate mechanical response to microstructure evolutions

Laboratory

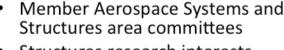
- · Focus on Impact Mechanics
- · Located in ARMS B130 and Bowen
- · 15 graduate students, 4 undergrads
- Study impact response of materials and structures ranging from MEMS structures to armor ceramics

Skip Grandt

General Technical

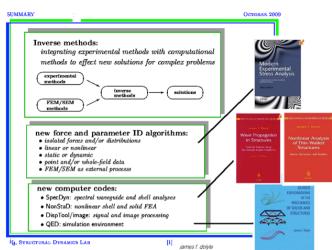
- Damage tolerant analysis (fatigue & fracture)
- Structural analysis and design
- Nondestructive inspection
- Aging Aircraft

Recent Research


- Damage tolerance of unitized construction
- Fiber metal laminates
- Interacting cracks
- Residual stress effects on fatigue

· Continuing Education


- Teach AAE 552 and 554 via Engineering Professional Education
- Last 5 years have taught over 15 short courses on damage tolerance analysis and nondestructive inspection to industrial and government sites in US, Australia, and New Zealand


Bill Crossley

- Structures research interests
 - Structural optimization
 - · Multi-objective structural optimization
 - Combinatorial (mixed discrete, continuous) optimization
 - Topology and combined topology / shape optimization
 - Design under uncertainty
 - Simple uncertainty propagation methods for conceptual design
 - · Discrete optimization under uncertainty
 - Morphing aircraft
 - Optimization approach for structures with multiple geometric configurations (i.e. changing stiffness matrix for each load set)
 - Surrogate models (parametric equations) for wing weight prediction

James Doyle

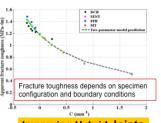
Structures and Materials

Mike Sangid

Research Interests:

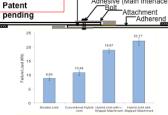
- composite materials analysis
- characterization and manufacturing
- Nanomaterials
- Build materials models to relate structure to property
 - Reduce time and cost of material development
 - Certification by simulations
- Develop multi-scale material models
 - Primarily aerospace alloys
 - Failure mechanisms: fatigue, fracture,
- Quantify deformation at atomistic scale and build insights into mesoscale
- Transform life prediction of components and ultimately design
- Linking model predictions to experiments

Byron **Pipes**

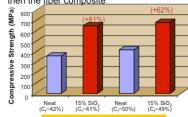


Vikas Tomar

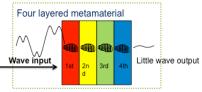
C.T. Sun


Fracture Mechanics

Why the toughness of a brittle material is not constant


Improving Hybrid Joints

Also trying to make bonded joints fail-safe Adhesive (Main Interface)


Nanocomposites

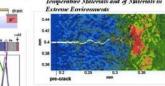
Use nanoparticles to enhance the matrix and then the fiber composite

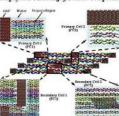
Acoustic Metamaterials

Composite materials having man-made microstructures distributed in a host matrix material. Unusual dynamic properties such as negative effective mass result

Experiments

NanoScale Interfacial Multiphysics Continuum Scale Interface Multiphysics

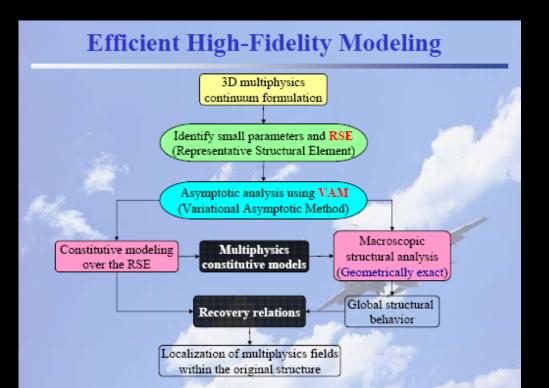


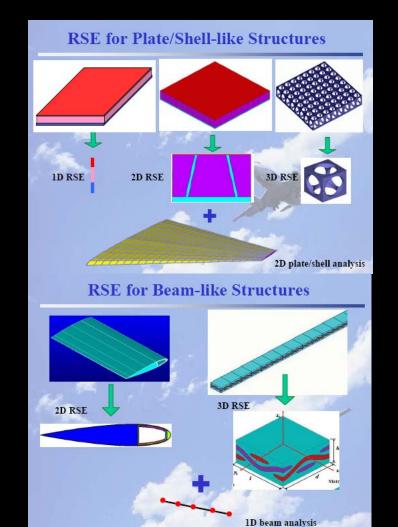


Models and Applications

Area1: Interfacial Thermo mechanics on Nanoelectromechanical Devices Area2: Understanding of Failure in High Temperature Materials and of Materials in

Area3: Interfacial Multiscale Mechanics and Multiphysical Modeling of Polmer Composites




Structures and Materials

- Structural Mechanics (Composite/Smart/Multifunctional Structures)
- Micromechanics (Composite/Smart/Multifunctional Materials)
- Multiphysics modeling
- Flexible Multibody Dynamics
- Multiscale Modeling

Wenbin Yu

Course Registration

Find a research advisor:

- Research is a good experience for MS and a must for PhD
- Start to work with an advisor early if you know what you want to do
- File a Plan of Study with the approval of advisor
- Course registration signed by advisor

Typical load:

- Three courses plus RA or TA
- For first semester, three courses in math, major, and minor

PhD Qualify:

- Contact Linda for access to old problems
- No later than 3rd semester if your MS is not from Purdue
- No later than 2nd semester for Purdue MS
- Three subjects: Math, Major, and Minor
- May take two related classes with B or better instead of taking minor

Financial Support

- RA:
- Talk to professors directly
- •TA:
- Must have advisor nomination except new recruits
- Maximum time: Two (2) years
- Must maintain GPA > 3.0
- Must have oral English (OEPT) certification or TOEFL
 Speaking score 27 or higher
- •Fellowship:
- https://engineering.purdue.edu/Engr/Academics/Graduate
- Other TAs on campus:
- Math Department
- Engineering Education

TAs in Other Departments

- Math Department:
- http://www.math.purdue.edu/jobs/ta

•

- Engineering Education:
- https://engineering.purdue.edu/ENE/AboutUs/Employment

Fellowship Opportunities

Government Funded Fellowships

DOE Computational Science Graduate Fellowship Science, Mathematics, And Research for Transformation (SMART)

NSF Graduate Research Fellowship NASA GSRP Fellowship \$36,000/year, tuition, fees for up to 4 years/US citizens/January \$25,000 - \$38,000 per year, tuition/US citizens willing to accept post-graduate employment with the DoD/December 1

3-year \$30,000 stipend, tuition, fees/US citizen or permanent resident students who completed no more than 1-year of graduate studies/November

Fellowship Opportunities

NDSEG Fellowship

Sandia Excellence in Science, & Engr. Research Fellowship

3 years of \$30,500+ stipend, tuition, fees/US citizens in their final year of undergraduate studies, or have completed less than two years of graduate study in the discipline in which they are applying/November

up to 3 years of stipend, tuition and fees/Purdue first-year doctoral students/determined by CoE

Information on fellowships can be found at: www.gradschool.purdue.edu/funding/

