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Outline

@ Defining terms and background results
@ Sparse vector recovery problem formulation

@ Secure state estimation of networked control systems corrupted by
unknown input and output spare errors

o Modeling sparse malicious packet drop attacks
@ Observer Architecture

@ Sparse malicious error attacks estimation
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DEFINING TERMS AND BACKGROUND RESULTS
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Networked Control Systems

Definition

Networked Control Systems combine cyber and physical components

that is, they are combinations of the physical world with the virtual
world of information processing

=

_—Interconnections—

Networks

- .
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Challenges in a Networked Control System (NCS)

e NCS depends on wireless communication
@ Major challenge in the NCS design—security

e For example, malicious packet drop attacks in the communication

networks
Physical
r Plant j

Unsecured Unsecured

Network +  Network
Malicious Packet Drops

[
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Security Issues in the NCS Design

e Overcoming malicious packet drop attacks

@ Secure state estimation of NCS when actuator and sensor
measurements being corrupted by external malicious packet drop
attacks

@ Detecting and monitoring malicious attacks
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Modeling sparse malicious packet drop attacks

e Estimating disturbances of the communication network such as
noise, delays, and packet drops formulated as a sparse vector
recovery problem

@ Sparse e—more zero entries than non-zero entries in the vector e

Definition (Sparse vector recovery problem )

Estimate an unknown vector x in the linear system, Ax 4+ e = b, where
the vector b and the matrix A are known and e models the unknown
disturbances

8/86



Analysis of Az +e=20b

Assumptions:
@ b and the full column rank matrix A are known;

@ Only a “small” number of entries of b corrupted by e

Justifying the second assumption

Candes and Tao’s observation: if the number of nonzero entries of the
error vector is “large”, then it is in general impossible to reconstruct x
from Ax + e = b for a given A and b

E. J. Candes and T. Tao, Decoding by linear programming, IEEE Transactions

on Information Theory, Vol. 51, No. 12, pp. 4203-4215, 2005
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Reconstructing « from Ax + e = b for a given A and b

e Cannot have too many non-zero entries in e to reconstruct a!
e Indeed, let A € R™*™ and suppose m = 2n
e Consider two distinct fixed vectors  and &

e Suppose the vector b € R™ is constructed by setting n coefficients
of b equal to those of Ax and n coefficients of b equal to those of
Az

@ Then we have b = Ax + e = Ax + e for some e and é

@ In sum, the maximum number of nonzero coefficients in e should
be smaller than n = m/2 if we are to be able to reconstruct x

10/ 86



Cannot have too many non-zero elements in e to
recover x in Ax +e=2>

Example
10 1
10 1] . [2 1
A=10 1| w‘[1]’ "’3 {0]’ b=10
0 1 0

Then two coefficients of b equal to those of Ax and two equal to those
of Ax.

v
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Example—Contd.

Solving the equations e = b — Ax and e = b — A%, we obtain

Note that both e and e have m = n/2 nonzero components

e We do not know if e or & corrupts the system
e We cannot recover x in Ax +e =15

e We have to have less than m = n/2 nonzero components in e to
start talking about recovering  in Az +e=2>5
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How to recover  from Ax + e = b?

e Candes and Tao’st idea:
@ We can recover x if we have e

o Plan: Reconstruct e and then compute x

1 E. J. Candes and T. Tao, Decoding by linear programming, IEEE Transactions

on Information Theory, Vol. 51, No. 12, pp. 4203-4215, 2005
13/86



Reconstructing e from Ax + e = b?

e Find a matrix F € R(m=xm gyuch that FA = O

e Premultiply both sides of Az + e = b by F' to obtain,
FAx+ Fe=Fb

o Let z=Fb

o Then, since FFAx = 0, we obtain
Fe =z,

where z is known

@ Thus the original problem has been reduced to reconstructing the
sparse error vector e from under-determined system of equations
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Finding the sparsest solution to F'e = z

Definition (0-norm of a vector)

The 0-norm of a finite dimensional vector @, denoted ||z||o, is the
number of nonzero entries in x

Definition (Finding the sparsest solution problem)

min |ellp, e€R™
subject to Fe =z
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Minimizing ||e|| subject to Fe = z

2-norm minimization 1-norm minimization
re=t A By

AN et
N N
NZANEER VN
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The minimal 1-norm solution is the sparsest

e D. L. Donoho and M. Elad, For most large underdetermined
systems of linear equations the minimal l1-norm solution is also
the sparsest solution, STAM Review, Vol. 56, No. 6, pp. 797-829,
2006

e Therefore, instead of minimizing | el|o, we consider an
optimization problem where we minimize the 1-norm of a solution
subject to the constraint, F'e = z
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Finding the minimal 1-norm solution

m
e Since ||e||1 = > |e;] is a convex function, we have a convex
i=1
optimization problem,

min|le|;, eeR™
subject to Fe =z

@ Our objective: Find the unique solution e to the above problem

@ Once we find e, we can then recover x
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Sparse Vectors

Definition (i-sparse vector)

A vector e is i-sparse if it has at most ¢ non-zero components, that is,
lello <

Example
Let
0
o— 0
T -1
—1
Then, [leflo = 2
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A Very Important Technical Result

e Consider an under-determined system, F'e = z, where F and z
are given

o Let X, = {e: |le]lo < i} be the set of all i-sparse vectors

e Let N(F) denote the null space of the matrix F

Lemma
If ¥o; NN (F) = {0}, then any i-sparse solution of the
under-determined system Fe = z is unique
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Proof of Lemma

e By contradiction: S; = S <= NOT (S; AND NOT S,)

o Suppose eM) and e® are two different i-sparse solutions of the
under-determined system Fe = z

o Then F(e) —e®) =0 and thus e — e® € N (F)

e Since e and €@ are in ¥;, we also have e —e@ ey,

o Therefore eV — e(? € Sy, NN (F) = {0}

o It follows that we must have eV = e a contradiction, and thus
an i-sparse solution of the under-determined system F'e = z must

be unique
O]
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The Spark of a Matrix

Definition

The spark of the matrix F' is the smallest number of linearly
dependent columns in F', that is,

spark(F') = min{||d||o : Fd = 0,d # 0}

Example

spark

O ==
_ = =
W = DN W

Indeed
@ No zero column so no set of one columns linearly dependent

@ No set of two columns that are linearly dependent

@ There is a set of three columns that are linearly dependent; the first, the

second, and the fourth columns are linearly dependent

v
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Some Properties of the Spark of a Matrix

Let A be an m X n matrix, where m > n.

e Then, spark(A) =n+1 <= rank(A) = n, that is, the spark of
A equals n + 1 if and only if A is a full column rank matrix

e spark(A) =1 <= A has a zero column
o If spark(A) # n + 1, then

spark(A) < rank(A) +1
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Restatement of the Very Important Technical Result

Corollary:

spark(F') > 2i is equivalent to ¥g; NN (F') = {0}. Therefore,
spark(F') > 2i implies that the i-sparse solution to Fe = z is unique
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Secure State Estimation of Networked Control Systems
Corrupted by Unknown Input and Output Sparse Errors

Plant
u®k] yelk]
Comm. Comm.
Network ¢alk] eslk] Network

u°[k] yelk]
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Plant Design Model

where
e AcR"™" BeR"™m" C e RP"
e B full column rank, that is, rank B = m
e u’[k] € R™—input received by actuators

o y°[k] € RP—output measured by sensors
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MALICIOUS ATTACK MODELING
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Modeling Malicious Attacks on Sensors

e Sensor measurements, y°[k], are being sent to the controller
through a communication network

@ Malicious attacks cause packet drops in the communication
network

e Malicious packet drops model:

['(k) = diag{y1(k), v2(k), -, 1p(k)}

where 7;(k),i = 1,...,p are Boolean variables, v;(k) = 1 if the
packet is correctly received; v;(k) = 0 if the packet is dropped

e Signal received by the controller:
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NCS

Plant
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Modeling Malicious Attacks on Actuators

@ The control signal is being sent to the plant through a
communication network

e Malicious packet drops model:
A(k) = diag{A1(k), A2(k), - -, Am(K) }

where \;(k),i =1,...,m are Boolean variables, \;(k) = 1 if the
packet is correctly received; \;(k) = 0 if the packet is dropped by
the actuator

e Signal received by the actuator:
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Errors in communication between sensors and the
controller

o Network communication errors in the communication flow from
the sensor to the controller—eg|[k]

e Hence,
eslk] = y°lk] — y°[k] € RP
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Errors in communication between the controller and
actuators

@ Errors in the communication between the controller to the
actuator—e, k|

e Hence,
eq[k] = u?lk] — ulk] € R™
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NCS considered

Plant
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NCS model

o Let T'(k) =T'(k) — I, € RP*P and A(k) = A(k) — I,,, € R™X™
@ Then

es[k] = T(k)y°[k] and e, [k] = A(k)uc[k]
o We analyze the case when malicious packet drops are sparse

@ The system model under consideration

alk+1 = Am[k]+B(uC[k]+ea[k])}
y°lk] = Cuaxlk] + es[k]

e Objective: obtain an estimate of the state x[k] of the NCS in the
presence of malicious packet drops es[k] and e,[k]
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An alternative approach to the problem

e Plant linear model

xlk+1] = Aa:[k]+B(uc[k:]+ea[k:])}
ylk] = Cxlk] + es[k]

o Communication links subject to attacks

> e, [k]—sparse attacks injected in the actuators
» e,[k]—sparse attacks injected in the sensors

@ Objective: correctly estimate the initial state

H. Fawzi, P. Tabuada, S. Diggavi, Secure estimation and control for

cyber-physical systems under adversarial attacks, IEEE TAC, Vol. 59, No. 6,

pp. 1454-1467, June 2014
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State observer

Plant

Net\nrork ealk] e:[k] Network

State Observer
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State observer construction

o First, construct an estimator of network communication errors,
es[k], in the signal flow from the sensor to the controller

o Use the estimation é;[k] of e4[k] to cancel out its effects

e Then, build unknown input observer (UIO) to estimate the
plant state
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Recovering error vector e[kl

e Substitute u®[k] = A(k)u‘[k] and y°[k] = I'(k)y*[k] into

zlk+1] = Am[k‘]+Bu“[k}}
y°'lk] = Cuxlk]
to obtain
xlk+1] = Ax[k]+ BA(k)u[k] }
y°lk] = T(k)Cxl[k]

@ The controller output y°[k] and the controller input u®[k] are
known at all time

e Collect T observations for the system
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Notation

e For a given a vector y[k] € RP, 7 € N, the vector

Y| (k—r+1,k]

denotes the collection of 7 samples of y[k]
e That is,
yelk — 7+ 1]
yelk — 7+ 2]
Yol p—r+1,6) = :
Yk —1]
ye[K]
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Collecting observations
o Recall that T'(k) = T'(k) — I, € RP*P
@ One observation
Y| jkx = D(k)Calk] = Ca[k] + T(k)C[k]

e Two observations starting from x[k — 1]
» First observation at time k — 1

ylk—1 = T'(k—1)Cz[k—1]
Cz[k—1]+T(k—-1)Cz[k - 1]

» Second observation at time k

y’lk] = T(k)Cz[k] = Cz[k] + T (k)Cz[k]
= C(Azlk — 1]+ BA(k — Du’[k — 1))
+T(k)Czk|

= CAz[k— 1]+ T (k)Czl[k]
+CBA(k — Duclk — 1]
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Collecting two observations together

Yl -1 =
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Collecting three observations together

[ ylk — 2]
yc|[k—2,k] = Yk —1] ]
y©[k]
o} T(k —2)Cx[k — 2]
= CA |z[k—2]+ | T(k—1)Czx[k—1]
| cA? T(k)Cx[k]
0
+ CBA(k — 2)u‘[k — 2] ]
CBA(k —1)u‘lk — 1] + CABA(k — 2)u[k — 2]
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Collecting 7 observations

C
CA
h—rt1k] = : zk — 7+ 1]

‘I

Yy
CAT—l

[ T(k—7+1)Czx[k —7+1]
T(k—7+2)Czlk—71+2]

T(k)Ca[K]
0
CBA(k— 7+ Du‘lk — 7+ 1]

YTICAT Y I BA(k — 7+ i)uk — T + 1]
L =1
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How many observations do we need?

o Consider a system model

xlk+1] = Ax[k| }
Y[kl = T(k)Cuxlk]

@ Collect T observations:

’yc|[o,r—1] = . x[0]

r'(r—1)CcA™*
= diag{ T(0) T(1) --- T(r—1) }O" 'z0]

where O7~! is the 7-step observability matrix
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More Notation

e For a given matrix M € R™™ and a set = C {1,...,n}, denote
M= ¢ R(n=IE)xm

the matrix obtained from M by removing the rows whose indices
are contained in =

e For a given matrix M € R™ ™ and a set = C {1,...,n}, denote
ME e R|E|><m

the matrix obtained from M by removing the rows whose indices
are not contained in =
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O7~ 1 r-step observability matrix

CAT*I
07'71 —
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Resilient System Against Packet Drops

Definition

The linear system

xk+1] = Az[k]
ylk] = T(k)Cxz[k]
is said to be resilient against ds packet drops if there exists 7 € N such
that for any set = C {1,...,£} with |Z| < ds the matrix (’)%_1 has full
column rank

G. Fiore, Y. H. Chang, Q. Hu, M. D. Di Benedetto, and C. J. Tomlin, Secure
state estimation for Cyber Physical Systems with sparse malicious packet drops, 2017
ACC, Sheraton Seattle Hotel, Seattle, May 24-26, pp. 1898-1903
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Some Manipulations

o Let U°[k] € R™*"™ be a diagonal matrix whose components consist
of u°[k]

e Let vec (A(k)) € R™ represents vectorization of diagonal
components of A(k)

@ Then,

A(k)u‘lk] = Uclk]vec (A(k))
o Let vk]=[0T --- -1 (CA™ """ But(k —7+4))]"
e Note that v[k] is known for all k£ and 7

M. Zhang, S. Hui, M. R. Bell, and S. H. Zak, Vector Recovery for a Linear
System Corrupted by Unknown Sparse Error Vectors With Applications to Secure
State Estimation, IEEE Control Systems Letters, Vol. 3, No. 4, pp. 895-900,

October 2019
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More Manipulations

o Let ¥l k—rs1.h) = Y lk—rt1,4] — V[K]

@ Then,
ol car!
P°lk — 1) CcA™?
Y[k] £ : = : zlk —7+1]
—-T-Fl] éj
k)Cx[k] vec(A(k — 1))
- 1 Cz[k — 1] vec(A(k — 2))
+ F[k] _
—T+1Ca: k—71+1] vec(X(k.—T—i—l))
£ 0" 'alk — 74 1] + I, E[k] + F[k]V[K]
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Organizing Output Observations for Further Processing

o We have
Y[k] = O™ txlk — 7+ 1] + I, E k] + F[k]V[K]
where
> 07’—1 c R7PXn
» Y[k] e R
> F[k}] c Rrpx(‘rfl)m
CBU‘[k—1] --- CA™?BU°k—r1+1]
> Flk] = : g :
Opxm CBUk—T1+1]

Opxm Opsxm
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Organizing the Observations for Further
Processing—Final Form

o Let Qk] = [I,, FIk]|
o Let E[k]=[E[[k] VT[k]]T
@ Then
Y[k] = 0" 'zlk — 7 + 1] + QK| E[k]
where Q € RPX[rp+(r=1)m] 31q E € R7PHT—1)m

e Objective: Recover E[k|, a sparse vector
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Background Results

o Let M € R™" rankM =n
e Take the qr-decomposition of M to obtain

M-qr-[Q ]| 3|

where Q € R"™*™ is orthogonal, Q, € R™*" Q, € Rmx (m—n)
and Ry € R™ ™ is a full rank upper triangular matrix.
Lemma

Let Q4 be defined as above. Then Q; s a left annihilator of M, that
is, Qg M = O
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Constructing Left Annihilator of O7!

o Take the qr decomposition of O7~! to obtain
. R

O'=QR=[Q, Q, }[ 01}

where

Q € R™PX7P ig orthogonal

Ql E RTan

Q, € RTP*(tp=n)

Ry € R™*" is a full rank upper triangular matrix

e By the Lemma, Q; is a left annihilator of @71, that is,

Q;OT—l -0

vV vy VvYy
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Q. is a Left Annihilator of O™!

o We have

O '=QR=[Q, Q, ][Ig ] _ QR

e Note that
T
Qe - | la @
[QIQl QIQQ]::[In (0] ]
Q:Q Q;Q, o I,,

o Hence, Q;—Ql =0

o Therefore

Q0" =QJ (QR)=0
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Quick Way to Compute Left Annihilator of O7 1

o Use MATLAB’s null function to obtain
T
Qs —nu((0)")

where @, is right annihilator of ((’)T_l)T
o Indeed, since
() @ =o0.

then taking the transpose gives

ngr—l _ OT
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Constructing an Optimization Problem for E|k]
Recovery

e Recall that Q) O™ =0
e Pre-multiply

Y[k] = O™ 'k — 7 + 1] + Q[k]| E[K]

by Q5
o We obtain, Q;Y[k] = Q;—Q[ |E[k]
o Let Z[k] = Q3 Y'[k] and W[k] = Q, QK]
@ Then
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The Constraint in the Optimization Problem to Recover
E[k]

@ We have

where
Z[k] € R™~" and W [k] € RP—)x[rp+(r=1)m]

Note that W k]| is full row rank
e That is,

rank(WIk]) =1p—n
This is because rank(Qy ) = 7p — n, rank(Q[k]) = 7p

e Hence

rank(W [k]) = rank(Q, Q[k]) = rank(Q. )
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Optimization Problem to Recover E[k]

If E[k] is an i-sparse vector, the solution to

can be obtained by solving the optimization problem

min | E[k]llo subject to Z[k] = W [k]E[k] ]
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Assumptions for the Optimization Problem to Recover
Elk]

e Assume that over the time interval [k — 7 + 1, k] there are at most
15 malicious packet drops from the sensor to the controller and at
most i, malicious packet drops from the controller to the actuator

e Assume that E[k] is i-sparse

e Hence,
i = | E[k]llo = [ Es[K]llo + [[Ealk]llo < is + ia
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Existence of the Solution to the Optimization Problem
to Recover E|k]

Lemma

If the solution E[k] to Z[k] = W k|Ek] is i-sparse and
(tp —n) > 2(is +iq) and all subsets of 2(is + iq) columns of W k] are
full rank, then Ek] is unique

G. Fiore, Y. H. Chang, Q. Hu, M. D. Di Benedetto, C. J. Tomlin, Secure state
estimation for Cyber Physical Systems with sparse malicious packet drops, 2017
ACC, Sheraton Seattle Hotel, Seattle, May 24-26, pp. 1898-1903
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Approximating the Optimization Problem to Recover
Elk]

We approximate the the 0-norm optimization problem

min |E[k][|o subject to Z[k] = W [k]E[k] J

with the 1-norm optimization problem

min || E[E][; subject to Z[k] = W k] E[k] ]

D. L. Donoho and M. Elad, For most large under-determined systems of linear

equations the minimal l1-norm solution is also the sparsest solution, STAM Review,
Vol. 56, No. 6, pp. 797-829, 2006
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Converting the 1-Norm Optimization Into a Linear
Programming Problem

o min [ E[k]|l1 = min(3_7_; [Ei[k]])
o Let E,;F,EZ_ be such that |F;| = EZ+ +E ,E = E;r — E;, and
EfE- =0
o Then we obtain
min (B + E7)+ (Bf + Ey)+---+ (Ef + E])
subject to W(ET —-E")=2Z
ET E >0,

where ET =[Ef -+ EMN", E-=[Ef -+ E;]' and
g=7p+(T—-1)m
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Linear Programming Program in Standard Form

Let x;, = [E+T E_T]T
o Letc=[1 --- 1T eR¥
Let flh)ZZ[‘lf - W]

@ Then we have

min cTa:lp

subject to  Apxy, = Z
mh,z 0

The above linear programming problem can be solved using
standard methods
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Recovering Output Sensor Error eg[k]

Choose 7 such that (7p —n) > 2(is + i4)

Compute Y [k] and matrices O™ ! and Q[k]

Find left annihilator, Qg of O7~1

Construct the optimization problem, where Z[k] = Q5 Y'[k],
W k] = Q; Q]

Solve optimization problem for E[k]

© 00O

© 0

Compute é4[k] that approximates es[k]
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OBSERVER ARCHITECTURE
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State Observer = UIO + Output Sensor Error

Estimator

Plant

State Observer

yelk]
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Combined output sensor error estimator and UIO

e Construct an estimator of output sensor error e;[k] to obtain its
estimate denoted ég[k]

Subtract és[k] from y°[k] to obtain

Yk =

Yk — éslk]
Y[k] + es[k] — és[k]

e To proceed, assume y°[k| = y°[k]
o We obtain

alk+1 = Aw[k]+B(uC[k]+ea[k])}
y°lk] = Cuxlk]
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Constructing UIO

e First decompose the state x[k| as
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Constructing UIO

e First decompose the state x[k| as

xzlk] = x[k] -
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Constructing UIO

e First decompose the state x[k| as

wlk] = x[k] - My[k] + My k]
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Constructing UIO

e First decompose the state x[k| as
xlk] = wx[k] - My[k] + My[k]
= zlk] - MCx[k] + MCxz[k]
= (I - MC)x[k] + My°lk]
where M € R™*P ig a parameter matrix to be constructed

o Let z[k] = (I — MC)x[k]
@ Then
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Open-Loop UIO

@ We have
zlk+1] = (I — MC)(Ax[k] + Bu‘lk]) + (I — MC)Be,[k]

e Select M such that (I - MC)B =0
e Then, z[k+ 1] = (I — MC)(Axz[k] + Bu‘[k])
e Substituting x[k] = z[k] + My°[k] gives

2[k +1] = (I - MC)(Az[k] + AM§°[k] + Bu’[k])

o State estimate: z[k] = z[k] + M y°[k]

@ State observation error:

elk+1] =zlk+1] — &k + 1] = (I — MC) Ae[k]
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Open-Loop Observer Error Analysis

o UIO observer

(I - MC)(Az[k] + AMy°[k] + Buc[k])
z[k] + My°[k]

@ Observation error dynamics

e[k +1]

zlk +1] — [k + 1]

Azxlk] + B(ulk] + e, [k]) — z[k + 1]

— Mk + 1]

Ax[k]| + B(ulk] + eq[k]) — z[k + 1]
—MCx[k + 1]

Az[k] + B(u°lk] + eq[k]) — z[k + 1]
~MCAz[k] - MCBu®lk] — MCBe,[k))

70/ 86



Open-Loop Observation Error

@ Select M so that (I — MC)B = O gives

elk+1] = Ax[k]+ B(ulk] + eq[k]) — z[k + 1]
—MCAz[k]| — MCBu‘lk] — MCBe,lk])
= (I - MC)(Az[k] + Bu[k])
(I — MC)Be,lk]
—z[k + 1]
= (I — MC)(Ax[k] + Bu‘lk])
—(I — MC)(Az[k] + Bu[k])
= (I - MC)Ae[K]

@ Open-loop UIO impractical—no control of the observation error
dynamics
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Closed-Loop UIO Error Dynamics

Close the loop by adding the term L(y°[k] — @) to the UIO, where
¢y = Cz is the UIO output

@ Closed-loop UIO observation error

elk+1 = (I-MC)Aelk] — L(H°[k] — §)
= (I - MC)Ae[k] — L(Cz[k] — C&)
= (I - MC)Ae[k] — LCelk)

o Let Ay = (I — MC)A, then we have
elk+1] = (A; — LC)elk]

@ Closed-loop UIO—use the observer gain L to control the
observation error dynamics
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Closed-Loop UIO

o Compute M such that

(I- MC)B=0

e The UIO
zlk+1] = (I—MC)(Az[k]+ AMy°[k] + Bu‘lk])
+L(y k] — ylk])
zlk] = z[k]+ My[k]
where

ylk] = Cz[K]
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Solving (I — MC)B = O for M

e (I-MC)B=0O < MCB=8B
e MCB = B implies

rank(MCB) = rankB
@ On the other hand,
rank(MCB) < rank(CB) < rank(B)

o Hence, a necessary and sufficient condition for solvability of
(I-MC)B=0is

rank(C B) = rank(B)
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Summary of UIO Construction

Theorem
Let Ay = (I — MC)A and T = PL. If
Q@ I-MC)B=0,
@ there erists P = P = 0 such that
—-P AlPp-C'T’
<0
PA, —-TC —P ’

then the UIO exists

75/ 86




Theorem Discussion

o (A; — LC) Schur stable <= there exists P = P > 0 such that
(A - LC)"P(A; —LC)-P <0

e Substitute P = PP~!P into the Lyapunov matrix inequality to

obtain
(A —LC)"PP'P(A, - LC)-P <0

which is equivalent to the LMI condition of the Theorem by taking
the Schur complement
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Combined Estimator-UIO Design

@ Design an estimator é5[k] of e;[k]
@ Design the UIO performing the following steps:

» Check if rank(C B) = rank(B) is satisfied. If the condition is not
satisfied, STOP
Solve (I — MC)B = O to obtain

v

M =B ((CB)' + Hy(I, - (CB)(CB)"),

where the superscript  denotes the Moore-Penrose pseudo-inverse
and H is a design parameter matrix

Solve for P and T

» If P=P" 0, UIO exists

Compute L; = P~'T

v

\4
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Numerical Example

‘ d1 qz ¢
m m
pLpEaTE
k

Coupled mass-spring-damper system
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Modeling

e State-space model:

Q 0 0 1 0 0
Tr = (?2 , Ac = j;k (13 91: ! , Be = X ’
il = w0 0
i B .
[1 0 0 0]
Ce= 101 0 0|

e Parameters: m =5 kg, k =5 N/m, and ¢ = 10 N-s/m

e Discretize: sampling time 75 = 0.1 s
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Discrete-Time (DT) Model of the Coupled
Mass-Spring-damper System

0.9907  0.0047  0.0903 0.0002
0.0047  0.9907 0.0002 0.0903

A= —0.1805 0.0900 0.8100 0.0044 |’
0.0900 —0.1805 0.0044 0.8100
0
0.0047 1 0 0 0
B = 0.0002  O= 010 0]

0.0903
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Computing the M and L Matrices of the UIO

0 0 0.9936 0.0039
0 0 —0.0008  —0.0000
M = 0 0.0033 |’ L= —0.1551  0.0581

0.0017 199.66 —0.0159 —19.3226
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Simulation Parameters

e Number of observations 7 = 10 selected so that the condition of
the Lemma is satisfied, that is,

(tp —n) > 2(is + ia)

e Controller, u¢[k| = — K 4&[k]|, where
K= [0.1381 0.2677 0.0651 0.3401] is the feedback gain
calculated using discrete-time LQR

@ Zero initial conditions on the plant input and its output, that is,
u[-1l]=---=ul—7]=0and y°[-1]=---=y‘[l —7] =0
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State estimates with 15% output transmission packet drops and 5% input

transmission packet drops
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Output recovery and output recovery errors with 15% output transmission

packet drops and 5% input transmission packet drops
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L -0 L/ — Y] |
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RECAP
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Recap: Networked Control System (NCS) Security

e Networked Control Systems depend on wireless communication—a
major challenge in the NCS design is their security

@ Actuators and sensor measurements exposed to malicious attacks
in communication networks

o Methods of detecting sparse malicious packet drop attacks in the
communication networks proposed

o Limitations of the proposed methods—malicious attacks assumed
to be sparse
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