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Network Control System (NCS)—What Is It?

When a feedback control system is closed via a communication
channel, which may be shared with other nodes outside the control
system, then the control system is called a NCS. A NCS can also
be described as a feedback control system where the control loops
are closed through a real-time communication network.

L. Bushnell and H. Ye, Networked Control Systems: Architecture and Stability
Issues, in Encyclopedia of Systems and Control, Springer-Verlag London 2014
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Another Look at a Network Control System (NCS)

A Networked Control System is a control system where the control
loops are closed through a communication network. In a NCS
feedback signals are exchanged among the system’s components in
the form of information packages through a network.
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Cyber-Physical Systems

Definition

Cyber-Physical Systems combine cyber and physical components, that
is, they are combinations of the physical world with the virtual world
of information processing
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More on the Term Cyber-Physical System

Definition

Cyber-Physical System (CPS)—a combination of virtual and physical
components

The term “cyber-physical system” (CPS)—first proposed in 2006
by Helen Gill of the US National Science Foundation
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NCS versus CPS

The CPS and “Networked System” Venn diagrams intersect, but
neither is contained within the other.
You could have CPS that are not necessarily networked in a graph
(pacemaker, etc.) You could have networked systems that have no
cyber component (human contact network, genetic networks) You
could have systems that are both networked and CPS (power grid).

Shreyas Sundaram—private communication
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Challenges in NCS

Major challenge in the NCS design—security

For example, malicious packet drop attacks in the communication
networks
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Need for the System State Estimate

Many controllers call for the complete availability of the state
vector of the controlled system

It is frequently impossible to directly measure all the elements of
the system state vector

To retain the many useful properties of the state feedback control,
one needs to overcome the problem of incomplete state vector
information

How to obtain good state estimate in the presence of modeling
uncertainties and disturbances?

What about system security operation?
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A Short History of the Observer
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My dear Watson, you see but you do not observe.

Sir Arthur Conan Doyle, Scandal in Bohemia, 1891
12 / 57



Beginnings of the observer

Observer—a dynamical system that estimates the system state
based on the system inputs and outputs

The observer provides a solution to the problem of incomplete
state vector information

D. G. Luenberger initiated the theory of observers in 1963 in his
Ph.D. thesis, Determining the State of a Linear System with
Observers of Low Dynamic Order, at Stanford

D. G. Luenberger, Observing the state of a linear system, IEEE Transactions on
Military Electronics, Vol. 8, Issue 2, pp. 74–80, April 1964
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First page of the 1964 Luenberger’s paper on observers

Observing the State of a Linear System

DAVID G. LUENBERGER, STUDENT MEMBER, IEEE

Summary-In much of modern control theory designs are based
on the assunption that the state vector of the system to be controlled
is available for measurement. In many practical situations only a few
output quantities are available. Application of theories which assume
that the state vector is known is severely limited in these cases. In
this paper it is shown that the state vector of a linear system can be
reconstructed from observations of the system inputs and outputs.

It is shown that the observer, which reconstructs the state vector,
is itself a linear system whose complexity decreases as the number of
output quantities available increases. The observer may be incorpo-
rated in the control of a system which does not have its state vector
available for measurement. The observer supplies the state vector,
but at the expense of adding poles to the over-all system.

I. INTRODUCTION
I N THE PAST few years there has been an increasing

percentage of control system literature written from
the "state variable" point of view [1]-[8]. In the

case of a continuous, time-invariant linear system the
state variable representation of the system is of the
form:

y(t) = Ay(t) +Bx(t),
where

y(t) is an (n X 1) state vector
x(t) is an (m X1) input vector
A is an (nXn) transition matrix
B is an (nXm) distribution matrix.

This state variable representation has some con-
ceptual advantages over the more conventional transfer
function representation. The state vector y(t) contains
enough information to completely summarize the past
behavior of the system, and the future behavior is
governed by a simple first-order differential equation.
The properties of the system are determined by the con-
stant matrices A and B. Thus the study of the system
can be carried out in the field of matrix theory which is
not only well developed, but has many notational and
conceptual advantages over other methods.
When faced with the problem of controlling a system,

some scheme must be devised to choose the input vector
x(t) so that the system behaves in an acceptable man-
ner. Since the state vector y(t) contains all the essential
information about the system, it is reasonable to base
the choice of x(t) solely on the values of y(t) and per-
haps also t. In other words, x is determined by a relation
of the form x(t) = F[y(t), t].

This is, in fact, the approach taken in a large portion
of present day control system literature. Several new

Received November 2, 1963. This research was partially sup-
ported by a grant from Westinghouse Electric Corporation.

The author is with the Department of Electrical Engineering,
Stanford University, Stanford, Calif.

techniques have been developed to find the function F
for special classes of control problems. These techniques
include dynamic programming [8]- [10], Pontryagin's
maximum principle [11], and methods based on Lya-
punov's theory [2], [12].

In most control situations, however, the state vector
is not available for direct measurement. This means
that it is not possible to evaluate the function F[y(t), t].
In these cases either the method must be abandoned or a
reasonable substitute for the state vector must be found.

In this paper it is shown how the available system in-
puts and outputs may be used to construct an estimate
of the system state vector. The device which recon-
structs the state vector is called an observer. The ob-
server itself as a time-invariant linear system driven by
the inputs and outputs of the system it observes.
Kalman [3], [13], [14] has done some work on this

problem, primarily for sampled-data systems. He has
treated both the nonrandom problem and the problem
of estimating the state when measurements of the out-
puts are corrupted by noise. In this paper only the non-
statistical problem is discussed but for that case a fairly
complete theory is developed.

It is shown that the time constants of an observer can
be chosen arbitrarily and that the number of dynamic
elements required by the observer decreases as more
output measurements become available. The novel point
of view taken in this paper leads to a simple conceptual
understanding of the observer process.

II. OBSERVATION OF A FREE DYNAMIC SYSTEM
As a first step toward the construction of an observer

it is useful to consider a slightly more general problem.
Instead of requiring that the observer reconstruct the
state vector itself, require only that it reconstruct some
constant linear transformation of the state vector. This
problem is simpler than the previous problem and its
solution provides a great deal of insight into the theory
of observers.
Assuming it were possible to build a system which re-

constructs some constant linear transformation T of the
state vector y, it is clear that it would then be possible
to reconstruct the state vector itself, provided that the
transformation T were invertible. This is the approach
taken in this paper. It is first shown that it is relatively
simple to build a system which will reconstruct some
linear transformation of the state vector and then it is
shown how to guarantee that the transformation ob-
tained is invertible.
The first result concerns systems which have no in-

puts. (Such systems are called free systems.) The situa-

74
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Trivial observer

Trivial observer (open-loop observer)—the system model copy as
an observer

Observation error, e = x− x̃
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Trivial observer—A different look

Recall: Trivial observer (open-loop observer)—the plant model
copy as an observer

Observation error, e = x− x̃
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Problems with the open-loop observer

Observation error dynamics,

(ẋ− ˙̃x) = A(x− x̃)

The observation error tends to zero only if the observed system is
stable

There is no control over the observation error dynamics

There is a fix—add observer innovation to get the closed-loop
observer
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Closed-loop observer

Plant Sensor

Observer
Innovation

Sensor
Model

Plant
Model

x(0)
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u

x

State Estimate
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^

y

y^

+
_

Luenberger’s Innovation to obtain the closed-loop observer

˙̃x = Ax̃ + Bu + L(y − ỹ)

18 / 57



Closed-loop observer

Plant Sensor

Observer
Innovation

Sensor
Model

Plant
Model

x(0)

x(0)

x

u

x

State Estimate

^

^

y

y^

+
_

Luenberger’s Innovation to obtain the closed-loop observer

˙̃x = Ax̃ + Bu + L(y − ỹ)
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Luenberger’s closed-loop observer

u 
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Luenberger’s observer, ˙̃x = Ax̃ + Bu + L(y − ỹ)

Observation error dynamics, (ẋ− ˙̃x) = (A−LC)(x− x̃)
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Combined observer-controller compensator

Works well for systems without uncertainties

What about systems with uncertainties?
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Combined observer-controller compensator

Works well for systems without uncertainties

What about systems with uncertainties?
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Observers for Systems With Unknown
Inputs
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Plant Model
Standard linear dynamical system model:

ẋ = Ax + Bu

y = Cx,

where B ∈ Rn×m, C ∈ Rp×n

Parameters A,B,C are known

m1 of inputs are known and m2 = m−m1 are unknown

Re-arrange the order of the inputs if necessary, partition the input
matrix B corresponding to the known, u1, and unknown inputs,
u2, as

B =
[
B1 B2

]
,

with B1 ∈ Rn×m1 and B2 ∈ Rn×m2 and

u =

[
u1

u2

]
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System Model—Contd.

The system model

ẋ = Ax + B1u1 + B2u2

y = Cx

The vector function u2 may also model lumped uncertainties or
nonlinearities in the plant

Similar notation as in Basile and Marro, where u2 is called the
disturbance vector

The output matrix is C ∈ Rp×n

The pair (A,C) detectable

G. Basile and G. Marro, On the observability of linear, time-invariant systems
with unknown inputs, Journal of Optimization Theory and Applications, Vol. 3,
No. 6, pp. 410–415, Nov. 1969

23 / 57



System Model—Contd.

The system model
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Second page of the 1969 Basile and Marro’s paper

JOTA: VOL. 3, NO. 6, 1969 411 

We deal with a linear, purely dynamical, time-invariant system described 
by the equations 

= Ax  + B1u x + B2u~ (1) 

y = Cx (2) 

where x e R n is the state vector, u 1 ~ R m is the control vector, u,, E R ~ is the 
disturbance vector, y e R 8 is the output vector, and A, Bt. , B~, C are real, 
constant matrices of proper sizes. We call 51 = ~(Ba) the subspace of control 
actions and 5 e = ~(Be) the subspace of disturbance actions. 

It is well known that, in the particular case where B 1 :/: 0, B 2 ~- 0, from 
the observation of input and output functions in a finite interval of time, it is 
possible to recognize the orthogonal projection of the state on the least 
subspace which is invariant under A r and contains ~(Cr) .  The word least 
is justified because the intersection of two invariants is an invariant. This 
subspace is sometimes called observability subspace and its orthogonal comple- 
ment unobservability subspace. 

In this particular case, when the input functions are completely known, 
the observation of the system (1)-(2) reduces to the observation of the corre- 
sponding autonomous system; that is, since 

y(t)  = CoP(t, O) x o + C ¢(t, r) B1ul(r ) dr (3) 
0 

where qh(t, r) is the state-transition matrix, it is possible to determine by a 
simple subtraction the output functions of the corresponding autonomous 
system, namely, the zero-input output functions. 

By similar reasoning, the general case in which a part of the input is 
known and a part is unknown can be reduced to the case of completely 
unknown input. Thus, it is sufficient to consider only this last case. In the 
next section, we state a theorem that provides the observabitity subspace as 
the least conditioned invariant under the matrix A r, with respect to the 
subspace -~2 l ,  containing ~(Cr) ,  and which includes the previous results, 
corresponding to B~ = 0. 

2. O b s e r v a b i l i t y  S u b s p a e e  for  S y s t e m s  wi th  U n k n o w n  Inpu t s  

First, we recall some definitions and results given in a previous paper 
(Ref. 6) which provide a background for the analysis presented here. Consider 
an n × n matrix A and a subspaee ~ C R n. We use the following definitions 
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Projection Operator UIO—Idea

Decompose the state x as

x = x−My + My

= (I −MC)x + MCx

= (I −MC)x + My,

where M : n× p real matrix to be determined

q = (I −MC)x: Unknown part of the decomposition

S. Hui and S. H. Żak, Observer design for systems with unknown inputs,
International Journal of Applied Mathematics and Computer Science, Vol. 15,
No. 4, pp. 431–446, 2005
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S. Hui and S. H. Żak, Observer design for systems with unknown inputs,
International Journal of Applied Mathematics and Computer Science, Vol. 15,
No. 4, pp. 431–446, 2005

25 / 57



Projection Operator UIO—Idea

Decompose the state x as

x = x−My + My

= (I −MC)x + MCx

= (I −MC)x + My,

where M : n× p real matrix to be determined

q = (I −MC)x: Unknown part of the decomposition
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Projection Operator UIO—Decomposed Dynamics

Some manipulations:

q̇ = (I −MC)ẋ

= (I −MC)(Ax + B1u1 + B2u2)

= (I −MC)(Ax + B1u1) + (I −MC)B2u2

Recall: x = q + My

q̇ = (I −MC)(Aq + AMy + B1u1) + (I −MC)B2u2

Choose M to make (I −MC)B2 = O

Then
q̇ = (I −MC)(Aq + AMy + B1u1)

Important: u1 and y are known
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Projection Operator UIO—The Rank Condition

Need:
(I −MC)B2 = O

Linear Algebra:

rank (MCB2) ≤ rank (CB2) ≤ rank (B2)

Necessary and Sufficient Condition:

rank (CB2) = rank(B2)

Implication: At least as many independent outputs as unknown
inputs for the method to work
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Projection Operator UIO Dynamics
If we know q and the initial condition

q(0) = (I −MC)x(0),

then
x = q + MCx = q + My

is known for all t ≥ 0

Indeed, integrate both sides of q̇ = (I −MC)ẋ to obtain

q(t)-q(0)= (I-MC)(x(t)-x(0))

Hence

q(t) = (I −MC)x(t)− (I −MC)x(0) + q(0)

If q(0) = (I −MC)x(0), then

x = q + MCx = q + My

is known for all t ≥ 0
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Projection Operator UIO Dynamics—Contd.

But we do not know x(0)

We have

q(t) = (I −MC)x(t)− (I −MC)x(0) + q(0)

So we only get an approximation

x̃ = q + My

where q is obtained from

q̇ = (I −MC)(Aq + AMy + B1u1)
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Open-Loop UIO Analysis
Let e(t) = x(t)− x̃(t) be the estimation error

Recall (I −MC)B2 = O and y = Cx

Then we have

de

dt
=

d

dt
(x− x̃)

=
d

dt
(x− q −MCx)

=
d

dt
((I −MC)x− q)

= (I −MC)(Ax + B1u1 + B2u2)

−(I −MC)(Aq + AMy + B1u1)

= (I −MC)(Ax + B1u1) + (I −MC)B2u2

−(I −MC)(Aq + AMCx + B1u1)

= (I −MC)A(x− q −MCx)

= (I −MC)Ae
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Closed-Loop UIO

We add the innovation term to obtain the closed-loop UIO:

q̇ = (I −MC)((Aq + AMy + B1u1) + L(y − ỹ))

= (I −MC)((Aq + AMy + B1u1) + L(y −Cq −CMy))

= (I −MC)((Aq + AMy + B1u1) + LC(x− q −My))

State estimate is
x̃ = q + My
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Closed-Loop UIO Analysis

Let e = x− x̃

We will show that

ė = (I −MC)(A−LC)e

and e(t)→ 0 as t→∞ under mild conditions

Note that (A−LC) asymptotically stable does not guarantee
that (I −MC)(A−LC) is asymptotically stable

It is possible for a product of a projection matrix and an
asymptotically stable matrix to be unstable
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Example

Let

Π =

[
1 0
0 0

]
and A =

[
1 −3
3 −2

]

A is asymptotically stable

ΠA is unstable

The system ẋ = Ax restricted to the range of Π is governed by
ż = z, which is also unstable
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Projection Operator UIO Structure

We will analyze convergence properties of the proposed full-order
observer

We will show x̃→ x as t→∞ for

q̇ = (I −MC)((Aq + AMy + B1u1) + L(y −Cq −CMy))

x̃ = q + My
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Projection Operator UIO Analysis
Let e(t) = x(t)− x̃(t) be the estimation error

Recall (I −MC)B2 = O and y = Cx. Then we have

de

dt
=

d

dt
(x− x̃)

=
d

dt
(x− q −MCx)

=
d

dt
((I −MC)x− q)

= (I −MC)(Ax + B1u1 + B2u2)

−(I −MC)((Aq + AMy + B1u1) + L(y −Cq −CMy))

= (I −MC)(Ax + B1u1) + (I −MC)B2u2

−(I −MC)((Aq + AMCx + B1u1)

+L(Cx−Cq −CMCx))

= (I −MC)(A−LC)(x− q −MCx)

= (I −MC) (A−LC) e
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Projection Operator UIO Analysis

Objective: Specify M and L and a set of initial conditions so that
e(t)→ 0 as t→∞
A class of solutions to (I −MC)B2 = O

M = B2

(
(CB2)

† + H0

(
Ip − (CB2)(CB2)

†
))

† denotes the Moore-Penrose pseudo-inverse

H0 ∈ Rm2×p is a design parameter matrix

We have (CB2)
†(CB2) = Im2 because rank (CB2) = rank B2

and B2 has full rank

If CB2 is square, M reduces to B2(CB2)
−1

MC is a projection (not necessarily orthogonal): (MC)2 = MC

Π̃ = I −MC is also a projection
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Block diagram of the Full-Order UIO
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Projection Operator UIO—Second Method

Adding the innovation term to obtain the closed-loop UIO without
being premultiplied by (I −MC):

q̇ = (I −MC)(Aq + AMy + B1u1) + L(y − ỹ)

= (I −MC)(Aq + AMy + B1u1) + L(y −Cq −CMy)

= (I −MC)(Aq + AMy + B1u1) + LC(x− q −My)

x̃ = q + My
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Block diagram of the second full-order UIO
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Projection Operator UIO—Second Method Contd.

Let e = x− x̃

Let A1 = (I −MC)A

Easy to show that
ė = (A1 −LC)e

e(t)→ 0 as t→∞ ⇐⇒ the pair (A1,C) is detectable
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Zeros and Unknown Input Observers
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Zeros of SISO Systems

For a SISO system model (A, b, c), its zeros are defined to be the
zeros of the polynomial

c adj(sI −A) b

where adj denotes the classical adjoint

For a MIMO system model (A,B,C), the product

C adj(sI −A) B

is a matrix with polynomial entries

The collection of zeros of the polynomials would seem to be a
natural generalization of the definition of system zeros

However, this possible definition does not lead to a generalization
of the SISO theory
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System Zeros of SISO Systems: A Different Look

Note that [
In −0

−c(sIn −A)−1 1

] [
sIn −A −b

c 0

]
=

[
sIn −A −b

0 c(sIn −A)−1b

]

Hence

det

[
sIn −A −b

c 0

]
= det(sIn −A) det(c(sIn −A)−1b)

= det(sIn −A)
c adj(sIn −A)b

det(sIn −A)

Thus, c adj(sIn −A) b = det

[
sIn −A −b

c 0

]
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System Zeros of SISO Systems

So for SISO systems, the system zeros are precisely the collection
of s such that the matrix[

sIn −A −b
c 0

]
does not have full rank

Thus for an LTI SISO system, its transfer function can be written
as

G(s) = c(sIn −A)−1b =
1

det(sIn −A)
det

[
sIn −A −b

c 0

]
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System Matrix and Normal Rank

Rosenbrock’s system matrix

P (s) =

[
sIn −A −B

C D

]

The normal rank of a matrix valued function M defined on the
complex plane C is

normalrankM = max {rankM(s) : s ∈ C}

In other words, the normal rank of a matrix function is the largest
possible rank among the collection of matrices in the range
{M(s) : s ∈ C} of M .

The rank of a matrix valued function is defined to be its normal
rank
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System Matrix and the Laplace Transform

Linear time invariant plant model:

ẋ = Ax + Bu, x(0) = x0

y = Cx + Du

Take the Laplace transforms

sX(s)− x(0) = AX(s) + BU(s)

Y (s) = CX(s) + DU(s)

Equivalent representation[
sIn −A −B

C D

] [
X(s)
U(s)

]
=

[
x(0)
Y (s)

]
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General Definition of System Zeros

A complex number z0 is a system zero of the system (A,B,C,D) if

rank

[
z0In −A −B

C D

]
< normalrank

[
sIn −A −B

C D

]
The system zeros are also referred to as the invariant zeros of the
system

Note that the system matrix may not be square and so the
determinant is not always defined for a system matrix
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The Meaning of System Zeros—SISO Case

Consider the second order input-output system model

ÿ + y = u̇− z0u ⇒ Transfer function = G(s) =
s− z0
s2 + 1

Only one system zero at s = z0

If u(t) = ez0t, then u̇− z0u = 0 and so this input has the same
effect as the zero input.

In other words, the system does not see the input u(t) = ez0t

If z0 < 0, u(t) = ez0t → 0 and so u(t) is asymptotically the same as
0

If z0 ≥ 0, u(t) = ez0t →∞ or is equal to 1 for all t and this u(t) is
far from 0 but the output cannot provide any information about
this input
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The Meaning of System Zeros—MIMO Case

Consider the case when m ≤ p and

P (s) =

[
sIn −A −B

C D

]
has rank less than n + m for s = z0

Then there exists
[
x>0 u>0

]> 6= 0 such that

P (z0)

[
x0

u0

]
=

[
z0In −A −B

C D

] [
x0

u0

]
= 0

We have

P (s)− P (z0) = (s− z0)

[
In O
O O

]

M. L. J. Hautus, Strong detectability and observers, Linear Algebra and Its
Applications, Vol. 50, pp. 353–368, 1983; see page 366
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The Meaning of System Zeros—MIMO Case Contd.

Let

X(s) =
1

s− z0
x0 and U(s) =

1

s− z0
u0

Then[
sIn −A −B

C D

] [
X(s)
U(s)

]
=

[
In O
O O

] [
x0

0

]
=

[
x0

0

]
Hence

x(t) = L−1(X(s)) = ez0tx0 and u(t) = L−1(U(s)) = ez0tu0

satisfy

ẋ = Ax + Bu, x(0) = x0

y = Cx + Du

and the corresponding output equals 0.
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The Importance of System Zeros in the UIO Synthesis

System (A,B,C,D) with a system zero not in the open LHP will
ignore certain unbounded or persistent inputs

Conclusion: It is impossible to design a general unknown input
estimator if there are system zeros not in the open LHP
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Full-Order UIO Example: Model

x1 = Current through L
x2 = Voltage across C

[
ẋ1
ẋ2

]
=

[
−R

L − 1
L

1
C 0

] [
x1
x2

]
+

[
1
L
0

]
u = Ax + B2u2

y =
[
R 1

] [ x1
x2

]
= Cx
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Full-Order UIO Example: Numerical Values

Let R = 2, L = 2, and C = 1/2.

The model

ẋ =

[
−1 −0.5
2 0

]
x +

[
0.5
0

]
u

y =
[
2 1

]
x
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Full-Order UIO Numerical Example: Dynamics
Since CB is square,

M = B(CB)−1 =

[
0.5
0

]
.

Then

Π̃ = I −MC =

[
0 −0.5
0 1

]
The dynamics of the observer are

q̇ = (I −MC)(Aq + AMy) + L(y −Cq −CMy)

=

[
−1 0
2 0

]
q +

[
−0.5

1

]
y +

[
0
1

]
(y − ỹ)

x̃ = q + My = q +

[
0.5
0

]
y

ỹ = Cx̃
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Full-Order UIO Numerical Example: Simulation Result

0 2 4 6 8 10
−3

−2

−1

0

1

Time (sec)

 

 

x
1

x
1
−estimate

0 2 4 6 8 10
−5

0

5

Time (sec)

 

 

x
2

x
2
−estimate

Unknown input:
u(t) = cos(5t) + 2 sin(3t)

Initial conditions:
x(0) = [−3 5]>

q(0) = 0
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Workshop Overview
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Challenges in NCS

NCS depend on wireless communication

Major challenge in the NCS design—security

For example, malicious packet drop attacks in the communication
networks
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