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Defining terms and background results
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Networked Control Systems

Definition

Networked Control Systems combine cyber and physical components,
that is, they are combinations of the physical world with the virtual
world of information processing
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Challenges in a Networked Control System (NCS)

NCS depends on wireless communication

Major challenge in the NCS design—security

For example, malicious packet drop attacks in the communication
networks
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Security Issues in the NCS Design

Overcoming malicious packet drop attacks

Secure state estimation of NCS when actuator and sensor
measurements being corrupted by external malicious packet drop
attacks

Detecting and monitoring malicious attacks
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Modeling sparse malicious packet drop attacks

Estimating disturbances of the communication network such as
noise, delays, and packet drops formulated as a sparse vector
recovery problem

Sparse e—more zero entries than non-zero entries in the vector e

Definition (Sparse vector recovery problem)

Estimate an unknown vector x in the linear system, Ax+ e = b, where
the vector b and the matrix A are known and e models the unknown
disturbances
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Analysis of Ax + e = b

Assumptions:
1 b and the full column rank matrix A are known;

2 Only a “small” number of entries of b corrupted by e

Justifying the second assumption

Candes and Tao’s observation: if the number of nonzero entries of the
error vector is “large”, then it is in general impossible to reconstruct x
from Ax + e = b for a given A and b

E. J. Candes and T. Tao, Decoding by linear programming, IEEE Transactions
on Information Theory, Vol. 51, No. 12, pp. 4203–4215, 2005
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Reconstructing x from Ax + e = b for a given A and b

Cannot have too many non-zero entries in e to reconstruct x!

Indeed, let A ∈ Rm×n and suppose m = 2n

Consider two distinct fixed vectors x and x̂

Suppose the vector b ∈ Rm is constructed by setting n coefficients
of b equal to those of Ax and n coefficients of b equal to those of
Ax̂

Then we have b = Ax + e = Ax̂ + ê for some e and ê

In sum, the maximum number of nonzero coefficients in e should
be smaller than n = m/2 if we are to be able to reconstruct x
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Cannot have too many non-zero elements in e to
recover x in Ax + e = b

Example

A =


1 0
1 0
0 1
0 1

, x =

[
1
1

]
, x̂ =

[
2
0

]
, b =


1
1
0
0


Then two coefficients of b equal to those of Ax and two equal to those
of Ax̂.
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Example—Contd.

Solving the equations e = b−Ax and ê = b−Ax̂, we obtain

e =


0
0
−1
−1

 and ê =


−1
−1
0
0

.
Note that both e and ê have m = n/2 nonzero components

We do not know if e or ê corrupts the system

We cannot recover x in Ax + e = b

We have to have less than m = n/2 nonzero components in e to
start talking about recovering x in Ax + e = b
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How to recover x from Ax + e = b?

Candes and Tao’s† idea:

We can recover x if we have e

Plan: Reconstruct e and then compute x

† E. J. Candes and T. Tao, Decoding by linear programming, IEEE Transactions
on Information Theory, Vol. 51, No. 12, pp. 4203–4215, 2005
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Reconstructing e from Ax + e = b?

Find a matrix F ∈ R(m−n)×m such that FA = O

Premultiply both sides of Ax + e = b by F to obtain,
FAx + Fe = Fb

Let z = Fb

Then, since FAx = 0, we obtain

Fe = z,

where z is known

Thus the original problem has been reduced to reconstructing the
sparse error vector e from under-determined system of equations

14 / 86



Finding the sparsest solution to Fe = z

Definition (0-norm of a vector)

The 0-norm of a finite dimensional vector x, denoted ‖x‖0, is the
number of nonzero entries in x

Definition (Finding the sparsest solution problem)

min ‖e‖0, e ∈ Rm
subject to Fe = z
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Minimizing ‖e‖ subject to Fe = z
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The minimal 1-norm solution is the sparsest

D. L. Donoho and M. Elad, For most large underdetermined
systems of linear equations the minimal l1-norm solution is also
the sparsest solution, SIAM Review, Vol. 56, No. 6, pp. 797–829,
2006

Therefore, instead of minimizing ‖e‖0, we consider an
optimization problem where we minimize the 1-norm of a solution
subject to the constraint, Fe = z
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Finding the minimal 1-norm solution

Since ‖e‖1 =
m∑
i=1
|ei| is a convex function, we have a convex

optimization problem,

min ‖e‖1, e ∈ Rm
subject to Fe = z

Our objective: Find the unique solution e to the above problem

Once we find e, we can then recover x
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Sparse Vectors

Definition (i-sparse vector)

A vector e is i-sparse if it has at most i non-zero components, that is,
‖e‖0 ≤ i

Example

Let

e =


0
0
−1
−1

 .
Then, ‖e‖0 = 2

19 / 86



A Very Important Technical Result

Consider an under-determined system, Fe = z, where F and z
are given

Let Σi = {e : ‖e‖0 ≤ i} be the set of all i-sparse vectors

Let N (F ) denote the null space of the matrix F

Lemma

If Σ2i ∩N (F ) = {0}, then any i-sparse solution of the
under-determined system Fe = z is unique
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Proof of Lemma

By contradiction: S1 =⇒ S2 ⇐⇒ NOT (S1 AND NOT S2)

Suppose e(1) and e(2) are two different i-sparse solutions of the
under-determined system Fe = z

Then F (e(1) − e(2)) = 0 and thus e(1) − e(2) ∈ N (F )

Since e(1) and e(2) are in Σi, we also have e(1) − e(2) ∈ Σ2i

Therefore e(1) − e(2) ∈ Σ2i ∩N (F ) = {0}
It follows that we must have e(1) = e(2), a contradiction, and thus
an i-sparse solution of the under-determined system Fe = z must
be unique
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The Spark of a Matrix

Definition

The spark of the matrix F is the smallest number of linearly
dependent columns in F , that is,

spark(F ) = min{‖d‖0 : Fd = 0,d 6= 0}

Example

spark

 1 1 3 0
1 1 2 0
1 1 4 0
0 1 3 −1

 = 3

Indeed

No zero column so no set of one columns linearly dependent

No set of two columns that are linearly dependent

There is a set of three columns that are linearly dependent; the first, the
second, and the fourth columns are linearly dependent
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Some Properties of the Spark of a Matrix

Let A be an m× n matrix, where m ≥ n.

Then, spark(A) = n+ 1 ⇐⇒ rank(A) = n, that is, the spark of
A equals n+ 1 if and only if A is a full column rank matrix

spark(A) = 1 ⇐⇒ A has a zero column

If spark(A) 6= n+ 1, then

spark(A) ≤ rank(A) + 1
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Restatement of the Very Important Technical Result

Corollary:

spark(F ) > 2i is equivalent to Σ2i ∩N (F ) = {0}. Therefore,
spark(F ) > 2i implies that the i-sparse solution to Fe = z is unique
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Secure State Estimation of Networked Control Systems
Corrupted by Unknown Input and Output Sparse Errors
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Plant Design Model

x[k + 1] = Ax[k] + Bua[k]
ys[k] = Cx[k]

}
where

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n

B full column rank, that is, rankB = m

ua[k] ∈ Rm—input received by actuators

ys[k] ∈ Rp—output measured by sensors

26 / 86



Malicious Attack Modeling
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Modeling Malicious Attacks on Sensors

Sensor measurements, ys[k], are being sent to the controller
through a communication network

Malicious attacks cause packet drops in the communication
network

Malicious packet drops model:

Γ(k) = diag{γ1(k), γ2(k), · · · , γp(k)}

where γi(k), i = 1, . . . , p are Boolean variables, γi(k) = 1 if the
packet is correctly received; γi(k) = 0 if the packet is dropped

Signal received by the controller:

yc[k] = Γ(k)ys[k]
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NCS
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Modeling Malicious Attacks on Actuators

The control signal is being sent to the plant through a
communication network

Malicious packet drops model:

Λ(k) = diag{λ1(k), λ2(k), · · · , λm(k)}

where λi(k), i = 1, . . . ,m are Boolean variables, λi(k) = 1 if the
packet is correctly received; λi(k) = 0 if the packet is dropped by
the actuator

Signal received by the actuator:

ua[k] = Λ(k)uc[k]
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Errors in communication between sensors and the
controller

Network communication errors in the communication flow from
the sensor to the controller—es[k]

Hence,
es[k] = yc[k]− ys[k] ∈ Rp
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Errors in communication between the controller and
actuators

Errors in the communication between the controller to the
actuator—ea[k]

Hence,
ea[k] = ua[k]− uc[k] ∈ Rm
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NCS considered
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NCS model

Let Γ(k) = Γ(k)− Ip ∈ Rp×p and Λ(k) = Λ(k)− Im ∈ Rm×m

Then
es[k] = Γ(k)ys[k] and ea[k] = Λ(k)uc[k]

We analyze the case when malicious packet drops are sparse

The system model under consideration

x[k + 1] = Ax[k] + B(uc[k] + ea[k])
yc[k] = Cx[k] + es[k]

}
Objective: obtain an estimate of the state x[k] of the NCS in the
presence of malicious packet drops es[k] and ea[k]
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An alternative approach to the problem

Plant linear model

x[k + 1] = Ax[k] + B(uc[k] + ea[k])
yc[k] = Cx[k] + es[k]

}
Communication links subject to attacks

I ea[k]—sparse attacks injected in the actuators
I es[k]—sparse attacks injected in the sensors

Objective: correctly estimate the initial state

H. Fawzi, P. Tabuada, S. Diggavi, Secure estimation and control for
cyber-physical systems under adversarial attacks, IEEE TAC, Vol. 59, No. 6,
pp. 1454–1467, June 2014
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State observer
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State observer construction

First, construct an estimator of network communication errors,
es[k], in the signal flow from the sensor to the controller

Use the estimation ẽs[k] of es[k] to cancel out its effects

Then, build unknown input observer (UIO) to estimate the
plant state
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Recovering error vector es[k]

Substitute ua[k] = Λ(k)uc[k] and yc[k] = Γ(k)ys[k] into

x[k + 1] = Ax[k] + Bua[k]
ys[k] = Cx[k]

}
to obtain

x[k + 1] = Ax[k] + BΛ(k)uc[k]
yc[k] = Γ(k)Cx[k]

}
The controller output yc[k] and the controller input uc[k] are
known at all time

Collect τ observations for the system
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Notation

For a given a vector y[k] ∈ Rp, τ ∈ N, the vector

yc|[k−τ+1,k]

denotes the collection of τ samples of y[k]

That is,

yc|[k−τ+1,k] =


yc[k − τ + 1]
yc[k − τ + 2]

...
yc[k − 1]
yc[k]


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Collecting observations
Recall that Γ(k) = Γ(k)− Ip ∈ Rp×p

One observation

yc|[k,k] = Γ(k)Cx[k] = Cx[k] + Γ(k)Cx[k]

Two observations starting from x[k − 1]
I First observation at time k − 1

yc[k − 1] = Γ(k − 1)Cx[k − 1]

= Cx[k − 1] + Γ(k − 1)Cx[k − 1]

I Second observation at time k

yc[k] = Γ(k)Cx[k] = Cx[k] + Γ(k)Cx[k]

= C(Ax[k − 1] + BΛ(k − 1)uc[k − 1])

+Γ(k)Cx[k]

= CAx[k − 1] + Γ(k)Cx[k]

+CBΛ(k − 1)uc[k − 1]
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Collecting two observations together

yc|[k−1,k] =

[
yc[k − 1]
yc[k]

]
=

[
C
CA

]
x[k − 1] +

[
Γ(k − 1)Cx[k − 1]

Γ(k)Cx[k]

]
+

[
0

CBΛ(k − 1)uc[k − 1]

]
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Collecting three observations together

yc|[k−2,k] =

[
yc[k − 2]
yc[k − 1]
yc[k]

]

=

 C
CA

CA2

x[k − 2] +

 Γ(k − 2)Cx[k − 2]
Γ(k − 1)Cx[k − 1]

Γ(k)Cx[k]


+

[
0

CBΛ(k − 2)uc[k − 2]
CBΛ(k − 1)uc[k − 1] + CABΛ(k − 2)uc[k − 2]

]

42 / 86



Collecting τ observations

yc|[k−τ+1,k] =


C
CA

...

CAτ−1

x[k − τ + 1]

+


Γ(k − τ + 1)Cx[k − τ + 1]
Γ(k − τ + 2)Cx[k − τ + 2]

...
Γ(k)Cx[k]



+


0

CBΛ(k − τ + 1)uc[k − τ + 1]
...

Στ−1i=1 CAτ−1−iBΛ(k − τ + i)uc[k − τ + i]


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How many observations do we need?

Consider a system model

x[k + 1] = Ax[k]
yc[k] = Γ(k)Cx[k]

}
Collect τ observations:

yc|[0,τ−1] =


Γ(0)C

Γ(1)CA
...

Γ(τ − 1)CAτ−1

x[0]

= diag{ Γ(0) Γ(1) · · · Γ(τ − 1) }Oτ−1x[0]

where Oτ−1 is the τ -step observability matrix
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More Notation

For a given matrix M ∈ Rn×m and a set Ξ ⊆ {1, . . . , n}, denote

M Ξ̄ ∈ R(n−|Ξ|)×m

the matrix obtained from M by removing the rows whose indices
are contained in Ξ

For a given matrix M ∈ Rn×m and a set Ξ ⊆ {1, . . . , n}, denote

MΞ ∈ R|Ξ|×m

the matrix obtained from M by removing the rows whose indices
are not contained in Ξ
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Oτ−1—τ -step observability matrix

Oτ−1 =


CAτ−1

...
CA
C


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Resilient System Against Packet Drops

Definition

The linear system

x[k + 1] = Ax[k]

yc[k] = Γ(k)Cx[k]

}

is said to be resilient against ds packet drops if there exists τ ∈ N such
that for any set Ξ ⊆ {1, . . . , ξ} with |Ξ| ≤ ds the matrix Oτ−1

Ξ̄
has full

column rank

G. Fiore, Y. H. Chang, Q. Hu, M. D. Di Benedetto, and C. J. Tomlin, Secure
state estimation for Cyber Physical Systems with sparse malicious packet drops, 2017
ACC, Sheraton Seattle Hotel, Seattle, May 24–26, pp. 1898–1903
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Some Manipulations

Let U c[k] ∈ Rm×m be a diagonal matrix whose components consist
of uc[k]

Let vec (Λ(k)) ∈ Rm represents vectorization of diagonal
components of Λ(k)

Then,
Λ(k)uc[k] = U c[k]vec (Λ(k))

Let v[k] = [0> · · · Στ−1
i=1 (CAτ−1−iBuc(k − τ + i))>]>

Note that v[k] is known for all k and τ

M. Zhang, S. Hui, M. R. Bell, and S. H. Żak, Vector Recovery for a Linear
System Corrupted by Unknown Sparse Error Vectors With Applications to Secure
State Estimation, IEEE Control Systems Letters, Vol. 3, No. 4, pp. 895–900,
October 2019
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More Manipulations

Let ŷc|[k−τ+1,k] = yc|[k−τ+1,k] − v[k]

Then,

Y [k] ,


ŷc[k]

ŷc[k − 1]
...

ŷc[k − τ + 1]

 =


CAτ−1

CAτ−2

...
C

x[k − τ + 1]

+ Iτp


Γ(k)Cx[k]

Γ(k − 1)Cx[k − 1]
...

Γ(k − τ + 1)Cx[k − τ + 1]

+ F [k]


vec(Λ(k − 1))

vec(Λ(k − 2))
...

vec(Λ(k − τ + 1))


, Oτ−1x[k − τ + 1] + IτpEs[k] + F [k]V[k]
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Organizing Output Observations for Further Processing

We have

Y [k] = Oτ−1x[k − τ + 1] + IτpEs[k] + F [k]V[k]

where
I Oτ−1 ∈ Rτp×n
I Y [k] ∈ Rτp
I F [k] ∈ Rτp×(τ−1)m

I F [k] =


CBU c[k − 1] · · · CAτ−2BU c[k − τ + 1]

...
. . .

...
Op×m · · · CBU c[k − τ + 1]
Op×m · · · Op×m


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Organizing the Observations for Further
Processing—Final Form

Let Ω[k] = [Iτp F [k]]

Let E[k] = [E>s [k] V>[k]]>

Then
Y [k] = Oτ−1x[k − τ + 1] + Ω[k]E[k]

where Ω ∈ Rτp×[τp+(τ−1)m] and E ∈ Rτp+(τ−1)m

Objective: Recover E[k], a sparse vector
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Background Results

Let M ∈ Rm×n, rankM = n

Take the qr-decomposition of M to obtain

M = QR =
[
Q1 Q2

][ R1

O

]
,

where Q ∈ Rm×m is orthogonal, Q1 ∈ Rm×n, Q2 ∈ Rm×(m−n),
and R1 ∈ Rn×n is a full rank upper triangular matrix.

Lemma

Let Q2 be defined as above. Then Q>2 is a left annihilator of M , that
is, Q>2 M = O
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Constructing Left Annihilator of Oτ−1

Take the qr decomposition of Oτ−1 to obtain

Oτ−1 = QR =
[
Q1 Q2

][ R1

O

]
where

I Q ∈ Rτp×τp is orthogonal
I Q1 ∈ Rτp×n
I Q2 ∈ Rτp×(τp−n)
I R1 ∈ Rn×n is a full rank upper triangular matrix

By the Lemma, Q>2 is a left annihilator of Oτ−1, that is,
Q>2 Oτ−1 = O
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Q>2 is a Left Annihilator of Oτ−1

We have

Oτ−1 = QR =
[
Q1 Q2

][ R1

O

]
= Q1R1

Note that

Q>Q =

[
Q>1
Q>2

] [
Q1 Q2

]
=

[
Q>1 Q1 Q>1 Q2

Q>2 Q1 Q>2 Q2

]
=

[
In O
O Iτp−n

]
Hence, Q>2 Q1 = O

Therefore
Q>2 Oτ−1 = Q>2 (Q1R1) = O
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Quick Way to Compute Left Annihilator of Oτ−1

Use MATLAB’s null function to obtain

Q>2 = null
((
Oτ−1

)>)>
,

where Q2 is right annihilator of
(
Oτ−1

)>
Indeed, since (

Oτ−1
)>

Q2 = O,

then taking the transpose gives

Q>2 Oτ−1 = O>
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Constructing an Optimization Problem for E[k]
Recovery

Recall that Q>2 Oτ−1 = O

Pre-multiply

Y [k] = Oτ−1x[k − τ + 1] + Ω[k]E[k]

by Q>2

We obtain, Q>2 Y [k] = Q>2 Ω[k]E[k]

Let Z[k] = Q>2 Y [k] and W [k] = Q>2 Ω[k]

Then
Z[k] = W [k]E[k]
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The Constraint in the Optimization Problem to Recover
E[k]

We have
Z[k] = W [k]E[k]

where
Z[k] ∈ Rτp−n and W [k] ∈ R(τp−n)×[τp+(τ−1)m]

Note that W [k] is full row rank

That is,
rank(W [k]) = τp− n

This is because rank(Q>2 ) = τp− n, rank(Ω[k]) = τp

Hence
rank(W [k]) = rank(Q>2 Ω[k]) = rank(Q>2 )
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Optimization Problem to Recover E[k]

If E[k] is an i-sparse vector, the solution to

Z[k] = W [k]E[k]

can be obtained by solving the optimization problem

min ‖E[k]‖0 subject to Z[k] = W [k]E[k]
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Assumptions for the Optimization Problem to Recover
E[k]

Assume that over the time interval [k − τ + 1, k] there are at most
is malicious packet drops from the sensor to the controller and at
most ia malicious packet drops from the controller to the actuator

Assume that E[k] is i-sparse

Hence,
i = ‖E[k]‖0 = ‖Es[k]‖0 + ‖Ea[k]‖0 ≤ is + ia
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Existence of the Solution to the Optimization Problem
to Recover E[k]

Lemma

If the solution E[k] to Z[k] = W [k]E[k] is i-sparse and
(τp− n) ≥ 2(is + ia) and all subsets of 2(is + ia) columns of W [k] are
full rank, then E[k] is unique

G. Fiore, Y. H. Chang, Q. Hu, M. D. Di Benedetto, C. J. Tomlin, Secure state
estimation for Cyber Physical Systems with sparse malicious packet drops, 2017
ACC, Sheraton Seattle Hotel, Seattle, May 24–26, pp. 1898–1903
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Approximating the Optimization Problem to Recover
E[k]

We approximate the the 0-norm optimization problem

min ‖E[k]‖0 subject to Z[k] = W [k]E[k]

with the 1-norm optimization problem

min ‖E[k]‖1 subject to Z[k] = W [k]E[k]

D. L. Donoho and M. Elad, For most large under-determined systems of linear
equations the minimal l1-norm solution is also the sparsest solution, SIAM Review,
Vol. 56, No. 6, pp. 797–829, 2006
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Converting the 1-Norm Optimization Into a Linear
Programming Problem

min ‖E[k]‖1 = min(
∑q

i=1 |Ei[k]|)
Let E+

i , E
−
i be such that |Ei| = E+

i + E−i , Ei = E+
i − E

−
i , and

E+
i E
−
i = 0

Then we obtain

min (E+
1 + E−1 ) + (E+

2 + E−2 ) + · · ·+ (E+
q + E−q )

subject to W (E+ −E−) = Z
E+,E− ≥ 0,

where E+ = [E+
1 · · · E+

q ]>, E− = [E−1 · · · E−q ]>, and
q = τp+ (τ − 1)m
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Linear Programming Program in Standard Form

Let xlp = [E+> E−
>

]>

Let c = [1 · · · 1]> ∈ R2q

Let Alp = [W −W ]

Then we have
min c>xlp
subject to Alpxlp = Z
xlp ≥ 0

The above linear programming problem can be solved using
standard methods
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Recovering Output Sensor Error es[k]

1 Choose τ such that (τp− n) ≥ 2(is + ia)

2 Compute Y [k] and matrices Oτ−1 and Ω[k]

3 Find left annihilator, Q>2 of Oτ−1

4 Construct the optimization problem, where Z[k] = Q>2 Y [k],
W [k] = Q>2 Ω[k]

5 Solve optimization problem for Ẽ[k]

6 Compute ẽs[k] that approximates es[k]
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Observer Architecture

65 / 86



State Observer = UIO + Output Sensor Error
Estimator
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Combined output sensor error estimator and UIO

Construct an estimator of output sensor error es[k] to obtain its
estimate denoted ẽs[k]

Subtract ẽs[k] from yc[k] to obtain

ỹc[k] = yc[k]− ẽs[k]

= ys[k] + es[k]− ẽs[k]

To proceed, assume ỹc[k] = ys[k]

We obtain

x[k + 1] = Ax[k] + B(uc[k] + ea[k])
ỹc[k] = Cx[k]

}
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Constructing UIO

First decompose the state x[k] as

x[k] = x[k]−Mỹc[k] + Mỹc[k]

= x[k]−MCx[k] + MCx[k]

= (I −MC)x[k] + Mỹc[k]

where M ∈ Rn×p is a parameter matrix to be constructed

Let z[k] = (I −MC)x[k]

Then

z[k + 1] = (I −MC)x[k + 1]

= (I −MC)(Ax[k] + Buc[k] + Bea[k])

= (I −MC)(Ax[k] + Buc[k]) + (I −MC)Bea[k]
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Open-Loop UIO

We have

z[k + 1] = (I −MC)(Ax[k] + Buc[k]) + (I −MC)Bea[k]

Select M such that (I −MC)B = O

Then, z[k + 1] = (I −MC)(Ax[k] + Buc[k])

Substituting x[k] = z[k] + Mỹc[k] gives

z[k + 1] = (I −MC)(Az[k] + AMỹc[k] + Buc[k])

State estimate: x̂[k] = z[k] + Mỹc[k]

State observation error:

e[k + 1] = x[k + 1]− x̂[k + 1] = (I −MC)Ae[k]
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Open-Loop Observer Error Analysis

UIO observer

z[k + 1] = (I −MC)(Az[k] + AMỹc[k] + Buc[k])

x̂[k] = z[k] + Mỹc[k]

Observation error dynamics

e[k + 1] = x[k + 1]− x̂[k + 1]

= Ax[k] + B(uc[k] + ea[k])− z[k + 1]

−Mỹc[k + 1]

= Ax[k] + B(uc[k] + ea[k])− z[k + 1]

−MCx[k + 1]

= Ax[k] + B(uc[k] + ea[k])− z[k + 1]

−MCAx[k]−MCBuc[k]−MCBea[k])
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Open-Loop Observation Error

Select M so that (I −MC)B = O gives

e[k + 1] = Ax[k] + B(uc[k] + ea[k])− z[k + 1]

−MCAx[k]−MCBuc[k]−MCBea[k])

= (I −MC)(Ax[k] + Buc[k])

+(I −MC)Bea[k]

−z[k + 1]

= (I −MC)(Ax[k] + Buc[k])

−(I −MC)(Ax̂[k] + Buc[k])

= (I −MC)Ae[k]

Open-loop UIO impractical—no control of the observation error
dynamics
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Closed-Loop UIO Error Dynamics

Close the loop by adding the term L(ỹc[k]− ŷ) to the UIO, where
ŷ = Cx̂ is the UIO output

Closed-loop UIO observation error

e[k + 1] = (I −MC)Ae[k]−L(ỹc[k]− ŷ)

= (I −MC)Ae[k]−L(Cx[k]−Cx̂)

= (I −MC)Ae[k]−LCe[k]

Let A1 = (I −MC)A, then we have

e[k + 1] = (A1 −LC)e[k]

Closed-loop UIO—use the observer gain L to control the
observation error dynamics
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Closed-Loop UIO

Compute M such that

(I −MC)B = O

The UIO

z[k + 1] = (I −MC) (Az[k] + AMỹc[k] + Buc[k])

+L(ỹc[k]− ŷ[k])

x̂[k] = z[k] + Mỹc[k]

where
ŷ[k] = Cx̂[k]
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Solving (I −MC)B = O for M

(I −MC)B = O ⇐⇒ MCB = B

MCB = B implies

rank(MCB) = rankB

On the other hand,

rank(MCB) ≤ rank(CB) ≤ rank(B)

Hence, a necessary and sufficient condition for solvability of
(I −MC)B = O is

rank(CB) = rank(B)
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Summary of UIO Construction

Theorem

Let A1 = (I −MC)A and T = PL. If

1 (I −MC)B = O,

2 there exists P = P> � 0 such that[
−P A>1 P −C>T>

PA1 − TC −P

]
≺ 0,

then the UIO exists
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Theorem Discussion

(A1 −LC) Schur stable ⇐⇒ there exists P = P> � 0 such that

(A1 −LC)>P (A1 −LC)− P ≺ 0

Substitute P = PP−1P into the Lyapunov matrix inequality to
obtain

(A1 −LC)>PP−1P (A1 −LC)− P ≺ 0

which is equivalent to the LMI condition of the Theorem by taking
the Schur complement
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Combined Estimator-UIO Design

1 Design an estimator ẽs[k] of es[k]
2 Design the UIO performing the following steps:

I Check if rank(CB) = rank(B) is satisfied. If the condition is not
satisfied, STOP

I Solve (I −MC)B = O to obtain

M = B
(
(CB)† + H0(Ip − (CB)(CB)†)

)
,

where the superscript † denotes the Moore-Penrose pseudo-inverse
and H0 is a design parameter matrix

I Solve for P and T
I If P = P> � 0, UIO exists
I Compute L1 = P−1T
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Numerical Example

Coupled mass-spring-damper system
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Modeling

State-space model:

x =


q1
q2
q̇1
q̇2

, Ac =


0 0 1 0
0 0 0 1
−2k
m

k
m

−c
m 0

k
m

−2k
m 0 −c

m

, Bc =


0
0
0
k
m

,
Cc =

[
1 0 0 0
0 1 0 0

]
Parameters: m = 5 kg, k = 5 N/m, and c = 10 N·s/m

Discretize: sampling time Ts = 0.1 s
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Discrete-Time (DT) Model of the Coupled
Mass-Spring-damper System

A =


0.9907 0.0047 0.0903 0.0002
0.0047 0.9907 0.0002 0.0903
−0.1805 0.0900 0.8100 0.0044
0.0900 −0.1805 0.0044 0.8100

,

B =


0

0.0047
0.0002
0.0903

, C =

[
1 0 0 0
0 1 0 0

]
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Computing the M and L Matrices of the UIO

M =


0 0
0 0
0 0.0033

0.0017 199.66

, L =


0.9936 0.0039
−0.0008 −0.0000
−0.1551 0.0581
−0.0159 −19.3226


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Simulation Parameters

Number of observations τ = 10 selected so that the condition of
the Lemma is satisfied, that is,

(τp− n) ≥ 2(is + ia)

Controller, uc[k] = −Kdx̂[k], where
Kd =

[
0.1381 0.2677 0.0651 0.3401

]
is the feedback gain

calculated using discrete-time LQR

Zero initial conditions on the plant input and its output, that is,
uc[−1] = · · · = uc[1− τ ] = 0 and yc[−1] = · · · = yc[1− τ ] = 0
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State estimates with 15% output transmission packet drops and 5% input

transmission packet drops
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Output recovery and output recovery errors with 15% output transmission

packet drops and 5% input transmission packet drops
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Recap
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Recap: Networked Control System (NCS) Security

Networked Control Systems depend on wireless communication—a
major challenge in the NCS design is their security

Actuators and sensor measurements exposed to malicious attacks
in communication networks

Methods of detecting sparse malicious packet drop attacks in the
communication networks proposed

Limitations of the proposed methods—malicious attacks assumed
to be sparse
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