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Abstract—In this article, we develop the method of continuous
Pontryagin differentiable programming (Continuous PDP), which
enables a robot to learn an objective function from a few sparsely
demonstrated keyframes. The keyframes, labeled with some time
stamps, are the desired task-space outputs, which a robot is ex-
pected to follow sequentially. The time stamps of the keyframes
can be different from the time of the robot’s actual execution. The
method jointly finds an objective function and a time-warping func-
tion such that the robot’s resulting trajectory sequentially follows
the keyframes with minimal discrepancy loss. The Continuous PDP
minimizes the discrepancy loss using projected gradient descent
by efficiently solving the gradient of the robot trajectory with
respect to the unknown parameters. The method is first evaluated
on a simulated robot arm and then applied to a 6-DoF quadrotor
to learn an objective function for motion planning in unmodeled
environments. The results show the efficiency of the method, its
ability to handle time misalignment between keyframes and robot
execution, and the generalization of objective learning into unseen
motion conditions.

Index Terms—Inverse optimal control (IOC), inverse
reinforcement learning (IRL), learning from demonstrations
(LfD), motion planning, optimal control, Pontryagin differentiable
programming (PDP).

I. INTRODUCTION

THE appeal of learning from demonstrations (LfD) lies in
its capability of facilitating robot programming by simply

providing demonstrations. It circumvents the need for expertise
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Dana Kulić is with Monash University, Clayton, VIC 3800, Australia (e-mail:
dana.kulic@monash.edu).

Neta Ezer is with Northrop Grumman Corporation, Linthicum Heights, MD
21090 USA (e-mail: neta.ezer@ngc.com).

Shaoshuai Mou is with the School of Aeronautics and Astronautics,
Purdue University, West Lafayette, IN 47906 USA (e-mail: shaoshuai.
mou@aya.yale.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TRO.2022.3191592.

Digital Object Identifier 10.1109/TRO.2022.3191592

of modeling and control design, empowering nonexperts to
program robots as needed [1]. LfD has been successfully ap-
plied in manufacturing [2], assistive robots [3], and autonomous
vehicles [4].

LfD can be broadly categorized into two classes based on what
to learn from demonstrations. The first branch of LfD focuses on
learning policies [5]–[9], which maps directly from robot states,
environment, or raw observation data to robot actions. While
effective in many situations, policy learning typically requires
a considerable amount of demonstration data, and the learned
policy may generalize poorly to unseen tasks [1]. To alleviate
this, the second line of LfD focuses on learning an objective
(cost or reward) function from demonstrations [10] from which
the policies or trajectories are derived. These methods assume
the optimality of demonstrations and use inverse reinforcement
learning (IRL) [11] or inverse optimal control (IOC) [12] to
estimate objective functions. Since an objective function is a
compact and high-level representation of a task and control
principle, learning objective functions has shown an advantage
over policy imitation in terms of better generalization [13] and
relatively lower data complexity [10]. Despite appealing, objec-
tive learning-based LfD inherits some limitations from existing
IOC/IRL methods1 [14]–[19].

First, existing IOC/IRL methods cannot handle the time mis-
alignment between demonstrations and actual execution of a
robot [20]. For instance, the speed of demonstrations maybe not
be achievable by a robot as the robot is actuated by weak motors
and cannot move as fast as the demonstrations. Second, existing
methods usually require the demonstrations of complete motion
trajectories or at least a continuous segment of states’ inputs,
making it challenging in data collection for high-dimensional
and long-horizon tasks. Third, existing IOC/IRL may not be effi-
cient when handling high-dimensional continuous systems/tasks
or learning complex objective functions, such as deep neural
network objective functions.

This article develops the Continuous Pontryagin differen-
tiable programming method, abbreviated as the Continuous
PDP, to address the existing challenges. The method requires
only a few keyframes demonstrated at sparse time instances, and
it learns both an objective function and a time-warping function,
which account for the time misalignment between demonstration
and robot actual execution. The Continuous PDP minimizes a
discrepancy loss between the robot reproduced motion and the
given keyframes via the projected gradient descent. This is done
by efficiently computing the analytical gradient of the robot

1The literature review here mainly focuses on model-based IRL methods.
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Fig. 1. Illustration of learning from sparsely demonstrated keyframes. Each
keyframe is a desired output with a time stamp. We aim to learn an objective
function from keyframes such that the robot motion (blue line) follows these
keyframes. At first glance, it may seem a problem of “curve fitting” (i.e., finding
a kinematic path). However, a key difference of our problem is that learning an
objective function enables a robot to generalize new motion in unseen situations,
such as given a new initial condition (green dashed line). A key feature of the
proposed method is that in addition to learning an objective function, we jointly
learn a time-warping function to account for the misalignment between the
keyframe time ti and robot actual execution time (due to dynamics constraint).

trajectory with respect to tunable parameters in the objective
and time-warping functions. The highlights of the Continuous
PDP are listed as follows.

1) It requires as input the keyframe demonstrations, defined
as a small number of sparse desired task-space outputs,
which the robot is expected to follow sequentially, as
shown in Fig. 1.

2) As the time stamp of each keyframe may not correctly
reflect the time of robot execution, in addition to learning
an objective function, the method jointly searches for a
time-warping function, which accounts for the time mis-
alignment between keyframes and robot execution.

3) The method can efficiently handle continuous-time high-
dimensional systems and accepts any differentiable pa-
rameterization of objective functions.

A. Related Work

Since the theme of this article belongs to the category of
objective learning, in the following, we mainly review IOC/IRL
methods. For other types of LfD, e.g., learning policies, refer to
the recent surveys [1], [21].

1) Classic Strategies in IOC/IRL: Existing IOC/IRL meth-
ods can be categorized into two classes. The first class adopts
a bilevel framework, where an objective function is updated on
an outer level while the corresponding reinforcement learning
(or optimal control) problem is solved on an inner level. Dif-
ferent methods in this class use different strategies to update
an objective function. Representative work includes feature-
matching IRL [10], where an objective function is updated to
match the feature values of the reproduced trajectory with the
ones of the demonstrations, max-margin IRL [14], [22], where
an objective function is updated by maximizing the margin
between the objective value of the reproduced trajectory and
that of demonstrations, and max-entropy IRL [15], which finds
an objective function such that the trajectory distribution has
maximum entropy while subject to the empirical feature values.

The second class of IOC/IRL [17]–[19], [23], [24] directly solves
for objective function parameters by establishing the optimality
conditions, such as KKT conditions [25] or Pontryagin’s maxi-
mum principle [26], [27]. The key idea is that a demonstration
is assumed to be optimal and, thus, must satisfy the optimality
condition. By directly minimizing the violation of the optimality
conditions by demonstration data, one can compute the objective
function parameters.

2) IOC With Trajectory Loss: One type of bilevel IOC/IRL
formulation also uses a trajectory loss as its learning criterion.
A trajectory loss is to evaluate the discrepancy between the
demonstrations and the robot motion reproduced by the objective
function estimate. For example, Mombaur et al. [16], [28]
develop a bilevel IOC approach that learns an objective function
from human locomotion data. In their work, the trajectory loss
is minimized via a derivative-free technique [29], where the
key is to approximate the loss using a quadratic function. The
approach requires solving optimal control problems multiple
times at each update, thus is computationally expensive. Fur-
ther, the derivative-free methods are known to be challenging
for the problem of large size [30]. Hatz et al. [31] convert a
bilevel IOC to a plain optimization by replacing the lower level
optimal control problem with its optimality conditions (Pon-
tryagin’s maximum principle). Although the converted plain
optimization can be solved by an off-the-shelf nonlinear opti-
mization solver, the decision variables of the plain optimization
include both objective parameters and system trajectory (and
dual variables), thus dramatically increasing the size of the
optimization. Besides, both lines of methods have not consid-
ered the time misalignment between demonstrations and robot
execution.

Compared to the derivative-free methods in [16] and [28], the
proposed Continuous PDP solves IOC/IRL by directly comput-
ing the analytical gradient of a trajectory loss with respect to
tunable parameters in an objective function and a time-warping
function, thus is capable of solving high-dimensional continuous
tasks. Compared to [31], the Continuous PDP maintains the
bilevel hierarchy of the problem and solves IOC by differentiat-
ing through the inner-level optimal control system. Maintaining
a bilevel structure enables us to treat the outer and inner level
subproblems separately, avoiding the mixed treatment that can
lead to a dramatic increase in the size of optimization. In Sec-
tion V-E3, we provide the comparison between the Continuous
PDP and [31].

3) IOC/IRL via Differentiable Through Inner-Level Opti-
mization: The recent work focuses on solving bilevel IOC/IRL
by differentiating through inner-level optimization. Das
et al. [32] learn a cost function from visual demonstrations by
differentiating through the inner-level MPC. Specifically, those
methods treat the inner-level optimization as an unrolling com-
putational graph of repetitively applying gradient descent such
that the automatic differentiation [33] can be applied. However,
as shown in [34] and [35], autodifferentiating an “unrolling”
graph has the following drawbacks: 1) it needs to store all
intermediate results along with the graph, thus is memory-
expensive; and 2) the accuracy of the unrolling differentiation
depends on the length of the “unrolled” graph, thus facing
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a tradeoff between complexity and accuracy. In contrast, the
Continuous PDP computes the gradient directly on the optimal
trajectory produced from the inner level without memorizing
how this inner-level solution is obtained. Thus, there are no
above-mentioned challenges for the proposed method.

4) Time-Warping: Using time-warping functions to model
the time misalignment between two temporal sequences has
been extensively studied in signal processing [36] and pattern
recognition [37]. In [38] and [39], time-warping is used in LfD
for learning and producing robot trajectories. In [20], a time-
warping function between robot and demonstrator is learned
for optimal tracking. All the above-mentioned methods focus
on learning policy or trajectory models instead of objective
functions. For time misalignment in IOC/IRL, a main technical
challenge is how to incorporate the search of a time-warping
function into the objective learning process. The Continuous
PDP addresses this challenge by finding an objective function
and a time-warping function simultaneously using gradient de-
scent.

5) Incomplete Trajectory or Sparse Waypoints: Some meth-
ods focus on learning from incomplete trajectories. Jin et al.
[23] and Liang et al. [40] develop a method to solve IOC
with trajectory segments. It requires the length of a segment
to satisfy a recovery condition and cannot directly learn from
sparse points. Akgun et al. [41], [42] consider learning from a set
of sparse waypoints, but they learn a kinematic model instead of
an objective function. Compared to those methods, the proposed
method learns an objective function and a time-warping function
from a small set of time-stamped sparse keyframes, i.e., a few
desired task-space outputs. In Section V-E1, we will provide a
comparison with [41].

6) Sensitivity Analysis and Continuous PDP: The idea of
the Continuous PDP is similar to the well-known sensitivity
analysis [43], [44] in nonlinear optimization, where the KKT
conditions are differentiated to obtain the gradient of a solution
with respect to the objective function parameters. In sensitiv-
ity analysis, it requires to compute the inverse of the Hes-
sian matrix in order to apply the well-known implicit function
theorem [45]. If trying to apply the sensitivity analysis to a
continuous-time optimal control problem in our formulation, we
may face the following challenge. Since the optimality condition
of a continuous-time optimal control problem is Pontryagin’s
maximum principle [26], which is a set of ODE equations, to
apply the sensitivity analysis, one would need to first discretize
the continuous-time system, and this will lead to a Hessian
matrix of the size at least T

Δt × T
Δt (T is the time horizon, and

Δt is the discretization interval); this will cause huge compu-
tation cost when taking its inverse [the complexity is at least
O(( T

Δt )
2)]. The reason why we do not formulate the problem

in discrete time in the first place is that, otherwise, learning
a discrete time-warping function will lead the problem to a
mixed-integer optimization, which becomes more challenging to
attack.

Compared to sensitivity analysis, the Continuous PDP has the
following new technical aspects. First, it directly differentiates
the ODE equations in Pontryagin’s maximum principle [26],
producing differential Pontryagin’s maximum principle; and

second, importantly, it develops Riccati-type equations to solve
the differential Pontryagin’s maximum principle to obtain the
trajectory gradient (Lemma 1). The complexity of this process is
onlyO(T ). The Continuous PDP is an extension of our previous
work Pontryagin’s Differentiable Programming (PDP) [34], [46]
into the continuous-time systems. For a more detailed compari-
son between PDP and the sensitivity analysis, we refer the reader
to [34], [46].

The following article is organized as follows. Section II sets
up the problem. Section III reformulates the problem using time-
warping techniques. Section IV proposes the Continuous PDP
method. Experiments are given in Sections V and VI. Section VII
presents discussion, and Section VIII draws conclusions.

II. PROBLEM FORMULATION

Consider a robot with the following continuous dynamics:

ẋ(t) = f(x(t),u(t)) with x(0) (1)

where x(t) ∈ Rn is the robot state; u(t) ∈ Rm is the control
input; vector function f : Rn × Rm �→ Rn is assumed to be
twice-differentiable; and t ∈ [0,∞) is time. Suppose the robot
motion over a time horizon tf > 0 is controlled by minimizing
the following parameterized cost function:

J(p) =

∫ tf

0

c(x(t),u(t),p)dt+ h(x(tf ),p) (2)

where c(x,u,p) and h(x,p) are the running and final costs,
respectively, both of which are assumed twice-differentiable;
and p ∈ Rr is a tunable parameter vector. For a fixed choice of
p, the robot produces a trajectory of states and inputs

ξp = {ξp(t) | 0 ≤ t ≤ tf} with ξp(t) = {xp(t),up(t)} (3)

which minimizes (2) subject to (1). The subscript in ξp means
that the trajectory implicitly depends on p.

The goal of LfD is to estimate the cost function parameter
p from the given demonstrations by a user (usually a human).
Suppose that a user provides demonstrations in a task space
(e.g., Cartesian space or vision measurement), which is a known
differentiable mapping of the robot state-input pair

y = g(x,u) (4)

where g : Rn × Rm → Ro defines a mapping from the robot
state input to a task outputy ∈ Ro. The user’s demonstrations in-
clude an expected time horizon T and a number ofN keyframes,
each of which is a desired output labeled with an expected time
stamp τi denoted as

D = {y∗(τi) | τi ∈ [0, T ], i = 1, 2, . . . , N}. (5)

Here, y∗(τi) is the ith keyframe demonstrated by the user,
and τi is the expected time stamp at which the user wants the
robot to reach y∗(τi). The keyframe time {τ1, τ2, . . ., τN} can
be sparsely located within range [0, T ]. As the user can freely
choose N and τi relative to the expected horizon T , we call D
as keyframes. As shown later in experiments, N can be small.

Note that both the expected horizon T and the expected time
stamps τi are in the time axis of the user’s demonstration. This

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Purdue University. Downloaded on August 24,2022 at 13:04:58 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON ROBOTICS

demonstration time axis may not be identical to the actual time
axis of robot execution; in other words, T and τi may not
be achievable by the robot. For example, when the robot is
actuated by a weak servo motor, its motion inherently cannot
meet τi. To accommodate the time misalignment between the
robot execution and keyframes, we introduce a time warping
function

t = w(τ) (6)

which maps from keyframe time τ to robot time t. We make the
following reasonable assumption: w is strictly increasing in the
range [0, T ], continuously differentiable, and w(0) = 0.

Given the keyframes D, the problem of interest is to find cost
function parameterp and a time-warping functionw(·) such that
the task discrepancy loss is minimized

min
p,w

N∑
i=1

l
(
y∗(τi), g

(
ξp(w(τi))

))
(7)

where l(a, b) is a given differentiable scalar function defined in
the task space that quantifies a distance metric between vectors
a and b, e.g., l(a, b) = ‖a− b‖2. Minimizing (7) means that
we want the robot to find cost function parameter p and a time-
warping function w(·) such that its reproduced trajectory gets
as close to the given keyframes as possible.

III. PROBLEM REFORMULATION BASED ON TIME-WARPING

TECHNIQUES

In this section, we reformulate the problem of interest using
the time-warping techniques.

A. Parametric Time-Warping Function

To facilitate learning of an unknown time-warping function,
we first parameterize the time-warping function. Recall that a
differentiable time-warping function w(τ) satisfies w(0) = 0
and is strictly increasing in the range [0, T ], i.e.,

v(τ) =
dw(τ)

dτ
> 0 (8)

for all τ ∈ [0, T ]. We use a polynomial time-warping function

t = wβ(τ) =

s∑
i=1

βiτ
i (9)

where β = [β1, β2, . . . , βs]
T ∈ Rs is the coefficient vector.

Since wβ(0) = 0, there is no constant (zero-order) term in (9)
(i.e., β0 = 0). Due to the requirement of dwβ/dτ = vβ(τ) > 0
for all τ ∈ [0, T ], one can obtain a feasible set, denoted as Ωβ,

such that dwβ(τ)
dτ > 0 for all τ ∈ [0, T ] if β ∈ Ωβ. The choice

of polynomial degree s will decide the representation power
of (8): larger s means that wβ(τ) can represent more complex
time warping curves. Note that although we use a polynomial
time-warping function, the method in this article allows for more
general parameterization of a time-warping function as long as
it is differentiable. This article uses polynomial time-warping
functions due to the simplicity for implementation.

B. Equivalent Formulation by Time Warping

Substituting the parametric time-warping function wβ in (9)
into both the robot dynamics (1) and cost function (2), we obtain
the following time-warped dynamics:

dx

dτ
=

dwβ

dτ
f (x(wβ(τ)),u(wβ(τ))) with x(0) (10)

and the time-warped cost function

J(p,β) =

∫ T

0

dwβ

dτ
cp(x(wβ(τ)),u(wβ(τ)))dτ

+ hp(x(wβ(T ))). (11)

Here, the left side of (10) is due to the chain rule: dx
dτ = ẋ dt

dτ ,
and the time horizon satisfies tf = wβ(T ) (note that T is
specified by the demonstrator). For notation simplicity, we
write dwβ

dτ = vβ(τ), x(w(τ)) = x(τ), u(w(τ)) = u(τ), and
dx
dτ = ẋ(τ). Then, the above-mentioned time-warped dynamics
(10) and time-warped cost function (11) are rewritten as

ẋ(τ) = vβ(τ)f(x(τ),u(τ)) with x(0) (12a)

and

J(p,β)=

∫ T

0

vβ(τ)c(x(τ),u(τ),p)dτ + h(x(T ),p) (12b)

respectively. We pack the tunable cost parameter p and time-
warping parameter β together as

θ = [pT,βT]T ∈ Rr+s. (13)

For a fixed θ, the optimal trajectory from solving the above-
mentioned time-warped optimal control system (12) is rewritten
as

ξθ = {ξθ(τ) | 0 ≤ τ ≤ T} (14)

with ξθ(τ) = {xθ(τ),uθ(τ)}. The discrepancy loss (7) can
now be defined as

L(ξθ,D) =
N∑
i=1

l (y∗(τi), g (ξθ(τi))) . (15)

Minimizing (15) over θ is a process of simultaneously searching
for a cost function J(p) and time-warping function wβ(τ). In
sum, the problem of interest is now reformulated as the following
optimization:

min
θ∈Θ

L(ξθ,D)

s.t. ξθ is from the optimal control system (12). (16)

HereΘ defines a feasible set of θ,Θ = Rr × Ωβ. Equation (16)
is a bilevel optimization, where the upper level is to minimize a
discrepancy loss between the keyframes D and the reproduced
time-warped trajectory ξθ , and the inner level is to generate such
ξθ by solving the optimal control problem (12). In Section IV,
we will develop the Continuous PDP to efficiently solve (16).
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Fig. 2. Computational diagram of the Continuous PDP.

IV. CONTINUOUS PONTRYAGIN DIFFERENTIABLE

PROGRAMMING

A. Algorithm Overview

To solve the optimization (16), we start with an arbitrary initial
guess θ0 ∈ Θ and apply the gradient descent

θk+1 = ProjΘ

(
θk − ηk

dL

dθ

∣∣∣
θk

)
(17)

where k is the iteration index; ηk is the step size (or learning
rate); ProjΘ is a projection operator to enforce the feasibility
of θk in Θ, e.g., ProjΘ(θ) = argminz∈Θ ‖θ − z‖; and dL

dθ

∣∣
θk

denotes the gradient of the loss (15) directly with respect to θ
evaluated at θk. Applying the chain rule, we have

dL

dθ

∣∣∣
θk

=

N∑
i=1

∂l

∂ξθ(τi)

∣∣∣
ξθk

(τi)

∂ξθ(τi)

∂θ

∣∣∣
θk

(18)

where ∂l
∂ξθ(τi)

∣∣
ξθk

(τi)
is the gradient of the single keyframe loss

l = (y∗(τi), g(ξθ(τi))) in (15) with respect to the time-τi tra-
jectory point ξθ(τi), evaluated at value ξθk

(τi), and ∂ξθ(τi)
∂θ

∣∣
θk

is the gradient of the time-τi trajectory point ξθ(τi), with respect
to θ, evaluated at value θk. From (17) and (18), we can draw
the computational diagram in Fig. 2. Fig. 2 shows that at each
iteration k, the update of θk includes the following steps.

Step 1: Obtain the optimal trajectory ξθk
by solving the op-

timal control (trajectory optimization) problem (12)
with current θk.

Step 2: Compute the gradient ∂l
∂ξθ(τi)

∣∣
ξθk

(τi)
.

Step 3: Compute the gradient ∂ξθ(τi)
∂θ

∣∣
θk

.

Step 4: Apply chain rule (18) to compute dL
dθ

∣∣
θk

, and update
θk using (17) to θk+1.

The interpretation of the above procedure is straightforward.
At each update k, the first step is to use the current parameter
θk to compute the current optimal trajectory ξθk

by solving the
optimal control problem (12). In Steps 2 and 3, the gradient of
the loss with respect to the trajectory point, ∂l

∂ξθ(τi)

∣∣
ξθk

(τi)
, and

the gradient of the trajectory point with respect to parameters,
∂ξθ(τi)

∂θ

∣∣
θk

, are computed, respectively. In Step 4, the total gradi-

ent of the loss with respect to the parameter, dL
dθ

∣∣
θk

, is assembled
via chain rule (18) and then used to update θk by the projected
gradient descent (17).

In Step 1, the optimal trajectory ξθk
can be solved by avail-

able optimal control (trajectory optimization) solvers, such as
iLQR [47], DDP [48], Casadi [49], and GPOPS [50]. In Step
2, the gradient ∂L

∂ξθ(τi)
can be readily computed by directly

differentiating the given loss (15). The main challenge, how-
ever, lies in Step 3, i.e., computing ∂ξθ

∂θ

∣∣
θk

, the gradient of the
optimal trajectory ξθ with respect to the parameter θ of the
optimal control system (12). In what follows, we will efficiently
solve it by proposing the technique of differential Pontryagin’s
maximum principle. For notation simplicity, we suppress the
iteration index k in the following.

B. Differential Pontryagin’s Maximum Principle

In this section, we focus on efficiently solving the analytical
gradient of a trajectory of a continuous-time optimal control
system with respect to the system parameter. We assume that
the resulting optimal trajectory ξθ in (14) is differentiable with
respect to the system parameter θ. This assumption is satisfied
if ξθ satisfies the second-order sufficient condition, that is, θ is
a locally unique optimal trajectory (see [46, Lemma 1]). Both
our later experiments and previous empirical results [34], [51]
show that the differentiability condition is very mild. For more
detailed results about the differentiability for a general optimal
control system with respect to system parameters, we refer the
reader to [46].

Consider an optimal trajectory ξθ in (14) produced by an
optimal control system (12) with a fixed θ. Pontryagin’s maxi-
mum principle [26] states a set of ODE conditions that ξθ must
satisfy. To present Pontryagin’s maximum principle, define the
Hamiltonian [52]

H(τ) = vβ(τ)cp(x(τ),u(τ))

+ λ(τ)Tvβ(τ)f(x(τ),u(τ)) (19)

where λ(τ) ∈ Rn is called the costate, 0 ≤ τ ≤ T . According
to Pontryagin’s maximum principle [26], there exists

{λθ(τ) | 0 ≤ τ ≤ T} (20)

associated with the optimal trajectory ξθ in (14) such that the
following ODE equations hold [26]:

ẋθ(τ) =
∂H

∂λθ
(xθ(τ),uθ(τ),λθ(τ)) (21a)

−λ̇θ(τ) =
∂H

∂x
(xθ(τ),uθ(τ),λθ(τ)) (21b)

0 =
∂H

∂u
(xθ(τ),uθ(τ),λθ(τ)) (21c)

λθ(T ) =
∂hp

∂x
(xθ(T )) and xθ(0) = x(0). (21d)

Here, (21a) is the dynamics; (21b) is the costate ODE; (21c) is
the input ODE; and (21d) is the boundary conditions. Given ξθ ,
one can always solve the corresponding {λθ(τ) | 0 ≤ τ ≤ T}
by integrating the costate ODE in (21b) backward in time with
the boundary condition in (21d).

Recall that our technical challenge is to obtain the gradient
∂ξθ

∂θ . Toward this goal, we differentiate the above-mentioned
Pontryagin’s maximum principle in (21) on both sides with
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respect to the system parameter θ, yielding the following dif-
ferential Pontryagin’s maximum principle:

d

dτ

(
∂xθ

∂θ

)
= F (τ)

∂xθ

∂θ
+G(τ)

∂uθ

∂θ
+ E(τ) (22a)

− d

dτ

(
∂λθ

∂θ

)
= Hxx(τ)

∂xθ

∂θ
+Hxu(τ)

∂uθ

∂θ

+ F (τ)T ∂λθ

∂θ
+Hxe(τ) (22b)

0 = Hux(τ)
∂xθ

∂θ
+Huu(τ)

∂uθ

∂θ

+G(τ)T ∂λθ

∂θ
+Hue(τ) (22c)

∂λθ

∂θ
(T ) = Hxx(T )

∂xθ

∂θ
+Hxe(T )

and
∂xθ

∂θ
(0) = 0. (22d)

The coefficient matrices in the above (22) are defined as

F (τ)=
∂2H

∂λθ∂xθ
, G(τ)=

∂2H

∂λθ∂uθ
, E(τ)=

∂2H

∂λθ∂θ
(23a)

Hxx(τ)=
∂2H

(∂xθ)2
, Hxu(τ)=

∂2H

∂xθ∂uθ
, Hxe(τ)=

∂2H

∂xθ∂θ
(23b)

Hux(τ)=HT
xu(τ), Huu(τ)=

∂2H

(∂uθ)2
, Hue(τ)=

∂2H

∂uθ∂θ
(23c)

Hxx(T )=
∂2hp

(∂xθ)2
, Hxe(T )=

∂2hp

∂xθ∂θ
. (23d)

Once we obtain the optimal trajectory ξθ and the associated
costate trajectory {λθ(τ) | 0 ≤ τ ≤ T} in (20), all the above-
mentioned coefficient matrices in (23) are known and their
computation is straightforward. Given the differential Pontrya-
gin’s maximum principle in (22), one can observe that these
ODEs have a similar form to the original Pontryagin’s maximum
principle in (21). Thus, if one thinks of ∂xθ

∂θ as a new state
variable, ∂uθ

∂θ as a new control variable, and ∂λθ

∂θ as a new
costate variable, then the differential Pontryagin’s maximum
principle in (22) can be thought of as Pontryagin’s maximum
principle of a new LQR system, as investigated in [34] and [46].
By deriving the equivalent Riccati-type equations, the following
lemma gives an efficient way to compute the trajectory gradient
∂ξθ(τ)

∂θ , 0 ≤ τ ≤ T , from (22).
Lemma 1: If Huu(τ) in (23c) is invertible for all 0 ≤ τ ≤ T ,

define the following differential equations for matrix variables
P (τ) ∈ Rn×n and W (τ) ∈ Rn×(r+s):

−Ṗ = Q(τ) +A(τ)TP + PA(τ)− PR(τ)P (24a)

Ẇ = PR(τ)W −A(τ)TW − PM(τ)−N(τ) (24b)

with P (T ) = Hxx(T ) and W (T ) = Hxe(T ). Here

A(τ) = F −G(Huu)
−1Hux (25a)

R(τ) = G(Huu)
−1GT (25b)

M(τ) = E −G(Huu)
−1Hue (25c)

Q(τ) = Hxx −Hxu(Huu)
−1Hux (25d)

N(τ) = Hxe −Hxu(Huu)
−1Hue (25e)

are all known given (23). The gradient of the optimal trajectory
ξθ , denoted as

∂ξθ(τ)

∂θ
=

(
∂xθ

∂θ
(τ),

∂uθ

∂θ
(τ)

)
, 0 ≤ τ ≤ T (26)

is obtained by integrating the following ODEs up to τ :

∂uθ

∂θ
= − (Huu(τ))

−1

(
Hux(τ)

∂xθ

∂θ
(τ) +Hue(τ)

+G(τ)TW (τ) +G(τ)TP (τ)
∂xθ

∂θ
(τ)

)

(27a)

d

dτ

(
∂xθ

∂θ

)
= F (τ)

∂xθ

∂θ
(τ) +G(τ)

∂uθ

∂θ
(τ) + E(τ) (27b)

with ∂xθ

∂θ (0) = 0 in (22d). Here, the matrices P (τ) and W (τ)
are solutions to (24a) and (24b), respectively.

The proof of Lemma 1 is given in the Appendix. Lemma 1
states that for the optimal control system (12), the gradient of
its optimal trajectory ξθ with respect to the system parameter
θ can be obtained in two steps: first, integrate (24) backward
in time to obtain P (τ) and W (τ) for 0 ≤ τ ≤ T ; and second,
obtain ∂ξθ

∂θ (τ) by integrating (27) forward in time. Based on the
differential Pontryagin’s maximum principle, Lemma 1 gives an
efficient way to compute the gradient of an optimal trajectory
with respect to the parameter in an optimal control system.
By Lemma 1, one can obtain the derivative of the trajectory
point ξθ(τ), at any time 0 ≤ τ ≤ T , with respect to the system
parameter θ, i.e., ∂ξθ

∂θ (τ).
Additionally, we have the following comments on Lemma 1.

First, (24) are Riccati-type equations, which are derived from
differential Pontryagin’s maximum principle in (22). Second,
Lemma 1 requires the matrix Huu(τ)=

∂2H
∂uθ∂uθ

in (23c) to be
invertible, this is in fact a necessary condition [46] for the
differentiability of ξθ . As we have mentioned at the beginning of
this section, if ξθ satisfies the second-order sufficient condition
(i.e., is a locally unique optimal trajectory) for the optimal
control problem (12), then ξθ is differentiable in θ and Huu(τ)
is automatically invertible (see [46] for the details and proofs).
A similar invertiblility requirement is common in sensitivity
analysis methods [43], [44], where they analogously requires
the Hessian matrix to be invertible in order to apply the implicit
function theorem [45]. Both our later experiments and other
related existing work [34], [35], [46] have empirically shown
that the invertibility of Huu(τ) is a mild condition and could
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be easily satisfied. With Lemma 1, we summarize the overall
algorithm of the Continuous PDP in Algorithm 1.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate different aspects of the proposed
method using a two-link robot arm performing reaching tasks.
The dynamics of a robot arm (moving horizontally) is [53]

M(q)q̈ + c(q, q̇) = τ (28)

where M(q) ∈ R2×2 is the inertia matrix, c(q, q̇) ∈ R2 is the
Coriolis term, q = [q1, q2]

T ∈ R2 is the joint angle vector, and
τ = [τ1, τ2]

T ∈ R2 is the joint toque vector. The physical pa-
rameters for the dynamics are m1=2˜kg and m2=1˜kg for the
mass of each link and l1=1˜m and l2=1˜m for the length of each
link (assume mass is evenly distributed). The state and control
vectors are x = [q, q̇]T ∈ R4 and u = τ ∈ R2, respectively.

For the task of reaching to a goal state xg = [qg
1, q

g
2, 0, 0]

T ∈
R4, we set the cost function (2) as

c(x,u,p) = p1(q1 − qg
1)

2 + p2(q2 − qg
2)

2

+ p3 q̇
2
1 + p4 q̇

2
2 + 0.5‖u‖2 (29a)

h(x,p) = p1(q1−qg
1)

2+p2(q2−qg
2)

2 + p3 q̇
2
1+p4 q̇

2
2 (29b)

with the tunable parameter p = [p1, p2, p3, p4]
T ∈ R4. Note that

(29) is a weighted distance-to-goal function with a fixed weight
to ‖u‖2 because, otherwise, learning all weights will lead to
scaling ambiguity [23]. We set the goal state xg = [π2 , 0, 0, 0]

T

and the initial state x(0) = [−π
2 ,

3π
4 ,−5, 3]T.

For parametric time-warping function (9), we simply use

t = wβ(τ) = βτ (30)

with Ωβ = {β |β > 0} (more complex time-warping functions
will be used later). The overall parameter to be tuned is θ =
[pT, β]T ∈ R5. The task-space mapping (4) is

q = g(x,u) (31)

Fig. 3. Generating keyframes (marked as red dots) from an optimal trajectory
with θtrue. The gray dashed lines label the goal pose for each joint, i.e.,
[q

g
1, q

g
2]

T = [π/2, 0]T.

TABLE I
KEYFRAMES D GENERATED IN FIG. 3

meaning that the keyframe only includes the position informa-
tion. For the discrepancy loss (15), we use the squared l2 norm

L(ξθ,D) =

N∑
i=1

‖q∗(τi)− g (ξθ(τi)) ‖2. (32)

In the following experiments, we evaluate different aspects of
the method and provide analysis for each evaluation.

A. Different Number of Keyframes

First, we evaluate the performance of the proposed method for
learning from different numbers of keyframes. D is generated
from known/true cost and time-warping functions. Given

θtrue = [3, 3, 3, 3, 5]T (33)

the robot optimal trajectory is computed by solving the optimal
control problem (12), as shown in Fig. 3. Then, we select some
points (red dots) from Fig. 3 as our keyframesD, listed in Table I.
We evaluate the performance of the proposed method to recover
θtrue given different numbers of the keyframes. The learning
rate is η = 0.1, and the initial θ0 is randomly given. For each
evaluation case, we have run the experiment for ten trials with
different random seeds for θ0.

We choose different numbers of keyframes from Table I to
learn the time-warping and cost functions, and the results are in
Fig. 4. The left panel of Fig. 4 shows the loss (32) versus iteration,
and the right panel shows the parameter error‖θ − θtrue‖2 versus
iteration.

Fig. 4 shows that when the number of keyframesN ≥ 3 (blue,
green, and red lines), the loss L(ξθk

,D), and the parameter
error ‖θk − θtrue‖2 converge to zeros, indicating that both the
cost and time-warping functions are successfully learned. When
N ≤ 2, while the loss converges to zero, θk does not converge to
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Fig. 4. Learning from different numbers of keyframes. The left panel shows
the loss (32) versus iteration, and the right panel shows the parameter error
‖θk − θtrue‖2 versus iteration. The solid line and shaded area denote the mean
and standard derivation over all ten trials, respectively.

Fig. 5. Generalization of the learned cost function given new initial condition
x(0) and new horizon T . The gray dashed lines mark the goal for each joint
[q

g
1, q

g
2]

T = [π/2, 0]T.

θtrue (orange and purple lines in the right panel). This indicates
that when N ≤ 2, there are multiple cost and time-warping
functions, besides θtrue, that lead to the given keyframes. In other
words, with fewer keyframes, we cannot uniquely determine the
cost and time-warping functions as they are overparameterized
relative to given keyframes. Intuitively, to uniquely determine
θtrue, the number of constraints imposed by the given keyframes,
oN [recall o is the dimension of g()], should be no less than
the number of all unknown parameters, r+s, that is, N ≥ r+s

o .
Refer to Section VII-A for more analysis.

From the right panel of Fig. 4, we also observe that different
numbers of keyframes (N ≥ 3) also influence the converge rate.
For instance, the convergence rate with eight keyframes (red
line) is faster than that of four keyframes (blue line). Since the
proposed method updates the cost and time-warping functions
by finding the deepest descent direction of loss, thus, the more
keyframes are given, the better informed the gradient direction
will be, making the convergence to the true parameters faster.

Finally, we test the generalization of the learned cost and
time-warping functions by setting the robot arm to new initial
state x(0) = [−π

4 , 0, 0, 0]
T and new horizon T=2 (both are very

different from the ones in learning). The generated motion using
the learned θ (mean value over all trials) is shown in Fig. 5,
where we have also plotted the trajectory of θtrue for reference.
To compare the generalization performance, we compute the
distance between the final state x(T ) of the generalized mo-
tion and the goal state xg = [π2 , 0, 0, 0]

T, and list the results
in Table II. Both Fig. 5 and Table II show that the learned θ
enables to generate new motion in unseen conditions. Further,
Table II illustrates that the increasing keyframes could lead to

TABLE II
DISTANCE BETWEEN THE FINAL STATE x(T ) OF THE GENERALIZED MOTION

AND THE GOAL xg, I.E., ‖x(T )− xg‖

Fig. 6. Learning from nonoptimal keyframes. The first column shows the given
keyframes (red dots), which deviate from the optimal trajectory (black lines), and
the reproduced trajectory (orange lines) from the learned θ (mean value over
all ten trials). The second column shows the loss and parameter error versus
iteration; the solid line and shaded area denote the mean and standard derivation
over all ten trials. The third column shows the generalization of the learned θ
to new initial condition x(0) and new time horizon T . The gray dashed lines in
the first and third columns mark the goal for each joint [qg

1, q
g
2]

T = [π/2, 0]T.
As calculated in Table II, ‖x(T )− xg‖ for the generalized motion in the third
column is 0.107.

better generalization. Notably, we see that although the learned
θs from 1 or 2 keyframes are different from θtrue, they can still
obtain fair generalization. This could be due to the formulation of
the distance-to-goal features (29). Although the learned weight
vector θ is different from θtrue, the distance-to-goal features
largely contributes to a similar performance. We will show
later in Section V-D that when (29) is replaced with a neural
cost function, fewer keyframes will lead to poor generalization.
Thus, for the same number of keyframes, different cost function
formulations could lead to different generalization abilities. But
as we will see in Section V-D, a common observation is that the
more keyframes are given, the better the generalization will be
for the learned cost function.

B. Nonoptimal Keyframes

Next, we evaluate the performance of the proposed method
given nonoptimal keyframes. This emulates the situation where
a demonstration could be polluted by biased sensing error, noise,
hardware error, etc. We select keyframes D by corrupting each
keyframe in Fig. 4 with a biased error, as shown in the first
column (red dots) of Fig. 6. We evaluate the performance of
the method given such biased keyframes. The other experiment
settings follow the previous experiment. We have run each
experiment for ten trials with different random seeds for the
initial θ0.

In Fig. 6, the loss and parameter error versus iteration are
shown in the top and bottom panels of the second column,
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TABLE III
LEARNING WITH DIFFERENT TIME-WARPING FUNCTIONS

respectively. The solid line and shaded area denote the mean
and standard derivation, respectively, over all ten trials. We use
the learned θ to reproduce the optimal trajectory of the robot,
which is shown in the first column (orange lines). In the third
column, we test the generalization of the learned θ to the new
initial condition x(0) = [−π

4 , 0, 0, 0]
T and new horizon T = 2.

Here, we also compare with the trajectory of θtrue (dashed black
lines). From Fig. 6, we have the following comments.

Since the keyframes in the first column are nonoptimal, there
does not exist a θ that exactly corresponds to those nonoptimal
keyframes. Thus, the loss in the second column does not con-
verge to zero. Despite those, the method still finds a θ such that
its produced trajectory is closest to the keyframes, as shown by
orange lines in the first column. The second column shows that
the learned θ is different from θtrue.

The generalization in the third column shows that given the
new initial condition and horizon, the generalized motion still
approaches the goal, and the final distance of the generalized
motion to the goal is ‖x(T )− xg‖ = 0.107, which is larger
compared to the one in Table II.

C. Different Time-Warping Functions

In this set of experiments, we test the learning performance
of using polynomial time-warping functions of different com-
plexity. The keyframes D are the red dots in the first column
of Fig. 6. For each polynomial time-warping function, we have
run the experiment for ten trials with different random seeds for
initial θ0. Other experiment settings follow the previous one.
The results are summarized in Table III. Here, the first column
shows the learned time-warping functions; the second column
is the final converged losses, and the statistics (mean+standard
deviation) are over ten trials. We have the following comments.

Table III illustrates that a higher order of polynomial time-
warping function leads to the lower final loss. This is because a
higher degree polynomial introduces additional degrees of free-
dom, which enable to represent more complex time mapping and
contribute to further decreasing the loss. Meanwhile, Table III
lists that 1) the first-order terms in all learned time-warping
polynomials are similar, 2) the higher order terms are relatively
small compared to the first-order term, and 3) adding higher
order terms to the time-warping polynomial only decreases a
small amount of final loss. All those observations indicate that
the first-order term dominates the final performance. We may
conclude that, in practice, it is preferable to start with a simplified
time-warping function. The subsequent experiments will use the
first-order time-warping function for simplicity.

Fig. 7. Learning neural cost functions from keyframes. Three cases of
keyframes are used, shown in the red dots in each column. In each case, the
first row shows loss versus iteration (the solid line and shaded area denote the
mean and standard derivation over all ten trials). The second and third rows
show the reproduced trajectories (orange lines) of the learned θ. The fourth and
fifth rows show the generalization (blue lines) of the learned θ to new initial
state and horizon, and the motion (dashed black lines) of θtrue is also plotted
for reference. In second–fifth rows, the gray dashed lines mark the goal for each
joint [qg

1, q
g
2]

T = [π/2, 0]T. (a) Case 1. (b) Case 2. (c) Case 3.

D. Learning Neural Cost Functions

In this session, we test the ability of the proposed method to
learn neural-network cost functions. This is useful if a weight-
feature cost function formulation cannot be specified due to the
lack of prior knowledge. We set the cost function (29) with the
following neural-network cost function

c(x,u,p) = φT
p(x)φp(x) + 0.05‖u‖2

h(x,p) = φT
p(x)φp(x) (34)

where φp(x) is a 4–8 fully-connected neural network [54] (i.e.,
4-neuron input layer and 8-neuron output layer), and p ∈ R40

is the parameter of the neural network, i.e., all weight matrices
and bias vectors. Note that (34) uses dot product in the output
layer of the neural network to guarantee the positiveness of the
cost function. The time-warping polynomial has the degree of
one. We use the keyframes in Fig. 3 (also in Table I). Other
experiment settings are the same as the previous ones. In each
evaluation case as follows, we have run the experiment for ten
trials with different random seeds for the initial θ0.

We plot the learning and generalization results in Fig. 7.
We test with three cases of the keyframes shown in red dots
in the second row, and the corresponding results are shown
in each column. In each case, the first row shows the loss
versus iteration; and the second and third rows show the re-
produced trajectories (orange lines) by the learned cost and
time-warping functions; and the fourth and fifth rows show the
generalization (blue lines) of the learned cost function to new
initial state x(0) = [−π

4 , 0, 0, 0]
T and new horizon T = 2. The
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TABLE IV
DISTANCE OF x(T ) OF THE GENERALIZED MOTION (IN THE FOURTH AND

FIFTH ROWS IN FIG. 7) TO GOAL xg = [π2 , 0, 0, 0]
T

motion (dashed black lines) of θtrue is also plotted for reference.
In Table IV, we compute the distance between x(T ) of the
generalized motion and the goalxg = [π2 , 0, 0, 0]

T to measure the
generalization performance. We have the following comments.

First, compared to the distance-to-goal cost (29), the neural
cost (34) is goal-blind, meaning that the goal qg = [π2 , 0]

T is not
encoded in the neural cost function before training. Thus, it is
crucial for the robot to learn a goal-encoded neural cost for the
success of the task. Cases 1 and 2 use four keyframes to learn a
cost function. The results in fourth and fifth rows of Fig. 7 and
in Table IV indicate that Case 2 has a better generalization than
Case 1 does: Case 2 has a final distance ‖x(T )− xg‖=0.717,
while Case 1 has ‖x(T )− xg‖=1.638. This is because the
keyframes in Case 1 are mainly clustered at the beginning of
motion and, thus, cannot provide sufficient information about
the final goal. In contrast, Case 2 has a keyframe at the goal,
and thus, the learned neural cost function captures such goal
information.

Second, we add more keyframes in Case 3. It shows that more
keyframes lead to better generalization of the learned neural cost
function: the final distance is ‖x(T )− xg‖ = 0.388, which is
better than those in Cases 2 and Case 1.

Finally, the learned neural cost function in Case 2 or Case 3
while controlling the robot to approach the goal has a trajectory
that is different from the true one (black dashed lines). This
manifests the generalizability of learning cost functions. We
also note that the neural cost function (34) is overparameterized,
relative to the fewer given keyframes. Despite this, the learned
neural cost still shows a fair generalization to new motion
conditions, given a proper selection of keyframes.

E. Comparison With Related Methods

In this session, we compare the proposed method with the
related work. For all comparisons mentioned in the following,
the learning process uses the keyframe data in Fig. 3 (see Table I).
The generalization is tested by setting the robot to a new initial
condition x(0) = [−π

4 , 0, 0, 0]
T and a new time horizon T = 2.

Other settings follow the previous experiments if not explicitly
stated.

1) Comparison With Kinematic Learning [41]: Follow-
ing [41], we fit the keyframes in Table I with a fifth-order spline,
as shown in the brown lines in Fig. 8(a). The fitted spline is then
used to generalize the robot motion in the new condition (i.e., a
new initial condition and a new horizon). To do this, following
the idea of [41], we compare which given keyframe is closest
to the new x(0), then from which we perform extrapolation

Fig. 8. Comparison between [41] and the proposed method. (a) Spline model
fitted to keyframes. (b) Generalization of the fitted spline in new motion condition
(new x(0) and new T ). (c) Generalization of the learned weighted cost function
(29) and learned neural cost function (34) in the previous experiments. The gray
dashed lines mark the goal of each joint [qg

1, q
g
2]

T = [π/2, 0]T. The final distance
‖x(T )− xg‖ of the generalized motion is 33.670 for the fitted spline in (b),
0.388 for the learned neural cost function in (c), and 0.00358 for the learned
weighted cost function in (c).

based on the fitted spline to generate the new trajectory over
the new horizon T = 2. The generated trajectories are plotted in
Fig. 8(b). For comparison, we also plot the generalized motion
of the previously learned weighted cost (29) and neural cost (34)
in Fig. 8(c). We have the following comments on the results.

First, the spline function fits well to the keyframes [red dots
in Fig. 8(a)]. However, the generalization of the obtained spline
model is poor: the generalized motion has a final distance of
33.670 to the goal. The poor performance is because the spline
is only a local kinematic model, and it cannot generalize motion
that is far away from the keyframes.

Second, given the same number of keyframes, learning cost
functions shows evident advantage in generalization. As in
Fig. 8(c), both the learned weighted cost function and neural
cost function can successfully control the robot to reach the goal
in new conditions. The reason why cost functions have superior
performance is that a cost function is a compact representation
of robot motion, and it represents a space of motion trajectories
parameterized by different initial conditions and time horizons.
Previous work [1] had the same conclusion.

2) Comparison With Numerical Differentiation: Recall that a
key technique of the Continuous PDP is differential Pontryagin’s
maximum principle, which efficiently computes the analytic
gradient of the trajectory of a continuous-time optimal control
system with respect to system parameters. An alternative is
numerical differentiation, that is, one uses numerical differenti-
ation to obtain dL

dθ . The experiments mentioned in the following
compare those two options. Other experiment settings are the
same as the previous ones.

Consider the neural cost function in (34). We vary the size
of the neural network, i.e., the dimension of p and the system
time horizon T . We compare the computation time needed to
compute dL

dθ by Continuous PDP and numerical differentiation.
The results are shown in Fig. 9, based on which we have the
following comments.

Fig. 9(a) shows an exponential increase of computational
time of numerical differentiation when the number of system
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Fig. 9. Comparison of computation time between numerical differentiation
and Continuous PDP. (a) Varying parameter dimension. (b) Varying system
horizon.

parameters (dimension of θ) increases. This is because numer-
ical differentiation requires evaluating the loss by perturbing
the parameter vector in each dimension. Each perturbation and
evaluation require solving an optimal control problem once,
thus causing high-computational cost for high-dimensional θ.
In contrast, the Continuous PDP solves analytical gradients by
performing the Riccati-type iteration (Lemma 1). Since there is
no need to repetitively solve optimal control problems during the
differentiation, the proposed method can handle the large-scale
optimization problem, such as θ ∈ R100 in Fig. 9(a).

Fig. 9(b) shows the comparison results given different system
horizons. One observation is that the complexity of Continuous
PDP is approximately linear to the system horizon T . This is be-
cause the numerical integration of the Riccati-type equations in
Lemma 1 is linear to the horizon T .

3) Comparison With [31]: In this part, we compare the pro-
posed method with [31]. As discussed in the related work, Hatz
et al. [31] formulate a problem similar to (16), which also
minimizes a trajectory discrepancy loss (32), but the authors
solve it by replacing the inner optimal control problem with Pon-
tryagin’s maximum principle conditions, thus turning a bilevel
optimization into a plain constrained optimization. We compare
their method with the Continuous PDP in terms of convergence,
sensitivity to different initialization, and generalization.

Both methods use the same keyframes shown in the third
and fourth rows in Fig. 10, first-order polynomial time-warping
function (30), and the cost function parameterization (29). Other
experiment settings are the same as the previous experiments
unless explicitly stated. Fig. 10 presents the results of [31]
(left) and the proposed method (right). Here, each method has
three trials from different initial guesses θ0 (i.e., using different
random seeds). Different trials are shown in different colors.
The first and second rows plot the loss and parameter error
versus iteration, respectively. The third and fourth rows show
the reproduced trajectories with the learned θ. We have the
following comments.

First, following [31], the converted plain optimization has 504
constraint equations and 509 decision variables. This is large-
scale and nonconvex optimization, and we used IPOPT [55] to
solve it. But IPOPT is very likely to get stuck to local optima for
this problem. This has been illustrated by Fig. 10(a): the loss has
converged to a small value, but the learned θ is far away from
θtrue. Also, in the third and fourth rows, although the produced

Fig. 10. Comparison between the method in [31] (a) and the proposed
method (b). Each method has three trials using different initial guesses θ0, and
at each trial, both methods start from the same θ0. Different trials are shown
in different colors. The first and second rows show the loss and parameter error
versus iteration, respectively. The third and fourth rows show the reproduced
trajectory of the learnedθ. For [31], the converted plain optimization is solved by
IPOPT [55]. Gray dashed lines mark the goal of each joint [qg

1, q
g
2]

T = [π/2, 0]T.

trajectories are close to the keyframes (red dots), they are very
different from the ground truth in Fig. 3.

The proneness of [31] to get stuck to bad solutions could be
due to two main reasons. First, since Pontryagin’s maximum
principle is just a necessary condition, the solutions that satisfy
this condition may include the saddle points, which might not
necessarily be the solution to the original optimal control prob-
lem. Thus, such a problem reformulation is not equivalent to
the original bilevel problem in general. Second, the converted
plain optimization can be large-scale and highly nonlinear. If
not properly initialized, it would easily get stuck into a local
solution.

In contrast, the proposed method solves the problem by
maintaining the bilevel structure. This bilevel treatment leads
to more numerical tractability. The lower level optimal control
problem can be solved by many available trajectory optimization
methods, such as iLQR [47], DDP [48], and the upper level
uses gradient-descent. Also, the bilevel treatment can lead to
better performance in finding good (if not global) solutions. As
empirically shown in Fig. 10(b), with various random guesses
θ0s, the proposed method converges to the true θtrue.

Finally, we need to mention that in the Continuous PDP,
Pontryagin’s maximum principle is only used for differentiating
the trajectory of the optimal control system not replacing the
optimal control system. In other words, the trajectory has to be
computed on the lower level before its differentiation can be
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done. Therefore, the proposed method in this article is funda-
mentally different from [31].

VI. LEARNING FROM KEYFRAMES FOR PLANNING IN

UNKNOWN ENVIRONMENTS

This section presents an application scenario of the proposed
method: a robot learns a motion planner from demonstrated
keyframes to navigate through an unknown environment. A
user provides a few keyframes in the vicinity of obstacles in
an environment, and a robot learns a cost function from those
keyframes such that its produced motion can avoid the obstacles.
Experiments in this section are based on a 6-DoF quadrotor. The
code can be accessed at https://github.com/wanxinjin/Learning-
from-Sparse-Demonstrations. A real-world demonstration is
given at https://youtu.be/BYAsqMxW5Z4.

A. 6-DoF Quadrotor Setup

The equation of motion of a quadrotor flying in SE(3) (full
position and attitude) space is given by

ṙI= vI (35a)

mv̇I = mgI + f I (35b)

q̇B/I =
1

2
Ω(ωB)qB/I (35c)

JBω̇B = τB − ωB × JBωB . (35d)

Here, the subscripts B and I denote a quantity expressed in
the body and world coordinate frames, respectively; m is the
quadrotor mass; rI = [rx, ry, rz]

T ∈ R3 and vI ∈ R3 are the
quadrotor’s position and velocity, respectively; JB ∈ R3×3 is
the moment of inertia; ωB ∈ R3 is the angular velocity; qB/I ∈
R4 is the unit quaternion [56] describing the attitude of the
quadrotor with respect to the world frame; (35c) is the quater-
nion calculus, and Ω(ωB) is the matrix of ωB for quaternion
multiplication [56]; τB ∈ R3 is the torque vector applied to
the quadrotor; and f I ∈ R3 is the total force vector. The net
force magnitude ‖f I‖ = f ∈ R (along the z-axis of the body
frame) and torque τB = [τx, τy, τz] are generated by thrust
[T1, T2, T3, T4] of four propellers via

⎡
⎢⎢⎢⎣
f

τx

τy

τz

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1

0 −lw/2 0 lw/2

−lw/2 0 lw/2 0

κ −κ κ −κ

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
T1

T2

T3

T4

⎤
⎥⎥⎥⎦ (36)

with lw the wing length of the quadrotor and κ a fixed con-
stant. In our experiment, the gravity constant is 10m/s2 and
all other dynamics parameters are in units. The state vector is
x = [rT

I ,v
T
I , q

T
B/I ,ω

T
B ]

T ∈ R13 and the control vector is u =

[T1, T2, T3, T4]
T ∈ R4.

To achieve SE(3) maneuvering, we need to carefully design
the attitude error. Following [57], we define the attitude error
between the current attitude q and goal qg as

e(q, qg) =
1

2
trace(I −RT(qg)R(q)) (37)

Fig. 11. Quadrotor flying in an environment with obstacles. The goal is to let
the quadrotor to fly from the left, go through the two gates (from left to right),
and finally land near the goal position on the right with goal attitude. The plotted
trajectory is a planned motion with a random cost function, which fails to achieve
the goal.

TABLE V
KEYFRAMES D FOR THE QUADROTOR

where R(q) ∈ R3×3 is the rotation matrix corresponding to
quaternion q (see [56] for more details). For the cost function
formulation (2), we use a generic polynomial function

c(x,u,p) = p1r
2
x + p2r

2
y + p3r

2
z + p4rx + p5ry + p6rz

+ p7rxry + p8rxrz + p9ryrz + 0.1‖u‖2
(38a)

h(x) = 10‖rI−rg
I‖2 + 5‖vI‖2

+ 100e(qB/I , q
g
B/I) + 5‖ωB‖2 (38b)

where rI = [rx, ry, rz]
T is the quadrotor’s position, and we have

fixed the final cost h(x) since the quadrotor is always expected
to land near a goal position rg

I with goal attitude qg
B/I ; and

the goal velocities here are zeros. The cost function parameter
p = [p1, p2, p3, p4, p5, p6, p7, p8, p9]

T ∈ R9 will determine how
the quadrotor reaches the goal (i.e., the specific flying trajectory
of the quadrotor).

As shown in Fig. 11, we aim the quadrotor to fly from the
left initial position rI(0) with vI(0), qB/I(0), and ωB(0),
sequentially pass through two gates (from left to right gates),
and finally land near the goal position rg

I with goal attitude
qg
B/I on the right. With a random cost function, the quadrotor

trajectory (blue line) does not meet the task requirement.

B. Learning From Keyframes

We arbitrarily choose five keyframes near the two gates,
listed in Table V. Here, “arbitrarily” means that we do not
know whether these keyframes are realizable by an exact cost
function. Without much deliberation, we assign a time stamp to
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Fig. 12. Loss versus iteration, corresponding to different cases in Fig. 13.
(a) Loss for Fig. 13(a). (b) Loss for Fig. 13(b). (c) Loss for Fig. 13(c).
(d) Loss for Fig. 13(d). (e) Loss for Fig. 13(e). (f) Loss for Fig. 13(f). In each
case, the solid line and shaded area denote the mean and standard derivation
over ten trials of the experiment, respectively. The final loss (mean+std) for
each case is: 0.203± 0.035 in (a), 0.625± 0.470 in (b), 3.819± 0.805 in
(c), 8.548± 0.880 in (d), 8.647± 2.022 in (e), 21.777± 6.608 for p ∈ R4,
and 130.902± 0.006 for p ≥ 0 in (f).

each keyframe such that they are (almost) evenly spaced in the
time horizon [0, T ] (later we will also test the method given the
random assignment of the time stamps). We also do not know
whether τi and T are achievable for the quadrotor dynamics.
The keyframes here contain only position information, i.e.,

rI = y = g(x,u). (39)

The time-warping function is the first-order polynomial func-
tion (30), and loss L(ξθ,D) is in (32). The learning rate is
η=10−2. The quadrotor’s initial state is rI(0) = [−8,−8, 5]T,
qB/I(0) = [1, 0, 0, 0]T, vI(0) = [15, 5,−10]T, and ωB(0) = 0.
The goal position is rg

I = [8, 8, 0]T and the goal attitude qg
B/I =

[1, 0, 0, 0]T (recall the goal velocities here are zeros).
1) Varying Number of Keyframes: Figs. 12(a)– (d) and 13(a)–

(d) show different cases where we learn a cost function from
different numbers of keyframes. In each case, we have run each
experiment case for ten trials, with each trial using different
random seeds for the initial θ0. Fig. 12(a)– (d) plots the loss
L(ξθ,D) versus iteration, and Fig. 13(a)– (d) shows the re-
produced trajectory using the learned cost and time-warping
functions. We have the following comments on the results.

Fig. 13(a)– (d) shows that given keyframes in different lo-
cations, the proposed method always finds a cost function and
a time-warping function such that the quadrotor’s reproduced
motion can get close to the keyframes. Fig. 13(a)– (d) also shows
that by increasing the number of keyframes and putting the
keyframes around the gates, the quadrotor can successfully learn
a cost function to fly through the two gates. Since the keyframes
are arbitrarily placed and exact cost and time-warping functions
(in the parameterization) may not exist, the final losses are not
zeros, as shown in Fig. 12(a)– (d). Recall that we only make the
path cost tunable while the final cost given and fixed. Different
placement of keyframes leads to different learned path costs and,
thus, different motion trajectories. This cost formulation can be
useful for learning how to move instead of where to move.

2) Random Time Stamps: In Figs. 13(e) and 12(e), we ran-
domize the time stamp τi of each keyframe in Table V (drawn
from a uniform distribution), and the cost function is learned
from the randomly timed keyframes. The other settings follow
the previous experiment. Fig. 12(e) plots the loss versus iteration,
and Fig. 13(e) shows the reproduced trajectory from the learned
cost and time-warping functions.

Comparing Figs. 13(d) and (e) with 12(d) and (e), respectively,
we can see that the choice of time stamps of keyframes does
not affect too much the learning: the final loss (mean+std) is
8.548± 0.880 for Fig. 13(d) and 8.647± 2.022 for Fig. 13(e).
This result is understandable because whatever the keyframe
time is, the proposed method always learns a time-warping
function, which maps demonstration time to the robot dynamics
time; thus, performance of robot execution will not change
significantly. The results show the importance of using a time-
warping function in general LfD problems. The ability to handle
the time misalignment is one of the key features of the proposed
method.

3) Distance-to-Obstacle Cost Parameterization: In
Figs. 13(f) and 12(f), we replace the polynomial cost function
(38a) with the following distance-to-obstacle cost function:

c(x,u,p)=−
4∑

i=1

pi‖rI − oi‖2 + 0.1‖u‖2 (40)

where the given oi is the obstacle i’s position, which is the
position of the left and right pillars of the two gates, as shown
in Fig. 11; and p ∈ R4 are the weights for each to-obstacle
distance ‖rI − oi‖2. We learn (40) from the five keyframes in
Table V. Other experiment settings follow the previous session.
We further divide the experiment into two subcases: In the first
subcase (green line), we treat the weights p as unconstrained
variables (i.e., it could be p ≤ 0, the obstacles could have an
“attracting” effect on quadrotor motion); and in the second
sub-case (orange line), we force p ≥ 0. The loss for those two
subcases is plotted in Fig. 12(f), and the reproduced trajectories
of the learned cost functions are in Fig. 13(f), where the green
line corresponds to the unconstrained weights subcase, while
the orange line corresponds to the constrained weights subcase.

In the unconstrained weights subcase in Fig. 13(f), one
observation is that the motion (green line) is similar to the
motion in Fig. 13(d) and (e). In fact, the learned weights are
p=[−0.806,−1.406,−2.578,−2.246]T≤0. This indicates that
each obstacle has an attracting effect on the quadrotor’s motion.
Considering that the distance-to-obstacle cost in (40) is a second-
order polynomial function in rI , similar to (38a), the results in
Fig. 13(f) could explain those in (d) and (e). Specifically, one can
intuitively think of learning a general polynomial cost function
(38a) as a process of finding some “virtual attracting points” in
the unknown environment, and both their locations and attracting
weights will be encoded in the learned polynomial coefficients.

We also note that the reproduced motion (green line) in the un-
constrained weights subcase in Fig. 13(f) has a larger distance to
the keyframes than the motion in (d). This has been quantitatively
shown by their final loss values in Fig. 12: the former has a final
loss 21.777± 6.608 while the latter has 8.548± 0.880. This is
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Fig. 13. Learning from keyframes given in Table V. (a)–(d) Reproduced trajectories by the cost functions learned from different number of keyframes. (e) We
randomize the time stamp τi of each keyframe in Table V. (f) Reproduced motion of the learned distance-to-obstacle cost function (40); here, the green line
corresponds to the unconstrained weights subcase, i.e., p ∈ R4, and the orange to the constrained weights subcase, i.e., p ≥ 0. Specifically, (a) Learning from
keyframe #1. (b) Learning from keyframes #1 and #3. (c) Learning from keyframes #2 and #5. (d) Learning from keyframes #1–#5. (e) Keyframes #1–#5 with
random stamps. (f) Learning (40) from keyframes #1–#5. Corresponding to each of the above-mentioned figures, the loss versus iteration is given in Fig. 12.

because the formulation (38a) has p ∈ R9, i.e., 9 DoFs, while
(40) only has p ∈ R4, i.e., 4 DoFs. Learning (38a) allows us to
optimize both weights and locations of the “virtual attracting
points,” while learning (40) allows us to only optimize the
weights as the location of the obstacle oi is given.

In the nonnegative weights subcase (the orange line) in
Fig. 13(f), since we always force p ≥ 0, the obstacles only
have a “repelling” effect on the quadrotor motion, and thus,
the final quadrotor motion avoids all obstacles, as shown in
Fig. 13(f). Also, Fig. 12(f) shows that the final loss of this
subcase is 130.902± 0.006 is higher than 21.777± 6.608 of
the subcase of unconstrained weights. This is because the search
space {p |p ≥ 0} in the former is only part of that {p |p ∈ R4}
of the latter subcase.

In summary of all experiments in this section, we conclude:
1) the proposed method can learn a cost function (and a time-
warping function) from sparse keyframes for motion planning in
an unmodeled environment; 2) since the method jointly learns a
time-warping function, the time stamps of keyframes do not sig-
nificantly influence the performance; and 3) learning a generic
(e.g., polynomial or neural) cost function can be intuitively
thought of finding some virtual attracting points in the unknown
environment, whose locations and weights will be encoded in
the learned cost function.

C. Generalization of Learned Cost Functions

In this session, we will test the generalization of the cost
functions learned in the previous session. We will set the quadro-
tor with a new initial condition, a new landing goal, and new
placement of obstacles. Given these new conditions, we use the

learned cost and time-warping functions to plan the motion of
the quadrotor, respectively. We check if the motion plan can
successfully achieve the task goal: flying through the gates and
landing near the goal position. Quantitatively, we evaluate the
generalization performance by calculating the averaged distance
between the generalized motion and keyframes and the averaged
distance between the generalized motion and the centers of
obstacles (gates).

1) New Initial Conditions: In Fig. 14(a)– (c), we test the
generalization of the cost function learned in Fig. 13(d) to
new initial conditions (the landing position is the same as the
one in the learning stage in the previous session). Here, we
use the following new initial conditions, as also visualized in
Fig. 14(a)-(c), respectively,

New initial condition 1: position rI(0) = [−8,−10, 1]T, atti-
tude quaternion qB/I(0) = [0.88,−0.42, 0.19, 0.14]T, velocity
vI(0) = [15, 0, 0]T, and angular velocity ωB(0) = [0, 0, 0]T.

New initial condition 2: position rI(0) = [6,−8, 2]T, attitude
quaternion qB/I(0) = [0.88,−0.45,−0.05,−0.15]T, velocity
vI(0) = [10, 0, 0]T, and angular velocity ωB(0) = [0, 0, 0]T.

New initial condition 3: position rI(0) = [−8, 5, 1]T, at-
titude quaternion qB/I(0) = [0.88, 0.14, 0.14, 0.43]T, velocity
vI(0) = [10,−20, 0]T, and angular velocity ωB(0) = [0, 0, 0]T.

Note that the above new initial conditions are very different
from the ones used in learning stage (see Fig. 13). For each new
initial condition, the generalized motion is shown in Fig. 14(a)–
(c), respectively. Fig. 14(c) also plots the generalized motion
(cyan color) of the kinematic learning method [41] as a com-
parison. In Fig. 14(e), we plot the generalized motion from
the learned distance-to-obstacle cost function (40) in Fig. 13(f).
Here, the green line corresponds to the unconstrained weights
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Fig. 14. Generalization test of the cost functions learned in Fig. 13. (a)–(c) Generalized motion of the polynomial cost function [learned in Fig. 13(e)] given
different new initial conditions. In (c), we also compare with the generalized motion of the kinematic learning method [41] (discussed in Section V-E1).
(d) Generalized motion of the polynomial cost function [learned in Fig. 13(e)] given a new landing goal. (e) Generalized motion of the distance-to-obstacle
cost function [learned in Fig. 13(f)] given new initial condition; here, green and orange colors correspond to the unconstrained and constrained weights subcases,
respectively. (f) Generalization of the polynomial cost function [learned in Fig. 13(e)] and the distance-to-obstacle cost function [learned in Fig. 13(f)] given
new placement of obstacles. All quantitative measures are given in Table VI. Specifically, (a) New initial condition 1. (b) New initial condition 2. (c) New initial
condition 3. (d) New landing goal. (e) New initial condition 2. (f) New placement of obstacles.

TABLE VI
MEASURE OF THE GENERALIZED MOTION

A keyframe’s distance to a trajectory is the distance between this keyframe and its nearest
point on the trajectory, and we average the distance over all keyframes.

subcase and the orange to the constrained weights subcase. The
quantitative measures for all generalized motion in Fig. 14 are
given in Table VI.

2) New Landing Goal: Fig. 14(d) tests the generalization of
the cost function learned in Fig. 13(d) to a new landing goal. The
initial condition is as follows: position rI(0) = [−8,−8, 2]T,
attitude quaternion qB/I(0) = [0.88,−0.42, 0.19, 0.14]T,
velocity vI(0) = [15, 5,−2]T, and angular velocity
ωB(0) = [0, 0, 0]T. We set the new landing goal to
rg
I = [−8, 8, 2]T and qg

B/I = [0.97, 0, 0, 0.25]T. The quan-
titative measure for the generalized motion is given in Table VI.

3) New Placement of Obstacles: Fig. 14(f) tests the gener-
alization of the learned cost functions under new placement

of obstacles. We change the positions of two gates and then
use the learned cost functions to generate new motion in the
new environment. The initial condition is the same as the
one in Fig. 14(d) and the landing goal as that in Fig. 14(a).
Fig. 14(f) shows the generalized motion of the distance-to-
obstacle cost function (40) [unconstrained weights, learned in
Fig. 13(f)] and the polynomial cost function (38a) [learned in
Fig. 13(e)]. Note that in the generalization of the distance-
to-obstacle cost (40), oi is set as the obstacle’s new location.
The quantitative measure for the generalized motion is given in
Table VI.

4) Result Analysis: With the new initial conditions and new
landing goal, Fig. 14(a)– (d) shows that the generalized motion
can still follow the keyframes, pass through the gates, and land
near the goal. Fig. 14(c) also shows that the generalization of
the kinematic learning [41] fails to fly through both gates. As
discussed in Section V-E1, since Akgun et al. [41] focus on
learning a low-level kinematic representation, it has limited
generalizability particularly when the new conditions are very
different from the ones in learning. In contrast, a learned cost
function can be shared across different motion conditions. Thus,
learning cost functions show better generalizability. Fig. 14(e)
also shows that the generalization of the distance-to-obstacle
cost function (40) (unconstrained weights) is comparable to that
in Fig. 14(b).

The special attention should be paid to Fig. 14(b) and (e)
(unconstrained weights), where the quadrotor seems to have
ignored the first two keyframes (and hence the left gate). This
could be explained by Bellman’s principle of optimality [58].
Specifically, the motion in Fig. 14(b) can be interpreted as the
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final segment of the “complete” trajectory in Fig. 13(e), i.e.,
it can be viewed as the solution to a subproblem, for which
the initial condition starts from a middle point of a “complete”
trajectory and minimizes the remaining cost-to-go. In other
words, if a complete trajectory from the initial start to a goal
is optimal with respect to a cost function, the subtrajectory of
this complete trajectory from any middle point to the goal is
also optimal with respect to the same cost function. Thus, the
quadrotor motion in Fig. 14(b) and (e) is continuing to finish
the rest optimal motion instead of flying back to pass through
the first gate.

Fig. 14(f) shows the generalization of the learned distance-
to-obstacle cost function (40) versus that of the learned generic
polynomial cost function (38a) in a varying environment. With
Fig. 14(f) and Table VI, one can conclude that the polynomial
cost function generalizes poorly to new placement of obstacles,
compared to the distance-to-obstacle cost function. Specifically,
the generalized motion of the learned polynomial cost function
still tries to follow the original keyframes instead of going
through the new gates: its distance to the keyframes is 1.514
versus the distance-to-obstacle cost function’s 1.902, while its
distance to the centers of gates is 3.186 versus the distance-
to-obstacle cost’s 1.617. This is understandable because the
learned polynomial cost function only “remembers” the rep-
resentation of the keyframes in the original environment and
is unaware of the obstacle changes in the new environment.
On the contrary, the distance-to-obstacle cost function (40) is
defined on the locations of obstacles and can be updated with
the new locations of obstacles. Hence, in the new environment
in Fig. 14(f), the generalized motion of the distance-to-obstacle
cost tries to go through the new gates. As indicated in Ta-
ble VI, the generalization of the distance-to-obstacle cost func-
tion has a smaller distance (1.617) to the new gates than the
polynomial cost does (3.186). This can also be visualized in
Fig. 14(f), where the motion of the distance-to-obstacle cost
is attempting to reach the left gate (although it is not success-
fully passing through it). The above-mentioned results suggest
that an environment-dependent formulation of cost functions,
such as a cost function that is defined on both robot state
and environment features, could generalize better in a varying
environment. But one also needs to note that such a formulation
additionally requires the knowledge/model of the environment
features. More discussion of the cost formulations is given in
Section VII-B.

In summary of all the above experiments and analyses, we
conclude that 1) the proposed method can learn a cost function
from a small number of keyframes; 2) the learned cost function
shows good generalization to unseen motion conditions; and 3)
to generalize to varying environments, an environment-informed
formulation of cost functions would be needed, such as the cost
function formulation which depends on both robot’s state and
environment features.

VII. DISCUSSION

This section further provides discussion on some aspects of
the proposed method.

A. Why Do Keyframes Suffice?

We provide one explanation for why sparse keyframes can
suffice to recover a cost function. Consider problem (16). For
trajectory ξθ produced by optimal control system (12), since
we are only interested in the trajectory points ξθ(τi) at the time
stamps τi (1 ≤ i ≤ N ), we discretize the optimal control system
at these time steps, yielding [50]

dynamics:xi+1 = f̄(xi, ūi,θ), x0 = x(0) (41a)

objective:J(θ) =
N−1∑
i=0

c̄(xi, ūi,θ) + h̄(xN , ūN ,θ) (41b)

where we denote xi = x(τi), and discrete-time f̄ satisfies

xi+1 = f̄(xi, ūi,θ) = xi +

∫ τi+1

τi

vβ(τ)f(x(τ),u(τ))dτ

and the discrete version of the cost function satisfies

c̄(xi, ūi,θ) =

∫ τi+1

τi

vβ(τ)cp(x(τ),u(τ))dτ

h̄(xN , ūN ,θ) =

∫ T

τN

vβ(τ)cp(x(τ),u(τ))dτ + hp(x(T )).

Here, the new input ūi ∈ Rd in f̄ may not necessarily have the
same dimension asu(τ) ∈ Rn in the originalf , e.g., ūi contains
all possible controls over time range [τi, τi+1] [50]. The solution
{x0:N , ū0:N} to the discrete-time optimal control system (41)
satisfies the KKT conditions

xi+1 = f̄(xi, ūi,θ), i = 0, . . . N − 1

λi =
∂c̄

∂xi
+

∂f̄
T

∂xi
λi+1, i = 1, . . . N − 1

0 =
∂c̄

∂ūi
+

∂f̄
T

∂ūi
λi+1, i = 0, . . . N − 1

λN =
∂h̄

∂xN
,

∂h̄

∂ūN
= 0 i = N. (42)

The output of the discrete-time system (41) can be overloaded
by y(τi) = g(xi, ūi). To simplify analysis, we assume that
keyframes D are realizable by a θ. Then

y∗(τi) = g(xi, ūi). (43)

Given the keyframes D in (5), recovering a cost function can
be viewed as a problem of solving a set of nonlinear equations in
(42) and (43), where unknowns are {x1:N , ū0:N ,λ1:N ,θ} ∈
R2Nn+(N+1)d+(r+s), and the total number of constraints (equa-
tions) is2Nn+ (N + 1)d+No. Here, (r + s) is the dimension
of θ and o is the dimension of y. A necessary condition to
uniquely determine {x1:N , ū0:N ,λ1:N ,θ} requires the number
of constraints to be no less than the number of unknowns,
yielding

N ≥ r + s

o
. (44)

On the other hand, if (44) is not fulfilled or given D is less
informative, the unknowns then cannot be uniquely determined,
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which means that there might exist multiple θs such that all
resulting trajectories pass the same sparse keyframes. This case
has been shown in Section V-A (see Fig. 4).

Note that the above discussion uses a perspective different
from the development of this article. It should be noted that
the above explanation fails to explain the case where the given
keyframes are not realizable: minθ L(ξθ,D) > 0, e.g., subop-
timal data as in Section V-B. We leave its further exploration as
one future direction of this work.

B. Cost Function Formulation

In general, there are two types of cost function formulations,
as discussed in the following.

1) Cost Depending Purely on Robot States: The first type
of cost function formulation can be written as cp(x,u), which
only depends on robot state and input (x,u). The polyno-
mial cost function (38a) in Section VI belongs to this type.
This formulation type can generalize well to different mo-
tion conditions, e.g., new initial condition and new goals,
as shown in Fig. 14(a)– (e). However, it cannot general-
ize to varying environments, as in Fig. 14(f), as the envi-
ronment information is not explicitly captured in this cost
formulation.

2) Cost Depending on Robot States and Environment Fea-
tures: The second type of cost formulations can be written as
cp(x,u,o), which depends on both the robot state-input (x,u)
and the environment features o. Here, o should be given for the
environment where the robot is trained. Demonstrations from
different environments can also be used as the training data. The
cost functions in (29) and (40) belong to this type. One advantage
of this formulation is that it has the ability to generalize to a new
environment given its environment features o. Section VI-C3
has shown such an advantage by comparing with the first type
of cost formulation. At the same time, one should note that
the second type of cost formulation requires the knowledge of
environment features o, which may need additional modeling
effort.

3) Running Cost and Final Cost: The cost function in (2)
includes two terms: a running cost term c(·) and a final cost term
h(·). If no knowledge about the task goal is available, one can
use a (deep) neural network to represent both costs, as shown in
Section V-D. Since a neural cost function is usually goal-blind,
the training data needs to include a keyframe at the goal. If the
task goal is known, such as in motion planning in Section VI,
the final cost h(·) can be set to the distance-to-goal cost, and
the running cost c(·) is to be tuned. Tuning a running cost will
determine how the robot moves to the goal. This has been shown
in Section VI.

4) Limitation: We should note that whatever a cost formu-
lation is, the proposed method requires all functions to be
differentiable. This can be a limitation of the proposed method,
compared to some existing feature-based IRL methods, such as
max-entropy IRL [15], which permits nondifferentiable features.
How to extend the proposed method to nondifferentiable systems
is a topic for our future work.

C. Convergence and Numerical Integration Error

1) Algorithm Convergence: The proposed Continuous PDP
solves a bilevel optimization problem (16) using gradient de-
scent. It treats the trajectory ξθ of the inner-level optimal control
system simply as an “implicit” differentiable function of the
system parameter θ. Generally, bilevel optimization is known
to be strongly NP-hard [59], [60]. Under certain assumptions,
one can prove that the gradient-descent method can converge to a
stationary point [61]. With further assumptions on the outer-level
and inner-level problems, such as convexity and smoothness,
Ghadimi and Wang [62] show that the gradient-descent method
could converge to the global solution. However, in our case,
the requirement of convexity is too restricted to optimal control
systems (12). As a future direction of this work, we will try to
explore the milder conditions for its convergence.

2) Numerical Integration Error: Another issue that might
arise is the numerical integration error in solving the gradient
of the inner-level trajectory using Lemma 1 as it requires in-
tegrating several ODEs in both backward and forward passes.
However, our previous experimental experience shows that due
to the side effect of a time-warping function, numerical inte-
gration error/stability can be potentially mitigated. A similar
process has also been successfully used in some optimal control
software, such as [50].

A side effect of using a time-warping function t = w(τ) is that
one can scale a long-horizon integration into a smaller horizon
problem by time-warping transformation, then rescale the solu-
tion back after integration (some refinement can be done after-
wards). For example,

∫ tf
0 c(x(t),u(t))dt in (2) over [0, tf ] can

be transformed into
∫ T

0
dw(τ)
dτ c(x(τ),u(τ))dτ in (12b) over the

new horizon [0, T ] using the time-warping function tf = w(T ).
In our problem of interest, since T is given, one can manually
pick a relatively small horizon T < tf and a small integration
step size to mitigate the error of numerical integration. In our
previous experiments, we set the keyframe horizon as T = 1 for
good numerical integration accuracy. This time-warping trick
has been successfully adopted by some optimal control software,
such as [50] for numerical stability. One important caveat is
that by using the time-warping transformation t = w(τ), as
shown from (2) to (12b), we have changed the original inte-
grand c(x(t),u(t)) to the new dw(τ)

dτ c(x(τ),u(τ)). Hence, if
one wants to significantly decrease the horizon, i.e., T 
 tf ,
dw(τ)
dτ would be very large, which may increase the stiffness of

dw(τ)
dτ c(x(τ),u(τ)), causing numerical instability. Although we

have rarely encountered such numerical issues in our previous
experiments with T = 1s, one might be cautious when handling
stiff ODEs/systems.

D. Model Free Versus Model Based

The formulation in this article assumes robot dynamics to
be known. We would point out that the proposed Continuous
PDP is also able to solve model-free IOC/IRL, i.e., jointly
learning a dynamics model and a cost function from keyframes.
To do that, one needs to replace the known dynamics (1) with a
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parameterized dynamics model, which should be differentiable.
The Continuous PDP can update all parameters (including both
dynamics and objective parameters) using gradient descent. We
refer the reviewer to our previous work Pontryagin differen-
tiable programming [34], [46] (discrete-time) for the model-free
IOC/IRL formulation and experiments.

In fact, after the problem reformulation in Section III-B, as
shown in (12a), the parameter of the time-warping function
has been absorbed into the dynamics model and becomes the
unknown parameter in the dynamics. Thus, the Continuous PDP
has already shown its ability to jointly update the parameters in
both the dynamics model and cost function.

VIII. CONCLUSION

In this article, we propose the method of Continuous PDP
to enable a robot to learn an objective function from a small
set of demonstrated keyframes. As the given time stamps of the
keyframes may not be achievable in the robot’s actual execution,
the Continuous PDP jointly finds an objective function and a
time-warping function such that the robot’s final motion attains
the minimal discrepancy loss to the keyframes. The Continuous
PDP minimizes the discrepancy loss using projected gradient
descent by efficiently computing the gradient of the optimal
trajectory with respect to the tunable function parameters in the
system. The efficacy and capability of the Continuous PDP are
demonstrated in robot arm and 6-DoF quadrotor planning tasks.

APPENDIX

PROOF OF LEMMA 1

We consider the equation of differential Pontryagin’s maxi-
mum principle in (22). Suppose thatHuu(τ) in (23c) is invertible
for all 0 ≤ τ ≤ T . We can solve ∂uθ

∂θ from (22c)

∂uθ

∂θ
= −H−1

uu (τ)

(
Hux(τ)

∂xθ

∂θ
+G(τ)T

∂λθ

∂θ
+Hue(τ)

)
.

(45)
Substituting (45) into both (22a) and (22b) and combining the
definition of matrices in (25), we have

d

dτ

(
∂xθ

∂θ

)
= A(τ)

∂xθ

∂θ
−R(τ)

∂λθ

∂θ
+M(τ) (46a)

− d

dτ

(
∂λθ

∂θ

)
= Q(τ)

∂xθ

∂θ
+A(τ)′

∂λθ

∂θ
+N(τ). (46b)

Motivated by (22d), we assume

∂λθ

∂θ
= P (τ)

∂xθ

∂θ
+W (τ) (47)

with P (τ) ∈ Rn×n and W (τ) ∈ Rn×(s+r), 0 ≤ τ ≤ T , are two
time-varying matrices. Of course, (47) holds for τ = T because
of (22d) if

P (τ) = Hxx(T ) and W (τ) = Hxe(T ). (48)

Substituting (47) into (46a) and (46b), respectively, to elimi-
nate ∂xθ

∂θ , we obtain the following:

d

dτ

(
∂xθ

∂θ

)
=(A−RP )

∂xθ

∂θ
+ (−RW +M) (49a)

−Ṗ
d

dτ

(
∂xθ

∂θ

)
=(Q+Ṗ+ATP )

∂xθ

∂θ
+(A′W+N+Ẇ )

(49b)

where Ṗ = dP (τ)
dτ , Ẇ = dW (τ)

dτ , and we here have suppressed
the dependence of τ for all time-varying matrices. By multiply-
ing (−Ṗ ) on both sides of (49a), and equaling the left sides of
(49a) and (49b), we have

(−PA+ PRP )
∂xθ

∂θ
+ (PRW − PM)

= (Q+ Ṗ +ATP )
∂xθ

∂θ
+ (ATW +N + Ẇ ). (50)

The above equation holds if

−PA+ PRP = Q+ Ṗ +ATP (51a)

PRW − PM = ATW +N + Ẇ (51b)

which directly are (24). Substituting (47) into (45) yields (27a),
and (27b) directly results from (22a). �

REFERENCES

[1] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annu. Rev. Control,
Robot., Auton. Syst., vol. 3, pp. 297–330, 2020.

[2] M. Deniša, A. Gams, A. Ude, and T. Petrič, “Learning compliant
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