

Secure State Estimation of Networked Systems Under Arbitrary Malicious Error Attacks

Stan Żak

School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47907
zak@purdue.edu

Acknowledgments

Results presented here were obtained in collaboration with

- Dr. Stefen Hui from San Diego State University and with ourformer Ph.D. students:
- Dr. Badriah Alenezi from Kuwait University, and
- Dr. Mukai Zhang from Purdue University

Outline

- Problem statement and motivation
- State estimation in the presence of bounded sensors and actuators' errors
- Unknown input observer (UIO) synthesis
- Stability of the observation error dynamics
- Unknown input estimators
- Output disturbance estimation

Problem Statement and Motivation

Networked Control System (NCS) Security

- Networked Control Systems depend on wireless communication-a major challenge in the NCS design is their security
- Actuators and sensor measurements exposed to malicious attacks in communication networks
- Methods of detecting sparse malicious packet drop attacks in the communication networks proposed
- Limitations of the previously presented methods-malicious attacks assumed to be sparse

Our Proposed Approach

Plant Model

$$
\begin{aligned}
\boldsymbol{x}[k+1] & =\boldsymbol{A} \boldsymbol{x}[k]+\boldsymbol{B}_{1} \boldsymbol{u}[k]+\boldsymbol{B}_{2} \boldsymbol{w}[k] \\
\boldsymbol{y}[k] & =\boldsymbol{C x}[k]+\boldsymbol{D} \boldsymbol{v}[k],
\end{aligned}
$$

where

- $\boldsymbol{A} \in \mathbb{R}^{n \times n}, \boldsymbol{B}_{1} \in \mathbb{R}^{n \times m_{1}}, \boldsymbol{B}_{2} \in \mathbb{R}^{n \times m_{2}}, \operatorname{rank} \boldsymbol{B}_{2}=m_{2}, \boldsymbol{C} \in \mathbb{R}^{p \times n}$,
$\boldsymbol{D} \in \mathbb{R}^{p \times r}$, and $\operatorname{rank} \boldsymbol{D}=r$
- Control input-u $[k] \in \mathbb{R}^{m_{1}}$
- Unknown input-w $[k] \in \mathbb{R}^{m_{2}}$
- Output disturbance- $\boldsymbol{v}[k] \in \mathbb{R}^{r}$
- $\boldsymbol{w}[k]$ and $\boldsymbol{v}[k]$ uniformly bounded as functions of k

Objectives

- Construct Unknown Input Observer (UIO) to estimate the plant state in the presence of unknown input $\boldsymbol{w}[k]$ and output disturbance $\boldsymbol{v}[k]$
- Estimate the unknown input and output disturbance

Unknown Input Observer (UIO) Synthesis

UIO Synthesis: Preliminaries

- Begin by representing $\boldsymbol{x}[k]$ as

$$
\begin{aligned}
\boldsymbol{x}[k] & =\boldsymbol{x}[k]-M C x[k]+M C x[k] \\
& =\left(I_{n}-M C\right) x[k]+M(y[k]-D v[k]) \\
& \left.=\left(I_{n}-M C\right) x[k]+M y[k]-M D v[k]\right)
\end{aligned}
$$

where

- $M \in \mathbb{R}^{n \times p}$ is to be determined
- Select M such that

$$
M D=O_{n \times r}
$$

where $\boldsymbol{O}_{n \times r}$ is an n-by- r matrix of zeros

- We obtain:

$$
\boldsymbol{x}[k]=\left(\boldsymbol{I}_{n}-\boldsymbol{M C} \boldsymbol{x} \boldsymbol{x}[k]+\boldsymbol{M} \boldsymbol{y}[k]\right.
$$

UIO Synthesis: Preliminaries

- Begin by representing $\boldsymbol{x}[k]$ as

$$
\begin{aligned}
\boldsymbol{x}[k] & =\boldsymbol{x}[k]-\boldsymbol{M C} \boldsymbol{x}[k]+\boldsymbol{M C} \boldsymbol{x}[k] \\
& =\left(I_{n}-M C\right) x[k]+M(y[k]-D v[k]) \\
& \left.=\left(I_{n}-M C\right) x[k]+M y[k]-M D v[k]\right)
\end{aligned}
$$

- $M \in \mathbb{R}^{n \times p}$ is to be determined
- Select M such that

$$
M D=O_{n \times r}
$$

where $\boldsymbol{O}_{n \times r}$ is an n-by- r matrix of zeros

- We obtain:

$$
\boldsymbol{x}[k]=\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{x}[k]+\boldsymbol{M} \boldsymbol{y}[k]
$$

UIO Synthesis: Preliminaries

- Begin by representing $\boldsymbol{x}[k]$ as

$$
\begin{aligned}
\boldsymbol{x}[k] & =\boldsymbol{x}[k]-\boldsymbol{M} \boldsymbol{C} \boldsymbol{x}[k]+\boldsymbol{M} \boldsymbol{C} \boldsymbol{x}[k] \\
& =\left(\boldsymbol{I}_{n}-\boldsymbol{M C} \boldsymbol{\boldsymbol { x }}[k]+\boldsymbol{M}(\boldsymbol{y}[k]-\boldsymbol{D} \boldsymbol{v}[k])\right. \\
& \left.=\left(I_{n}-M C\right) x[k]+M y[k]-M D v[k]\right)
\end{aligned}
$$

- $M \in \mathbb{R}^{n \times p}$ is to be determined
- Select M such that

$$
M D=O_{n \times r}
$$

where $\boldsymbol{O}_{n \times r}$ is an n-by- r matrix of zeros

- We obtain:

$$
\boldsymbol{x}[k]=\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{x}[k]+\boldsymbol{M} \boldsymbol{y}[k]
$$

UIO Synthesis: Preliminaries

- Begin by representing $\boldsymbol{x}[k]$ as

$$
\begin{aligned}
\boldsymbol{x}[k] & =\boldsymbol{x}[k]-\boldsymbol{M} \boldsymbol{C} \boldsymbol{x}[k]+\boldsymbol{M} \boldsymbol{C} \boldsymbol{x}[k] \\
& =\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{x}[k]+\boldsymbol{M}(\boldsymbol{y}[k]-\boldsymbol{D} \boldsymbol{v}[k]) \\
& =\left(\boldsymbol{I}_{n}-\boldsymbol{M C} \boldsymbol{\boldsymbol { x }}[k]+\boldsymbol{M} \boldsymbol{y}[k]-\boldsymbol{M} \boldsymbol{D} \boldsymbol{v}[k]\right)
\end{aligned}
$$

- $M \in \mathbb{R}^{n \times p}$ is to be determined
- Select M such that
where $\boldsymbol{O}_{n \times r}$ is an n-by- r matrix of zeros

$$
\boldsymbol{x}[k]=\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{x}[k]+\boldsymbol{M} \boldsymbol{y}[k]
$$

UIO Synthesis: Preliminaries

- Begin by representing $\boldsymbol{x}[k]$ as

$$
\begin{aligned}
\boldsymbol{x}[k] & =\boldsymbol{x}[k]-\boldsymbol{M} \boldsymbol{C} \boldsymbol{x}[k]+\boldsymbol{M} \boldsymbol{C} \boldsymbol{x}[k] \\
& =\left(\boldsymbol{I}_{n}-\boldsymbol{M C} \boldsymbol{\boldsymbol { x }}[k]+\boldsymbol{M}(\boldsymbol{y}[k]-\boldsymbol{D} \boldsymbol{v}[k])\right. \\
& =\left(\boldsymbol{I}_{n}-\boldsymbol{M C} \boldsymbol{\boldsymbol { x }}[k]+\boldsymbol{M} \boldsymbol{y}[k]-\boldsymbol{M} \boldsymbol{D} \boldsymbol{v}[k]\right)
\end{aligned}
$$

where

- $\boldsymbol{M} \in \mathbb{R}^{n \times p}$ is to be determined
- Select M such that
where $\boldsymbol{O}_{n \times r}$ is an n-by- r matrix of zeros

$$
\boldsymbol{x}[k]=\left(\boldsymbol{I}_{n}-\boldsymbol{M C} \boldsymbol{x} \boldsymbol{x}[k]+\boldsymbol{M} \boldsymbol{y}[k]\right.
$$

UIO Synthesis: Preliminaries

- Begin by representing $\boldsymbol{x}[k]$ as

$$
\begin{aligned}
\boldsymbol{x}[k] & =\boldsymbol{x}[k]-\boldsymbol{M} \boldsymbol{C} \boldsymbol{x}[k]+\boldsymbol{M} \boldsymbol{C} \boldsymbol{x}[k] \\
& =\left(\boldsymbol{I}_{n}-\boldsymbol{M C} \boldsymbol{\boldsymbol { x }}[k]+\boldsymbol{M}(\boldsymbol{y}[k]-\boldsymbol{D} \boldsymbol{v}[k])\right. \\
& =\left(\boldsymbol{I}_{n}-\boldsymbol{M C} \boldsymbol{\boldsymbol { x }}[k]+\boldsymbol{M} \boldsymbol{y}[k]-\boldsymbol{M} \boldsymbol{D} \boldsymbol{v}[k]\right)
\end{aligned}
$$

where

- $\boldsymbol{M} \in \mathbb{R}^{n \times p}$ is to be determined
- Select \boldsymbol{M} such that

$$
M D=O_{n \times r}
$$

where $\boldsymbol{O}_{n \times r}$ is an n-by- r matrix of zeros

$$
\boldsymbol{x}[k]=\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{x}[k]+\boldsymbol{M} \boldsymbol{y}[k]
$$

UIO Synthesis: Preliminaries

- Begin by representing $\boldsymbol{x}[k]$ as

$$
\begin{aligned}
\boldsymbol{x}[k] & =\boldsymbol{x}[k]-\boldsymbol{M} \boldsymbol{C} \boldsymbol{x}[k]+\boldsymbol{M} \boldsymbol{C} \boldsymbol{x}[k] \\
& =\left(\boldsymbol{I}_{n}-\boldsymbol{M C} \boldsymbol{\boldsymbol { x }}[k]+\boldsymbol{M}(\boldsymbol{y}[k]-\boldsymbol{D} \boldsymbol{v}[k])\right. \\
& =\left(\boldsymbol{I}_{n}-\boldsymbol{M C} \boldsymbol{\boldsymbol { x }}[k]+\boldsymbol{M} \boldsymbol{y}[k]-\boldsymbol{M} \boldsymbol{D} \boldsymbol{v}[k]\right)
\end{aligned}
$$

where

- $\boldsymbol{M} \in \mathbb{R}^{n \times p}$ is to be determined
- Select \boldsymbol{M} such that

$$
M D=O_{n \times r}
$$

where $\boldsymbol{O}_{n \times r}$ is an n-by- r matrix of zeros

- We obtain:

$$
\boldsymbol{x}[k]=\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{x}[k]+\boldsymbol{M} \boldsymbol{y}[k]
$$

Manipulations

- We have: $\boldsymbol{x}[k]=\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{x}[k]+\boldsymbol{M} \boldsymbol{y}[k]$
- Let $\boldsymbol{z}[k]=\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{x}[k]$
- Hence

$$
\boldsymbol{x}[k]=\boldsymbol{z}[k]+\boldsymbol{M} \boldsymbol{y}[k]
$$

- We will now show that an estimate of the state $\boldsymbol{x}[k]$ can be obtained from

$$
\hat{\boldsymbol{x}}[k]=\boldsymbol{z}[k]+\boldsymbol{M} \boldsymbol{y}[k]
$$

- The signal $\boldsymbol{z}[k]$ is obtained from

Manipulations

- We have: $\boldsymbol{x}[k]=\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{x}[k]+\boldsymbol{M} \boldsymbol{y}[k]$
- Let $\boldsymbol{z}[k]=\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{x}[k]$
- Hence

$$
\boldsymbol{x}[k]=\boldsymbol{z}[k]+\boldsymbol{M} \boldsymbol{y}[k]
$$

- We will now show that an estimate of the state $\boldsymbol{x}[k]$ can be obtained from

$$
\hat{\boldsymbol{x}}[k]=\boldsymbol{z}[k]+\boldsymbol{M} \boldsymbol{y}[k]
$$

- The signal $\boldsymbol{z}[k]$ is obtained from

$$
\boldsymbol{z}[k+1]=\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{x}[k+1]
$$

Manipulations-Contd.

- Substitute the state dynamics equation into

$$
\boldsymbol{z}[k+1]=\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{x}[k+1] \text { to obtain }
$$

$$
\boldsymbol{z}[k+1]=\left(\boldsymbol{I}_{n}-\boldsymbol{M} \boldsymbol{C}\right)\left(\boldsymbol{A} \boldsymbol{x}[k]+\boldsymbol{B}_{1} \boldsymbol{u}[k]+\boldsymbol{B}_{2} \boldsymbol{w}[k]\right)
$$

- Substitute $\boldsymbol{x}[k]=\boldsymbol{z}[k]+\boldsymbol{M} \boldsymbol{y}[k]$ into the above

$$
\begin{aligned}
\boldsymbol{z}[k+1]= & \left(\boldsymbol{I}_{n}-\boldsymbol{M} \boldsymbol{C}\right)\left(\boldsymbol{A} \boldsymbol{z}[k]+\boldsymbol{A} \boldsymbol{M} \boldsymbol{y}[k]+\boldsymbol{B}_{1} \boldsymbol{u}[k]\right) \\
& +\left(\boldsymbol{I}_{n}-\boldsymbol{M} \boldsymbol{C}\right) \boldsymbol{B}_{2} \boldsymbol{w}[k]
\end{aligned}
$$

- Select M so that

Manipulations-Contd.

- Substitute the state dynamics equation into

$$
\boldsymbol{z}[k+1]=\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{x}[k+1] \text { to obtain }
$$

$$
\boldsymbol{z}[k+1]=\left(\boldsymbol{I}_{n}-\boldsymbol{M} \boldsymbol{C}\right)\left(\boldsymbol{A} \boldsymbol{x}[k]+\boldsymbol{B}_{1} \boldsymbol{u}[k]+\boldsymbol{B}_{2} \boldsymbol{w}[k]\right)
$$

- Substitute $\boldsymbol{x}[k]=\boldsymbol{z}[k]+\boldsymbol{M} \boldsymbol{y}[k]$ into the above

$$
\begin{aligned}
\boldsymbol{z}[k+1]= & \left(\boldsymbol{I}_{n}-\boldsymbol{M} \boldsymbol{C}\right)\left(\boldsymbol{A} \boldsymbol{z}[k]+\boldsymbol{A} \boldsymbol{M} \boldsymbol{y}[k]+\boldsymbol{B}_{1} \boldsymbol{u}[k]\right) \\
& +\left(\boldsymbol{I}_{n}-\boldsymbol{M} \boldsymbol{C}\right) \boldsymbol{B}_{2} \boldsymbol{w}[k]
\end{aligned}
$$

- Select \boldsymbol{M} so that

$$
\left(\boldsymbol{I}_{n}-M C\right) \boldsymbol{B}_{2}=\boldsymbol{O}
$$

Open-Loop UIO

$$
\begin{aligned}
\boldsymbol{z}[k+1] & =\left(\boldsymbol{I}_{n}-\boldsymbol{M} \boldsymbol{C}\right)\left(\boldsymbol{A} \boldsymbol{z}[k]+\boldsymbol{A} \boldsymbol{M} \boldsymbol{y}[k]+\boldsymbol{B}_{1} \boldsymbol{u}[k]\right) \\
\hat{\boldsymbol{x}}[k] & =\boldsymbol{z}[k]+\boldsymbol{M} \boldsymbol{y}[k]
\end{aligned}
$$

- Observation error $\boldsymbol{e}[k]=\boldsymbol{x}[k]-\hat{\boldsymbol{x}}[k]$
- Observation error dynamics

$$
\boldsymbol{e}[k+1]=\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{A} \boldsymbol{e}[k]
$$

- Add innovation term - the closed-loop UIO

Synthesis of the Closed-Loop UIO

- Observation error dynamics of the open-loop UIO

$$
\begin{aligned}
\boldsymbol{e}[k+1] & =\left(\boldsymbol{I}_{n}-\boldsymbol{M} \boldsymbol{C}\right) \boldsymbol{A} \boldsymbol{e}[k] \\
& =\boldsymbol{A}_{1} \boldsymbol{e}[k]
\end{aligned}
$$

- Add $-\boldsymbol{L}(\boldsymbol{y}[k]-\hat{\boldsymbol{y}}[k])$, where $\boldsymbol{L} \in \mathbb{R}^{n \times p}$ and

$$
\hat{\boldsymbol{y}}[k]=\boldsymbol{C} \hat{\boldsymbol{x}}[k]=\boldsymbol{C}(\boldsymbol{z}[k]+\boldsymbol{M} \boldsymbol{y}[k])
$$

- Observation error dynamics of the closed-loop UIO

$$
\boldsymbol{e}[k+1]=\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right) \boldsymbol{e}[k]-\boldsymbol{L} \boldsymbol{D} \boldsymbol{v}[k]
$$

Closed-Loop UIO

- Observation error dynamics of the closed-loop UIO

$$
\boldsymbol{e}[k+1]=\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right) \boldsymbol{e}[k]-\boldsymbol{L} \boldsymbol{D} \boldsymbol{v}[k]
$$

- The closed-loop UIO

$$
\begin{aligned}
\boldsymbol{z}[k+1]= & \left(\boldsymbol{I}_{n}-\boldsymbol{M} \boldsymbol{C}\right)\left(\boldsymbol{A} \boldsymbol{z}[k]+\boldsymbol{A} \boldsymbol{M} \boldsymbol{y}[k]+\boldsymbol{B}_{1} \boldsymbol{u}[k]\right) \\
& +\boldsymbol{L}(\boldsymbol{y}[k]-\hat{\boldsymbol{y}}[k]) \\
\hat{\boldsymbol{x}}[k]= & \boldsymbol{z}[k]+\boldsymbol{M} \boldsymbol{y}[k]
\end{aligned}
$$

B. Alenezi, M. Zhang, S. Hui, and S. H. Żak, Simultaneous Estimation of the State, Unknown Input, and Output Disturbance in Discrete-Time Linear Systems, IEEE Transactions on Automatic Control, Date of Publication: 24 February 2021

UIO Synthesis: Solving for \boldsymbol{M}

Theorem

There exists a solution \boldsymbol{M} to

$$
\begin{aligned}
\left(\boldsymbol{I}_{n}-M C\right) \boldsymbol{B}_{2} & =\boldsymbol{O}_{n \times m_{2}} \\
\boldsymbol{M D} & =\boldsymbol{O}_{n \times r}
\end{aligned}
$$

if and only if

$$
\operatorname{rank}\left[\begin{array}{cc}
\boldsymbol{C B}_{2} & \boldsymbol{D} \\
\boldsymbol{B}_{2} & \boldsymbol{O}_{n \times r}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{ll}
\boldsymbol{C B}_{2} & \boldsymbol{D}
\end{array}\right]
$$

Solving for \boldsymbol{M}-Proof of Theorem

- Represent

$$
\begin{aligned}
\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{B}_{2} & =\boldsymbol{O}_{n \times m_{2}} \\
\boldsymbol{M} \boldsymbol{D} & =\boldsymbol{O}_{n \times r}
\end{aligned}
$$

as

$$
\boldsymbol{M}\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{B}_{2} & \boldsymbol{O}_{n \times r}
\end{array}\right]
$$

- A necessary and sufficient condition (NASC) for \boldsymbol{M} to solve the above matrix equation is that the space spanned by the rows of the matrix $\left[\begin{array}{ll}B_{2} & O_{n \times r}\end{array}\right]$ is in the range of the space spanned by the rows of the matrix $\left[\begin{array}{ll}\boldsymbol{C B}_{2} & \boldsymbol{D}\end{array}\right]$
- This is equivalent to

Solving for \boldsymbol{M}-Proof of Theorem

- Represent

$$
\begin{aligned}
\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{B}_{2} & =\boldsymbol{O}_{n \times m_{2}} \\
\boldsymbol{M} \boldsymbol{D} & =\boldsymbol{O}_{n \times r}
\end{aligned}
$$

as

$$
\boldsymbol{M}\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{B}_{2} & \boldsymbol{O}_{n \times r}
\end{array}\right]
$$

- A necessary and sufficient condition (NASC) for M to solve the above matrix equation is that the space spanned by the rows of the matrix $\left[\begin{array}{ll}B_{2} & O_{n \times r}\end{array}\right]$ is in the range of the space spanned by the rows of the matrix $\left[\begin{array}{ll}\boldsymbol{C B} & \boldsymbol{D}\end{array}\right]$
- This is equivalent to

Solving for \boldsymbol{M}-Proof of Theorem

- Represent

$$
\begin{aligned}
\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{B}_{2} & =\boldsymbol{O}_{n \times m_{2}} \\
\boldsymbol{M} \boldsymbol{D} & =\boldsymbol{O}_{n \times r}
\end{aligned}
$$

as

$$
\boldsymbol{M}\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{B}_{2} & \boldsymbol{O}_{n \times r}
\end{array}\right]
$$

- A necessary and sufficient condition (NASC) for \boldsymbol{M} to solve the above matrix equation is that the space spanned by the rows of the matrix $\left[\begin{array}{ll}\boldsymbol{B}_{2} & \boldsymbol{O}_{n \times r}\end{array}\right]$ is in the range of the space spanned by the rows of the matrix $\left[\begin{array}{ll}\boldsymbol{C B}_{2} & \boldsymbol{D}\end{array}\right]$
- This is equivalent to

Solving for \boldsymbol{M}-Proof of Theorem

- Represent

$$
\begin{aligned}
\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{B}_{2} & =\boldsymbol{O}_{n \times m_{2}} \\
\boldsymbol{M} \boldsymbol{D} & =\boldsymbol{O}_{n \times r}
\end{aligned}
$$

as

$$
\boldsymbol{M}\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{B}_{2} & \boldsymbol{O}_{n \times r}
\end{array}\right]
$$

- A necessary and sufficient condition (NASC) for \boldsymbol{M} to solve the above matrix equation is that the space spanned by the rows of the matrix $\left[\begin{array}{ll}\boldsymbol{B}_{2} & \boldsymbol{O}_{n \times r}\end{array}\right]$ is in the range of the space spanned by the rows of the matrix $\left[\begin{array}{ll}\boldsymbol{C B}_{2} & \boldsymbol{D}\end{array}\right]$
- This is equivalent to

$$
\operatorname{rank}\left[\begin{array}{cc}
\boldsymbol{C B}_{2} & \boldsymbol{D} \\
\boldsymbol{B}_{2} & \boldsymbol{O}_{n \times r}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]
$$

Solving for \boldsymbol{M}-Another NASC

Theorem

There exists a solution \boldsymbol{M} to

$$
\boldsymbol{M}\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{B}_{2} & \boldsymbol{O}_{n \times r}
\end{array}\right]
$$

if and only if

$$
\operatorname{rank}\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]=\operatorname{rank}\left(\boldsymbol{B}_{2}\right)+\operatorname{rank}(\boldsymbol{D})
$$

We have

$$
\operatorname{rank}\left[\begin{array}{ll}
\boldsymbol{C B} & \boldsymbol{D}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
\boldsymbol{C B}_{2} & \boldsymbol{D} \\
\boldsymbol{B}_{2} & \boldsymbol{O}
\end{array}\right]
$$

Solving for \boldsymbol{M}-Another NASC

Theorem

There exists a solution \boldsymbol{M} to

$$
\boldsymbol{M}\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{B}_{2} & \boldsymbol{O}_{n \times r}
\end{array}\right]
$$

if and only if

$$
\operatorname{rank}\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]=\operatorname{rank}\left(\boldsymbol{B}_{2}\right)+\operatorname{rank}(\boldsymbol{D})
$$

We have

$$
\begin{aligned}
& \operatorname{rank}\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
\boldsymbol{C B}_{2} & \boldsymbol{D} \\
\boldsymbol{B}_{2} & \boldsymbol{O}
\end{array}\right] \\
& =\operatorname{rank}\left(\left[\begin{array}{cc}
\boldsymbol{I}_{p} & -\boldsymbol{C} \\
\boldsymbol{O} & \boldsymbol{I}_{n}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D} \\
\boldsymbol{B}_{2} & \boldsymbol{O}
\end{array}\right]\right) \\
& =\operatorname{rank}\left[\begin{array}{cc}
\boldsymbol{O} & \boldsymbol{D} \\
\boldsymbol{B}_{2} & \boldsymbol{O}
\end{array}\right]=\operatorname{rank}\left(\boldsymbol{B}_{2}\right)+\operatorname{rank}(\boldsymbol{D})
\end{aligned}
$$

A Formula to Compute \boldsymbol{M}

- Represent

$$
\begin{aligned}
\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{B}_{2} & =\boldsymbol{O}_{n \times m_{2}} \\
\boldsymbol{M} \boldsymbol{D} & =\boldsymbol{O}_{n \times r}
\end{aligned}
$$

as

$$
\boldsymbol{M}\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{B}_{2} & \boldsymbol{O}_{n \times r}
\end{array}\right]
$$

- If $\operatorname{rank}\left[\begin{array}{ll}\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}\end{array}\right]=\operatorname{rank}\left(\boldsymbol{B}_{2}\right)+\operatorname{rank}(\boldsymbol{D})$ then

$$
\left[\begin{array}{ll}
\boldsymbol{C B} & \boldsymbol{D}
\end{array}\right]
$$

has full column rank and therefore it is left invertible

Computing M-Contd.

- We are solving

$$
\boldsymbol{M}\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{B}_{2} & \boldsymbol{O}_{n \times r}
\end{array}\right]
$$

- We obtain

$$
\boldsymbol{M}=\left[\begin{array}{ll}
\boldsymbol{B}_{2} & \boldsymbol{O}_{n \times r}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]^{\dagger}
$$

- A general class of solutions

$$
\begin{aligned}
\boldsymbol{M}= & {\left[\begin{array}{ll}
\boldsymbol{B}_{2} & \boldsymbol{O}_{n \times r}
\end{array}\right]\left(\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]^{\dagger}\right.} \\
& \left.+\boldsymbol{H}_{0}\left(\boldsymbol{I}_{p}-\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]^{\dagger}\right)\right)
\end{aligned}
$$

where $\boldsymbol{H}_{0} \in \mathbb{R}^{\left(m_{2}+r\right) \times p}$ is a design parameter matrix

More on the Synthesis of the UIO

- Proposed UIO

$$
\begin{aligned}
\boldsymbol{z}[k+1]= & \left(\boldsymbol{I}_{n}-\boldsymbol{M} \boldsymbol{C}\right)\left(\boldsymbol{A} \boldsymbol{z}[k]+\boldsymbol{A} \boldsymbol{M} \boldsymbol{y}[k]+\boldsymbol{B}_{1} \boldsymbol{u}[k]\right) \\
& +\boldsymbol{L}(\boldsymbol{y}[k]-\hat{\boldsymbol{y}}[k]) \\
\hat{\boldsymbol{x}}[k]= & \boldsymbol{z}[k]+\boldsymbol{M} \boldsymbol{y}[k]
\end{aligned}
$$

- Observation error dynamics:

$$
\boldsymbol{e}[k+1]=\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right) \boldsymbol{e}[k]-\boldsymbol{L} \boldsymbol{D} \boldsymbol{v}[k]
$$

where $\boldsymbol{A}_{1}=\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{A}$
B. Alenezi, M. Zhang, S. Hui, and S. H. Żak, Simultaneous Estimation of the State, Unknown Input, and Output Disturbance in Discrete-Time Linear Systems, IEEE Transactions on Automatic Control, Date of Publication: 24 February 2021

More on the Synthesis of the UIO - Contd.

- Observation error dynamics:

$$
\boldsymbol{e}[k+1]=\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right) \boldsymbol{e}[k]-\boldsymbol{L} \boldsymbol{D} \boldsymbol{v}[k]
$$

where $\boldsymbol{A}_{1}=\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{A}$

- Note that if an \boldsymbol{L} exists such that $\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right)$ is Schur stable and

$$
L D=O
$$

then the error dynamics become

$$
\boldsymbol{e}[k+1]=\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right) \boldsymbol{e}[k]
$$

UIO Synthesis—Example 1

System model matrices

$$
\begin{aligned}
\boldsymbol{A} & =\left[\begin{array}{ccc}
0.5 & 0 & 0 \\
0 & 0.5 & 0 \\
0 & 0 & 0.5
\end{array}\right] \quad \boldsymbol{B}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \\
\boldsymbol{C} & =\left[\begin{array}{lll}
0 & 2 & 1 \\
1 & 0 & 0
\end{array}\right], \boldsymbol{D}=\left[\begin{array}{c}
0 \\
0.2
\end{array}\right]
\end{aligned}
$$

- The matrix rank condition satisfied
- Solve for $\boldsymbol{M}=\left[\begin{array}{cc}0.5 & 0 \\ 0.5 & 0 \\ 0 & 0\end{array}\right]$
- Construct

$$
\boldsymbol{A}_{1}=\left(\boldsymbol{I}_{3}-\boldsymbol{M C}\right) \boldsymbol{A}=\left[\begin{array}{ccc}
0.5 & -0.5 & -0.25 \\
0 & 0 & -0.25 \\
0 & 0 & 0.5
\end{array}\right]
$$

Example 1 Contd.

- Can we find an \boldsymbol{L} such that $\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right)$ is Schur stable and

$$
L D=O
$$

so that the error dynamics would become

$$
\boldsymbol{e}[k+1]=\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right) \boldsymbol{e}[k] ?
$$

- Used cvx to obtain $\boldsymbol{L}=\left[\begin{array}{cc}-0.25 & 0 \\ -0.05 & 0 \\ 0.10 & 0\end{array}\right]$
- Eigenvalues of $\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right)$ at

$$
0.5, \quad 0.0,0.5
$$

UIO Synthesis—Example 2

System model matrices

$$
\begin{aligned}
\boldsymbol{A} & =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -0.3
\end{array}\right] \boldsymbol{B}_{2}=\left[\begin{array}{l}
-2 \\
-3 \\
-4
\end{array}\right], \\
\boldsymbol{C} & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \boldsymbol{D}=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
\end{aligned}
$$

- The matrix rank condition satisfied
- Solve for $\boldsymbol{M}=\left[\begin{array}{ll}-2 & 2 \\ -3 & 3 \\ -4 & 4\end{array}\right]$
- Construct

$$
\boldsymbol{A}_{1}=\left(\boldsymbol{I}_{3}-\boldsymbol{M} \boldsymbol{C}\right) \boldsymbol{A}=\left[\begin{array}{ccc}
-3 & 4 & 0 \\
-3 & 4 & 0 \\
-4 & 8 & -0.3
\end{array}\right]
$$

Example 2 Contd.

- Can we find an \boldsymbol{L} such that $\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right)$ is Schur stable and

$$
L D=O
$$

so that the error dynamics would become

- Used cvx to obtain $\boldsymbol{L}=\left[\begin{array}{cc}-3.4974 & 3.4974 \\ -3.4936 & 3.4936 \\ -5.9137 & 5.9137\end{array}\right]$
- Eigenvalues of $\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right)$ at

$$
0.3000,1.0000,0.0038
$$

- No such luck in this example

Conclusions from the examples

- In general it may not be possible find an \boldsymbol{L} such that $\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right)$ is Schur stable and

$$
L D=O
$$

so that the error dynamics would become

$$
\boldsymbol{e}[k+1]=\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right) \boldsymbol{e}[k]
$$

- We thus need to analyze the error dynamics

$$
\boldsymbol{e}[k+1]=\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right) \boldsymbol{e}[k]-\boldsymbol{L} \boldsymbol{D} \boldsymbol{v}[k]
$$

Stability of the Observation Error Dynamics

$l_{\infty \text {-stability with performance level (p.l.) } \gamma}$

- Recall the observation error dynamics of the closed-loop UIO

$$
\boldsymbol{e}[k+1]=\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right) \boldsymbol{e}[k]-\boldsymbol{L} \boldsymbol{D} \boldsymbol{v}[k]
$$

Notation

- For any vector $\boldsymbol{v} \in \mathbb{R}^{n}$, denote $\|\boldsymbol{v}\|=\sqrt{\boldsymbol{v}^{\top} \boldsymbol{v}}$
- For a sequence of vectors $\boldsymbol{v}_{k=k_{0}}^{\infty}$, denote

$$
\|\boldsymbol{v}\|_{\infty} \triangleq \sup _{k \geq k_{0}}\left\|\boldsymbol{v}_{k}\right\|
$$

B. Alenezi, M. Zhang, S. Hui, and S. H. Żak, Simultaneous Estimation of the State, Unknown Input, and Output Disturbance in Discrete-Time Linear Systems, IEEE Transactions on Automatic Control, Date of Publication: 24 February 2021

The system $\boldsymbol{e}[k+1]=\boldsymbol{f}(k, \boldsymbol{e}[k], \boldsymbol{v}[k])$ is globally uniformly l_{∞}-stable with performance level γ if
(1) $\boldsymbol{e}[k+1]=\boldsymbol{f}(k, \boldsymbol{e}[k], \mathbf{0})$ globally uniformly exponentially stable with respect to the origin
(3) for $e\left[k_{0}\right]=0$, and every bounded unknown input $v[k]$,
(3) for any $\boldsymbol{e}\left[k_{0}\right]=\boldsymbol{e}_{0}$ and $\boldsymbol{v}[\cdot]$,

l_{∞}-stability definition

The system $\boldsymbol{e}[k+1]=\boldsymbol{f}(k, \boldsymbol{e}[k], \boldsymbol{v}[k])$ is globally uniformly l_{∞}-stable with performance level γ if
(1) $\boldsymbol{e}[k+1]=\boldsymbol{f}(k, \boldsymbol{e}[k], \mathbf{0})$ globally uniformly exponentially stable with respect to the origin
(2) for $\boldsymbol{e}\left[k_{0}\right]=\mathbf{0}$, and every bounded unknown input $\boldsymbol{v}[k]$, $\|\boldsymbol{e}[k]\| \leq \gamma\|\boldsymbol{v}[k]\|_{\infty} \forall k \geq k_{0}$
(3) for any $e\left[k_{0}\right]=e_{0}$ and $v[\cdot]$,

l_{∞}-stability definition

The system $\boldsymbol{e}[k+1]=\boldsymbol{f}(k, \boldsymbol{e}[k], \boldsymbol{v}[k])$ is globally uniformly l_{∞}-stable with performance level γ if
(1) $\boldsymbol{e}[k+1]=\boldsymbol{f}(k, \boldsymbol{e}[k], \mathbf{0})$ globally uniformly exponentially stable with respect to the origin
(2) for $\boldsymbol{e}\left[k_{0}\right]=\mathbf{0}$, and every bounded unknown input $\boldsymbol{v}[k]$,

$$
\|\boldsymbol{e}[k]\| \leq \gamma\|\boldsymbol{v}[k]\|_{\infty} \quad \forall k \geq k_{0}
$$

(3) for any $\boldsymbol{e}\left[k_{0}\right]=\boldsymbol{e}_{0}$ and $\boldsymbol{v}[\cdot]$,

$$
\limsup _{k \rightarrow \infty}\|\boldsymbol{e}[k]\| \leq \gamma\|\boldsymbol{v}[k]\|_{\infty}
$$

A. Chakrabarty, S. H. Żak, and S. Sundaram, State and unknown input observers for discrete-time nonlinear systems, 2016 IEEE 55th CDC, Las Vegas, Dec 12-14, 2016, pp. 7111-7116

Sufficient condition for l_{∞}-stability

Lemma

Suppose that for $\boldsymbol{e}[k+1]=\boldsymbol{f}(k, \boldsymbol{e}[k], \boldsymbol{v}[k])$, there exists $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and scalars $\delta \in(0,1), \beta_{1}, \beta_{2}>0$ and $\mu_{1}, \mu_{2} \geq 0$ such that

$$
\beta_{1}\|\boldsymbol{e}[k]\|^{2} \leq V(\boldsymbol{e}[k]) \leq \beta_{2}\|\boldsymbol{e}[k]\|^{2}
$$

and

$$
\begin{aligned}
\Delta V[k] & \leq-\delta\left(V(\boldsymbol{e}[k])-\mu_{1}\|\boldsymbol{v}[k]\|^{2}\right) \\
\|\boldsymbol{e}[k]\|^{2} & \leq \mu_{2} V(\boldsymbol{e}[k])
\end{aligned}
$$

for all $k \geq 0$, where $\Delta V[k]=V(\boldsymbol{e}[k+1])-V(\boldsymbol{e}[k])$. Then, the error system is globally uniformly l_{∞}-stable with performance level $\gamma=\sqrt{\mu_{1} \mu_{2}}$ with respect to the disturbance input sequence $\boldsymbol{v}[k]$

Proof of the sufficient condition

- Expand $\Delta V[k] \leq-\delta\left(V(\boldsymbol{e}[k])-\mu_{1}\|\boldsymbol{v}[k]\|^{2}\right)$
- Use $\Delta V[k]=V(\boldsymbol{e}[k+1])-V(\boldsymbol{e}[k])$ to obtain

$$
V(\boldsymbol{e}[k+1]) \leq(1-\delta) V(\boldsymbol{e}[k])+\delta \mu_{1}\|\boldsymbol{v}[k]\|^{2}
$$

- Hence

$$
\begin{aligned}
V(\boldsymbol{e}[k]) & \leq(1-\delta)^{k} V(\boldsymbol{e}[0])+\delta \mu_{1} \sum_{j=0}^{k-1}\|\boldsymbol{v}[k]\|^{2} \\
& \leq(1-\delta)^{k} V(\boldsymbol{e}[0])+\mu_{1}\|\boldsymbol{v}\|_{\infty}^{2}
\end{aligned}
$$

for any $k \geq 0$ since $0<\delta<1$

Proof of the sufficient condition-Contd.

- We have $V(\boldsymbol{e}[k]) \leq(1-\delta)^{k} V(\boldsymbol{e}[0])+\mu_{1}\|\boldsymbol{v}\|_{\infty}^{2}$
- Hence

$$
\begin{aligned}
\|\boldsymbol{e}[k]\|^{2} & \leq \mu_{2} V(\boldsymbol{e}[k]) \\
& \leq \mu_{2}(1-\delta)^{k} V(\boldsymbol{e}[0])+\mu_{1} \mu_{2}\|\boldsymbol{v}\|_{\infty}^{2}
\end{aligned}
$$

- This implies

$$
\limsup _{k \rightarrow \infty}\|\boldsymbol{e}[k]\|^{2} \leq \mu_{1} \mu_{2}\|\boldsymbol{v}\|_{\infty}^{2}
$$

- In sum, the error dynamics are l_{∞}-stable with performance level

$$
\gamma=\sqrt{\mu_{1} \mu_{2}}
$$

Stability of the error dynamics

Recall the observation error dynamics of the closed-loop UIO

$$
\boldsymbol{e}[k+1]=\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right) \boldsymbol{e}[k]-\boldsymbol{L} \boldsymbol{D} \boldsymbol{v}[k]
$$

Theorem

The observation error dynamics are globally uniformly l_{∞}-stable with performance level γ if $\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right)$ is Schur stable and either of the conditions of the definition of the l_{∞}-stability is satisfied

In sum: We proved stability of the error dynamics lemma that we will use next

Observation error: $\boldsymbol{e}[k+1]=\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right) \boldsymbol{e}[k]-\boldsymbol{L} \boldsymbol{D} \boldsymbol{v}[k]$

Lemma

Suppose there exists a function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and scalars $\delta \in(0,1)$, $\beta_{1}, \beta_{2}>0$ and $\mu_{1}, \mu_{2} \geq 0$ such that

$$
\beta_{1}\|\boldsymbol{e}[k]\|^{2} \leq V(\boldsymbol{e}[k]) \leq \beta_{2}\|\boldsymbol{e}[k]\|^{2},
$$

$$
\Delta V[k] \leq-\delta\left(V(\boldsymbol{e}[k])-\mu_{1}\|\boldsymbol{v}[k]\|^{2}\right), \quad\|\boldsymbol{e}[k]\|^{2} \leq \mu_{2} V(\boldsymbol{e}[k])
$$

for all $k \geq 0$. Then, the observation error is globally uniformly l_{∞}-stable with performance level $\gamma=\sqrt{\mu_{1} \mu_{2}}$ with respect to the output disturbance $\boldsymbol{v}[k]$

Observation error stability test

$\boldsymbol{e}[k+1]=\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right) \boldsymbol{e}[k]-\boldsymbol{L} \boldsymbol{D} \boldsymbol{v}[k]:=\boldsymbol{E} \boldsymbol{e}[k]+\boldsymbol{N} \boldsymbol{v}[k]$

Theorem

If there exist matrices $\boldsymbol{P}=\boldsymbol{P}^{\top} \succ 0$ and \boldsymbol{L}, and $\alpha \in(0,1)$ such that

$$
\left[\begin{array}{cc}
\boldsymbol{E}^{\top} \boldsymbol{P} \boldsymbol{E}-(1-\alpha) \boldsymbol{P} & * \\
\boldsymbol{N}^{\top} \boldsymbol{P} \boldsymbol{E} & \boldsymbol{N}^{\top} \boldsymbol{P} \boldsymbol{N}-\alpha \boldsymbol{I}
\end{array}\right] \preceq 0
$$

then the state observation error is l_{∞}-stable with performance level $\gamma=1 / \sqrt{\lambda_{\text {min }}(\boldsymbol{P})}$

Error stability test proof

- Since $P=P^{\top} \succ 0$, conditions of the lemma are satisfied with $\beta_{1}=\lambda_{\text {min }}(P), \beta_{2}=\lambda_{\max }(P)$, and $\mu_{2}=1 / \lambda_{\text {min }}(P)$
- Let $V[k]=\boldsymbol{e}[k]^{\top} \boldsymbol{P e}[k]$ be a Lyapunov function candidate for the estimation error dynamics
- Evaluate the first forward difference $\Delta V[k]=V[k+1]-V[k]$ on the trajectories of the error dynamics

$$
\begin{aligned}
\Delta V[k]= & \boldsymbol{e}[k]^{\top}\left(\boldsymbol{E}^{\top} \boldsymbol{P} \boldsymbol{E}-\boldsymbol{P}\right) \boldsymbol{e}[k]+2 \boldsymbol{e}[k]^{\top} \boldsymbol{E}^{\top} \boldsymbol{P} \boldsymbol{N} \boldsymbol{v}[k] \\
& +\boldsymbol{v}[k]^{\top} \boldsymbol{N}^{\top} \boldsymbol{P} \boldsymbol{N} \boldsymbol{v}[k]
\end{aligned}
$$

- Let $\boldsymbol{\zeta}=\left[\begin{array}{ll}\boldsymbol{e}[k]^{\top} & \boldsymbol{v}[k]^{\top}\end{array}\right]^{\top}$
- Pre-multiplying and post-multiplying the "big" matrix inequality by $\boldsymbol{\zeta}^{\top}$ and $\boldsymbol{\zeta}$, respectively, gives

$$
\Delta V[k]+\alpha\left(V[k]-\|\boldsymbol{v}[k]\|^{2}\right) \preceq 0
$$

Error stability test proof-Contd.

- Condition of the lemma holds with $\mu_{1}=1$
- The observer error satisfies

$$
\limsup _{k \rightarrow \infty}\|e[k]\| \leq \gamma \limsup _{k \rightarrow \infty}\|v[k]\|_{\infty}
$$

where

$$
\gamma=1 / \sqrt{\lambda_{\min }(P)}
$$

- In summary, the state error dynamics are ℓ_{∞}-stable with performance level γ

From matrix inequality to an LMI

- Let $\boldsymbol{Z}=\boldsymbol{P L}$, then solving the "big" matrix inequality is equivalent to solving the LMI

$$
\left[\begin{array}{cc}
-\boldsymbol{P} & * \\
\boldsymbol{\Omega}_{21} & \boldsymbol{\Omega}_{22}
\end{array}\right] \preceq 0
$$

for \boldsymbol{P} and \boldsymbol{Z}, where

$$
\boldsymbol{\Omega}_{21}^{\top}=\left[\begin{array}{ll}
P A_{1}-Z C & -Z D
\end{array}\right]
$$

and

$$
\boldsymbol{\Omega}_{\mathbf{2 2}}=\left[\begin{array}{cc}
-(1-\alpha) \boldsymbol{P} & \boldsymbol{O}_{n \times m_{2}} \\
\boldsymbol{O}_{m_{2} \times n} & -\alpha \boldsymbol{I}
\end{array}\right]
$$

- Take the Schur complement

$$
\boldsymbol{\Omega}_{\mathbf{2 2}}+\boldsymbol{\Omega}_{\mathbf{2 1}} \boldsymbol{P}^{-1} \boldsymbol{\Omega}_{\mathbf{2 1}}^{\top} \preceq 0
$$

which yields the "big" matrix inequality

Sufficient condition for UIO existence

Theorem

The UIO exists if
(1) there exists \boldsymbol{M} such that

$$
\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right) \boldsymbol{B}_{2}=\boldsymbol{O}_{n \times m_{2}} \quad \text { and } \quad \boldsymbol{M} \boldsymbol{D}=\boldsymbol{O}_{n \times r}
$$

(2) the pair $\left(\boldsymbol{A}_{1}, \boldsymbol{C}\right)$ is detectable

If $\left(\boldsymbol{A}_{1}, \boldsymbol{C}\right)$ detectable, then we can find the observer gain matrix \boldsymbol{L} such that $\left(\boldsymbol{A}_{1}-\boldsymbol{L} \boldsymbol{C}\right)$ is Schur stable

Interpretation of the UIO Conditions

Lemma

If the pair $((\boldsymbol{I}-\boldsymbol{M C}) \boldsymbol{A}, \boldsymbol{M C}):=\left(\boldsymbol{A}_{1}, \boldsymbol{M C}\right)$ is detectable, then the pair $\left(\boldsymbol{A}_{1}, \boldsymbol{C}\right)$ is detectable

Proof by contraposition

- Suppose $\left(\boldsymbol{A}_{1}, \boldsymbol{C}\right)$ is non-detectable
- Then there exists an eigenvalue $\left|z_{1}\right| \geq 1$, which is an unobservable mode of the pair $\left(\boldsymbol{A}_{1}, \boldsymbol{C}\right)$ such that

$$
\operatorname{rank}\left[\begin{array}{c}
z_{1} \boldsymbol{I}-\boldsymbol{A}_{1} \\
\boldsymbol{C}
\end{array}\right]<n
$$

Lemma proof-Contd.

- There exists a vector $\boldsymbol{v}_{1} \in \mathbb{C}^{n}$ such that

$$
\operatorname{rank}\left[\begin{array}{c}
z_{1} \boldsymbol{I}-\boldsymbol{A}_{1} \\
\boldsymbol{C}
\end{array}\right] \boldsymbol{v}_{1}=\mathbf{0}
$$

- Thus $\boldsymbol{C} \boldsymbol{v}_{1}=\mathbf{0}$
- Pre-multiply the above by \boldsymbol{M} to obtain $\boldsymbol{M C \boldsymbol { v } _ { 1 }}=\mathbf{0}$
- Therefore rank $\left[\begin{array}{c}z_{1} \boldsymbol{I}-\boldsymbol{A}_{1} \\ \boldsymbol{C}\end{array}\right]<n$
- Thus, z_{1} also corresponds to a non-detectable mode of the pair $\left(\boldsymbol{A}_{1}, \boldsymbol{M C}\right)$, that is, the pair $\left(\boldsymbol{A}_{1}, \boldsymbol{M C}\right)$ is non-detectable

Another lemma

Lemma

If

- $\operatorname{rank}\left(\boldsymbol{C B}_{2}\right)=\operatorname{rank}\left(\boldsymbol{B}_{2}\right)=m_{2}$
- $\operatorname{rank}\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right)=n-m_{2}$,
then, the following are equivalent:
(1) $\left(\boldsymbol{A}_{1}, \boldsymbol{M C}\right)$ is detectable
(2) $\operatorname{rank}\left[\begin{array}{c}z\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right)-\boldsymbol{A}_{1} \\ \boldsymbol{M} \boldsymbol{C}\end{array}\right]=n$ for all $|z| \geq 1$
(3) $\operatorname{rank}\left[\begin{array}{cc}z \boldsymbol{I}_{n}-\boldsymbol{A} & -\boldsymbol{B}_{2} \\ \boldsymbol{M} \boldsymbol{C} & \boldsymbol{O}_{n \times m_{2}}\end{array}\right]=n+m_{2}$ for all $|z| \geq 1$

Proof of the second lemma

- First, we prove that conditions 1 and 2 are equivalent
- $\left(\boldsymbol{A}_{1}, \boldsymbol{M C}\right)$ being detectable is equivalent to

$$
\operatorname{rank}\left[\begin{array}{c}
z \boldsymbol{I}_{n}-\boldsymbol{A}_{1} \\
\boldsymbol{M C}
\end{array}\right]=n \text { for all }|z| \geq 1
$$

- This is equivalent to

$$
\begin{aligned}
& \operatorname{rank}\left(\left[\begin{array}{cc}
\boldsymbol{I}_{n} & -z \boldsymbol{I}_{n} \\
\boldsymbol{O} & \boldsymbol{I}_{n}
\end{array}\right]\left[\begin{array}{c}
z \boldsymbol{I}_{n}-\boldsymbol{A}_{1} \\
\boldsymbol{M} \boldsymbol{C}
\end{array}\right]\right) \\
& =\operatorname{rank}\left[\begin{array}{c}
z\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right)-\boldsymbol{A}_{1} \\
\boldsymbol{M} \boldsymbol{C}
\end{array}\right] \text { for all }|z| \geq 1
\end{aligned}
$$

- Thus conditions 1 and 2 are equivalent

Proof of the second lemma-Contd.

- We will show that conditions 2 and 3 are equivalent
- Since \boldsymbol{B}_{2} has full column rank, it is left invertible
- Take, for example, $\boldsymbol{B}_{2}{ }^{\dagger} \boldsymbol{B}_{2}=\boldsymbol{I}_{m_{2}}$
- Then, $\operatorname{ker}\left(\boldsymbol{B}_{2}{ }^{\dagger}\right) \cap \operatorname{ker}\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right)=\{\mathbf{0}\}$ and

$$
\operatorname{rank}\left[\begin{array}{c}
\boldsymbol{I}_{n}-\boldsymbol{M C} \\
\boldsymbol{B}_{2}^{\dagger}
\end{array}\right]=n
$$

Let

$$
\boldsymbol{S}=\left[\begin{array}{cc}
\boldsymbol{I}_{n}-\boldsymbol{M C}_{\boldsymbol{C}} & \boldsymbol{O}_{n \times p} \\
\boldsymbol{B}_{2}^{\dagger} & \boldsymbol{O}_{m_{2} \times p} \\
\boldsymbol{O}_{p \times n} & \boldsymbol{I}_{p}
\end{array}\right], \quad \boldsymbol{T}=\left[\begin{array}{cc}
\boldsymbol{I}_{n} & \boldsymbol{O}_{n \times m_{2}} \\
-\left(z \boldsymbol{B}_{2}^{\dagger}-\boldsymbol{B}_{2}^{\dagger} \boldsymbol{A}\right) & \boldsymbol{I}_{m_{2}}
\end{array}\right]
$$

where $\boldsymbol{S} \in \mathbb{R}^{\left(n+p+m_{2}\right) \times(n+p)}, \boldsymbol{T} \in \mathbb{R}^{\left(n+m_{2}\right) \times\left(n+m_{2}\right)}$, and $\operatorname{rank}(\boldsymbol{S})=n+p$

Conditions 2 and 3 equivalent

We have

$$
\begin{aligned}
& \operatorname{rank}\left[\begin{array}{cc}
z \boldsymbol{I}_{n}-\boldsymbol{A} & -\boldsymbol{B}_{2} \\
\boldsymbol{M} \boldsymbol{C} & \boldsymbol{O}
\end{array}\right]=\operatorname{rank}\left(\boldsymbol{S}\left[\begin{array}{cc}
z \boldsymbol{I}_{n}-\boldsymbol{A} & -\boldsymbol{B}_{2} \\
\boldsymbol{M} \boldsymbol{C} & \boldsymbol{O}
\end{array}\right] \boldsymbol{T}\right) \\
& =\operatorname{rank}\left[\begin{array}{cc}
z\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right)-\boldsymbol{A}_{1} & \boldsymbol{O} \\
\boldsymbol{O} & \boldsymbol{I}_{m_{2}} \\
\boldsymbol{M C} & \boldsymbol{O}
\end{array}\right] \\
& =\operatorname{rank}\left[\begin{array}{c}
z\left(\boldsymbol{I}_{n}-\boldsymbol{M} \boldsymbol{C}\right)-\boldsymbol{A}_{1} \\
\boldsymbol{M C}
\end{array}\right]+m_{2} \\
& =n+m_{2}
\end{aligned}
$$

This concludes that conditions 2 and 3 are equivalent

The role of system zeros

Theorem

If

- $\operatorname{rank}\left[\begin{array}{ll}\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}\end{array}\right]=\operatorname{rank}\left(\boldsymbol{B}_{2}\right)+\operatorname{rank}(\boldsymbol{D})$
- $\left[\begin{array}{c}-\boldsymbol{B}_{2} \\ \boldsymbol{D}\end{array}\right]$ is defined and has full column rank
- $\operatorname{rank}\left[\begin{array}{cc}\boldsymbol{I}-\boldsymbol{M C} & \boldsymbol{O} \\ O & \boldsymbol{M}\end{array}\right]=n$
- $\operatorname{rank}\left[\begin{array}{c}z\left(\boldsymbol{I}_{n}-\boldsymbol{M C}\right)-\boldsymbol{A}_{1} \\ \boldsymbol{M C}\end{array}\right]=n$ for all $|z| \geq 1$
then

$$
\operatorname{rank}\left[\begin{array}{cc}
z \boldsymbol{I}_{n}-\boldsymbol{A} & -\boldsymbol{B}_{2} \\
\boldsymbol{C} & \boldsymbol{D}
\end{array}\right]=n+m_{2} \text { for all }|z| \geq 1
$$

Proof of theorem

- If the matrix rank condition satisfied then there exists a solution M that satisfies

$$
\left[\begin{array}{cc}
I-M C & O \\
O & M
\end{array}\right]\left[\begin{array}{c}
-B_{2} \\
D
\end{array}\right]=O
$$

- Let $\tilde{\boldsymbol{M}}=\left[\begin{array}{cc}\boldsymbol{I}-\boldsymbol{M C} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{M}\end{array}\right]$
- There exists $M_{1} \in \mathbb{R}^{\left(p-m_{2}\right) \times(n+p)}$ such that

$$
M_{1}\left[\begin{array}{c}
-\boldsymbol{B}_{2} \\
\boldsymbol{D}
\end{array}\right]=\boldsymbol{O}
$$

and $\operatorname{rank}\left[\begin{array}{c}\tilde{\boldsymbol{M}} \\ \boldsymbol{M}_{1}\end{array}\right]=n+p-m_{2}$

Proof of theorem-Contd.

- Since $\left[\begin{array}{c}-\boldsymbol{B}_{2} \\ \boldsymbol{D}\end{array}\right]$ has full column rank, it is left invertible, that is,

$$
\left[\begin{array}{c}
-\boldsymbol{B}_{2} \\
\boldsymbol{D}
\end{array}\right]^{\dagger}\left[\begin{array}{c}
-\boldsymbol{B}_{2} \\
\boldsymbol{D}
\end{array}\right]=\boldsymbol{I}_{m_{2}}
$$

- Therefore,

$$
\operatorname{ker}\left[\begin{array}{c}
\tilde{\boldsymbol{M}} \\
\boldsymbol{M}_{1}
\end{array}\right] \cap \operatorname{ker}\left[\begin{array}{c}
-\boldsymbol{B}_{2} \\
\boldsymbol{D}
\end{array}\right]^{\dagger}=\{\mathbf{0}\}
$$

and

$$
\operatorname{rank}\left[\begin{array}{c}
\tilde{\boldsymbol{M}} \\
\boldsymbol{M}_{1} \\
\left.\left[\begin{array}{c}
-\boldsymbol{B}_{2} \\
\boldsymbol{D}
\end{array}\right]^{\dagger}\right]=n+p .
\end{array}\right.
$$

Proof of theorem-Almost there

- Let $\boldsymbol{S}=\left[\begin{array}{c}\tilde{M} \\ \boldsymbol{M}_{1} \\ {\left[\begin{array}{c}-\boldsymbol{B}_{2} \\ \boldsymbol{D}\end{array}\right]^{\dagger}}\end{array}\right]$ and
$\boldsymbol{T}=\left[\begin{array}{cc}\boldsymbol{\boldsymbol { I } _ { n }} & \boldsymbol{O} \\ -\left[\begin{array}{c}-\boldsymbol{B}_{2} \\ \boldsymbol{D}\end{array}\right]^{\dagger}\left[\begin{array}{c}z \boldsymbol{I}_{n}-\boldsymbol{A} \\ \boldsymbol{C}\end{array}\right] & \boldsymbol{I}_{m_{2}}\end{array}\right]$
- Then,

$$
\begin{aligned}
& \operatorname{rank} \boldsymbol{S}\left[\begin{array}{cc}
z \boldsymbol{I}_{n}-\boldsymbol{A} & -\boldsymbol{B}_{2} \\
\boldsymbol{C} & \boldsymbol{D}
\end{array}\right] \boldsymbol{T} \\
& =\operatorname{rank}\left[\begin{array}{c}
\tilde{\boldsymbol{M}}\left[\begin{array}{c}
z \boldsymbol{I}_{n}-\boldsymbol{A} \\
\boldsymbol{C} \\
\boldsymbol{M}_{1}\left[\begin{array}{c}
\boldsymbol{O} \\
z \boldsymbol{I}_{n}-\boldsymbol{A} \\
\boldsymbol{C}
\end{array}\right] \\
\boldsymbol{O}
\end{array}\right. \\
\boldsymbol{O} \\
\boldsymbol{I}_{m_{2}}
\end{array}\right]
\end{aligned}
$$

Proof of theorem-Two more steps

We continue

$$
\begin{aligned}
& \operatorname{rank}\left[\begin{array}{cc}
\tilde{\boldsymbol{M}}\left[\begin{array}{c}
z \boldsymbol{I}_{n}-\boldsymbol{A} \\
\boldsymbol{C}
\end{array}\right] & \boldsymbol{O} \\
\boldsymbol{M}_{1}\left[\begin{array}{c}
z \boldsymbol{I}_{n}-\boldsymbol{A} \\
\boldsymbol{C}
\end{array}\right] & \boldsymbol{O} \\
\boldsymbol{O} & \boldsymbol{I}_{m_{2}}
\end{array}\right] \\
& =\operatorname{rank}\left[\begin{array}{c}
\tilde{\boldsymbol{M}}\left[\begin{array}{c}
z \boldsymbol{I}_{n}-\boldsymbol{A} \\
\boldsymbol{C} \\
\boldsymbol{M}_{1}\left[\begin{array}{c}
z \boldsymbol{I}_{n}-\boldsymbol{A} \\
\boldsymbol{C}
\end{array}\right]
\end{array}\right]+m_{2}
\end{array} .\right.
\end{aligned}
$$

Note that

$$
\tilde{M}\left[\begin{array}{c}
z \boldsymbol{I}_{n}-\boldsymbol{A} \\
\boldsymbol{C}
\end{array}\right]=\left[\begin{array}{c}
z(\boldsymbol{I}-\boldsymbol{M C})-\boldsymbol{A}_{1} \\
\boldsymbol{M C}
\end{array}\right]
$$

Proof of theorem-Finally!

- Therefore, $\operatorname{rank}\left[\begin{array}{cc}z \boldsymbol{I}_{n}-\boldsymbol{A} & -\boldsymbol{B}_{2} \\ \boldsymbol{C} & \boldsymbol{D}\end{array}\right]=n+m_{2}$ for all $|z| \geq 1$ if $\operatorname{rank}\left[\begin{array}{c}z(\boldsymbol{I}-\boldsymbol{M C})-\boldsymbol{A}_{1} \\ \boldsymbol{M C}\end{array}\right]=n$, for all $|z| \geq 1$
- Recall that $\operatorname{rank}\left[\begin{array}{c}z(\boldsymbol{I}-\boldsymbol{M C})-\boldsymbol{A}_{1} \\ \boldsymbol{M C}\end{array}\right]=n$, for all $|z| \geq 1$ implies detectability of the pair $\left(\boldsymbol{A}_{1}, \boldsymbol{C}\right)$

Constructing S

- Recall, $S=\left[\begin{array}{c}\tilde{M} \\ M_{1} \\ {\left[\begin{array}{c}B_{2} \\ D\end{array}\right]^{\dagger}}\end{array}\right]$
- How to compute M_{1} ?
- Note that M_{1} is such that

$$
\begin{aligned}
{\left[\begin{array}{c}
\tilde{\boldsymbol{M}_{1}} \\
\boldsymbol{M}_{1}
\end{array}\right]\left[\begin{array}{c}
-\boldsymbol{B}_{2} \\
\boldsymbol{D}
\end{array}\right] } & =\left[\begin{array}{c}
\boldsymbol{O}_{2 n \times m_{2}} \\
\boldsymbol{O}_{\left(p-m_{2}\right) \times m_{2}}
\end{array}\right] \\
\operatorname{rank}\left[\begin{array}{c}
\tilde{\boldsymbol{M}} \\
\boldsymbol{M}_{1}
\end{array}\right] & =n+p-m_{2}
\end{aligned}
$$

- Can compute \boldsymbol{M}_{1}, using MATLAB, as

$$
\left.\boldsymbol{M}_{1}^{\top}=\operatorname{null}\left[\begin{array}{c}
\tilde{\boldsymbol{M}} \\
{\left[-\boldsymbol{B}_{2}^{\top}\right.} \\
\boldsymbol{D}^{\top}
\end{array}\right]\right]
$$

What about rank \boldsymbol{S} ?

- Recall, $\operatorname{rank} \boldsymbol{S}=\operatorname{rank}\left[\begin{array}{c}\tilde{\boldsymbol{M}} \\ \boldsymbol{M}_{1} \\ \left.\left[\begin{array}{c}\boldsymbol{B}_{2} \\ \boldsymbol{D}\end{array}\right]^{\dagger}\right]=n+p .\end{array}\right.$
- We also have,

$$
\begin{aligned}
& \operatorname{ker}\left[\begin{array}{c}
\tilde{\boldsymbol{M}} \\
\boldsymbol{M}_{1}
\end{array}\right] \cap \operatorname{ker}\left[\begin{array}{c}
-\boldsymbol{B}_{2} \\
\boldsymbol{D}
\end{array}\right]^{\dagger}=\{\mathbf{0}\} \\
& \operatorname{rank}\left[\begin{array}{c}
\tilde{\boldsymbol{M}} \\
\boldsymbol{M}_{1}
\end{array}\right]=n+p-m_{2}
\end{aligned}
$$

- Hence, we have to have

$$
\operatorname{rank} \boldsymbol{S}=n+p
$$

Simple MATLAB code to compute \boldsymbol{S}

```
function[]=trans_mat_S()
clc
clear
% Example 1:
A=[-1 0 0;0 -2 0;0 0 -0.3];
B2=[[-2 -3 -4]';
C=[1 0 0;0 1 0];
D=[2 2]';
% Example 2
A=[1 0;1 1];
B2=[[0 1]';
C=[2 1;0 1];
D=[\begin{array}{ll}{1}&{0}\end{array}]
```


MATLAB code to compute \boldsymbol{S} - Contd.

```
% Dimensions
n=size(A,1);
m2=size(B2,2);
p=size(C,1);
r=size(D,2);
% Solving for M
M=[B2 zeros(n,r)]*pinv([C*B2 D]);
Mtilde=[(eye(n)- M*C) zeros(n,m2+r);zeros(n,n) M];
M1=null([-B2' D';Mtilde])';
% Transformation matrix
S=[Mtilde;M1;pinv([-B2;D])]
```

Unknown input and output disturbance estimators

Unknown input estimator

- Pre-multiply both sides of the state dynamic $\boldsymbol{B}_{2}^{\dagger}$

$$
\boldsymbol{B}_{2}^{\dagger} \boldsymbol{x}[k+1]=\boldsymbol{B}_{2}^{\dagger} \boldsymbol{A} \boldsymbol{x}[k]+\boldsymbol{B}_{2}^{\dagger} \boldsymbol{B}_{1} \boldsymbol{u}[k]+\boldsymbol{B}_{2}^{\dagger} \boldsymbol{B}_{2} \boldsymbol{w}[k]
$$

- Use $\boldsymbol{B}_{2}^{\dagger} \boldsymbol{B}_{2}=\boldsymbol{I}_{m_{2}}$ to obtain

$$
\boldsymbol{w}[k]=\boldsymbol{B}_{2}^{\dagger} \boldsymbol{x}[k+1]-\boldsymbol{B}_{2}^{\dagger} \boldsymbol{A} \boldsymbol{x}[k]-\boldsymbol{B}_{2}^{\dagger} \boldsymbol{B}_{1} \boldsymbol{u}[k]
$$

- The unknown input estimator:

$$
\hat{\boldsymbol{w}}[k]=\boldsymbol{B}_{2}^{\dagger} \hat{\boldsymbol{x}}[k+1]-\boldsymbol{B}_{2}^{\dagger} \boldsymbol{A} \hat{\boldsymbol{x}}[k]-\boldsymbol{B}_{2}^{\dagger} \boldsymbol{B}_{1} \boldsymbol{u}[k]
$$

- The above estimator depends on $\hat{\boldsymbol{x}}[k+1]$
- Can estimate the unknown input with one sampling period time-delay

$$
\hat{\boldsymbol{w}}[k-1]=\boldsymbol{B}_{2}^{\dagger} \hat{\boldsymbol{x}}[k]-\boldsymbol{B}_{2}^{\dagger} \boldsymbol{A} \hat{\boldsymbol{x}}[k-1]-\boldsymbol{B}_{2}^{\dagger} \boldsymbol{B}_{1} \boldsymbol{u}[k-1]
$$

Unknown input estimator performance

- Unknown input estimation error, $\boldsymbol{e}_{w}[k]=\boldsymbol{w}[k]-\hat{\boldsymbol{w}}[k]$
- Then, $\boldsymbol{e}_{w}[k]=\boldsymbol{B}_{2}^{\dagger} \boldsymbol{e}[k+1]-\boldsymbol{B}_{2}^{\dagger} \boldsymbol{A} \boldsymbol{e}[k]$
- We have, $\lim \sup _{k \rightarrow \infty}\|\boldsymbol{e}[k]\| \leq \gamma\|\boldsymbol{v}[k]\|_{\infty}$
- Unknown input estimation error bound

$$
\begin{aligned}
\limsup _{k \rightarrow \infty}\left\|\boldsymbol{e}_{w}[k]\right\| & \leq\left\|\boldsymbol{B}_{2}^{\dagger}\right\|\left(\gamma\|\boldsymbol{v}[k+1]\|_{\infty}+\|\boldsymbol{A}\| \gamma\|\boldsymbol{v}[k]\|_{\infty}\right) \\
& \leq\left\|\boldsymbol{B}_{2}^{\dagger}\right\|(1+\|\boldsymbol{A}\|) \sqrt{\mu}\|\boldsymbol{v}[k]\|_{\infty}
\end{aligned}
$$

- Let $\gamma_{w}=\left\|\boldsymbol{B}_{2}^{\dagger}\right\|(1+\|\boldsymbol{A}\|) \sqrt{\mu}$
- Then, $\lim \sup _{k \rightarrow \infty}\left\|\boldsymbol{e}_{w}[k]\right\| \leq \gamma_{w}\|\boldsymbol{v}[k]\|_{\infty}$
- Unknown input estimator performance level γ_{w}

Output disturbance estimator

- Pre-multiply output equation by \boldsymbol{D}^{\dagger}

$$
\boldsymbol{D}^{\dagger} \boldsymbol{y}[k]=\boldsymbol{D}^{\dagger} \boldsymbol{C} \boldsymbol{x}[k]+\boldsymbol{D}^{\dagger} \boldsymbol{D} \boldsymbol{v}[k]
$$

- Rearrange to obtain, $\boldsymbol{v}[k]=\boldsymbol{D}^{\dagger} \boldsymbol{y}[k]-\boldsymbol{D}^{\dagger} \boldsymbol{C} \boldsymbol{x}[k]$
- Output disturbance estimator

$$
\hat{\boldsymbol{v}}[k]=\boldsymbol{D}^{\dagger} \boldsymbol{y}[k]-\boldsymbol{D}^{\dagger} \boldsymbol{C} \hat{\boldsymbol{x}}[k]
$$

- Output disturbance estimation error:

$$
\boldsymbol{e}_{v}[k]=\boldsymbol{v}[k]-\hat{\boldsymbol{v}}[k]
$$

- Hence, $\boldsymbol{e}_{v}[k]=-\boldsymbol{D}^{\dagger} \boldsymbol{C e}[k]$

Output disturbance estimator performance

- We have

$$
\boldsymbol{e}_{v}[k]=-\boldsymbol{D}^{\dagger} \boldsymbol{C e}[k]
$$

- Recall that $\limsup _{k \rightarrow \infty}\|\boldsymbol{e}[k]\| \leq \gamma\|\boldsymbol{v}[k]\|_{\infty}$
- Output disturbance estimation error bound

$$
\begin{aligned}
\limsup _{k \rightarrow \infty}\left\|\boldsymbol{e}_{v}[k]\right\| & \leq\left\|\boldsymbol{D}^{\dagger}\right\|\|\boldsymbol{C}\| \gamma\|\boldsymbol{v}[k]\|_{\infty} \\
& \leq\left\|\boldsymbol{D}^{\dagger}\right\|\|\boldsymbol{C}\| \sqrt{\mu}\|\boldsymbol{v}[k]\|_{\infty}
\end{aligned}
$$

- Output disturbance estimator performance level,

$$
\gamma_{v}=\left\|\boldsymbol{D}^{\dagger}\right\|\|\boldsymbol{C}\| \sqrt{\mu}
$$

Relations With the Strong Observer of Hautus

- System considered by Hautus

$$
\begin{aligned}
\boldsymbol{x}[k+1] & =\boldsymbol{A} \boldsymbol{x}[k]+\boldsymbol{B}_{2} \boldsymbol{w}[k] \\
\boldsymbol{y}[k] & =\boldsymbol{C} \boldsymbol{x}[k]+\boldsymbol{D} \boldsymbol{w}[k]
\end{aligned}
$$

- UIO (strong observer) exists \Longleftrightarrow
(1) $\operatorname{rank}\left[\begin{array}{cc}\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D} \\ \boldsymbol{D} & \boldsymbol{O}\end{array}\right]=\operatorname{rank} \boldsymbol{D}+\operatorname{rank}\left[\begin{array}{c}-\boldsymbol{B}_{2} \\ \boldsymbol{D}\end{array}\right]$
(2) the system zeros of the system defined by quadruple $\left(\boldsymbol{A}, \boldsymbol{B}_{2}, \boldsymbol{C}, \boldsymbol{D}\right)$ are in the open unit disc
M. L. J. Hautus, Strong Detectability and Observers, Linear Algebra and Its Applications, Vol. 50, pp. 353-368, 1983

From our model into the Hautus model

- Need the same unknown input and output disturbance

$$
\begin{aligned}
\boldsymbol{x}[k+1] & =\boldsymbol{A} \boldsymbol{x}[k]+\boldsymbol{B}_{1} \boldsymbol{u}[k]+\left[\begin{array}{cc}
\boldsymbol{B}_{2} & \boldsymbol{O}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{w}[k] \\
\boldsymbol{v}[k]
\end{array}\right] \\
\boldsymbol{y}[k] & =\boldsymbol{C} \boldsymbol{x}[k]+\left[\begin{array}{ll}
\boldsymbol{O} & \boldsymbol{D}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{w}[k] \\
\boldsymbol{v}[k]
\end{array}\right]
\end{aligned}
$$

- Apply the Hautus matrix rank condition

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{cccc}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{O} & \boldsymbol{O} & \boldsymbol{D} \\
\boldsymbol{O} & \boldsymbol{D} & \boldsymbol{O} & \boldsymbol{O}
\end{array}\right]= & \operatorname{rank}\left[\begin{array}{ll}
\boldsymbol{O} & \boldsymbol{D}
\end{array}\right] \\
& +\operatorname{rank}\left[\begin{array}{cc}
-\boldsymbol{B}_{2} & \boldsymbol{O} \\
\boldsymbol{O} & \boldsymbol{D}
\end{array}\right]
\end{aligned}
$$

Manipulations

- The Hautus matrix rank condition

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{cccc}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{O} & \boldsymbol{O} & \boldsymbol{D} \\
\boldsymbol{O} & \boldsymbol{D} & \boldsymbol{O} & \boldsymbol{O}
\end{array}\right]= & \operatorname{rank}\left[\begin{array}{ll}
\boldsymbol{O} & \boldsymbol{D}
\end{array}\right] \\
& +\operatorname{rank}\left[\begin{array}{cc}
-\boldsymbol{B}_{2} & \boldsymbol{O} \\
\boldsymbol{O} & \boldsymbol{D}
\end{array}\right]
\end{aligned}
$$

- We obtain

$$
\operatorname{rank}\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]=\operatorname{rank}\left(\boldsymbol{B}_{2}\right)+\operatorname{rank}(\boldsymbol{D})
$$

- The matrix rank conditions equivalent for the augmented system

System zeros conditions

- The Hautus system zeros condition applied to the augmented system

$$
\operatorname{rank}\left[\begin{array}{ccc}
z \boldsymbol{I}-\boldsymbol{A} & -\boldsymbol{B}_{2} & \boldsymbol{O} \\
\boldsymbol{C} & \boldsymbol{O} & \boldsymbol{D}
\end{array}\right]=n+m_{2}+r \text { for all }|z| \geq 1
$$

- If the rank condition

$$
\operatorname{rank}\left[\begin{array}{cc}
z \boldsymbol{I}_{n}-\boldsymbol{A} & -\boldsymbol{B}_{2} \\
\boldsymbol{C} & \boldsymbol{D}
\end{array}\right]=n+m_{2} \text { for all }|z| \geq 1
$$

not satisfied, then there are \boldsymbol{v}_{1} and \boldsymbol{v}_{2}, not both zero, such that

$$
\left[\begin{array}{cc}
z \boldsymbol{I}_{n}-\boldsymbol{A} & -\boldsymbol{B}_{2} \\
\boldsymbol{C} & \boldsymbol{D}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{v}_{1} \\
\boldsymbol{v}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right]
$$

System zeros conditions-Contd

- Then

$$
\left[\begin{array}{ccc}
z \boldsymbol{I}_{n}-\boldsymbol{A} & -\boldsymbol{B}_{2} & \boldsymbol{O} \\
\boldsymbol{C} & \boldsymbol{O} & \boldsymbol{D}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{v}_{1} \\
\boldsymbol{v}_{2} \\
\boldsymbol{v}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right]
$$

The system zero condition for the augmented system implies the system zero condition for the original system

Matrix rank conditions

Theorem

The matrix rank condition

$$
\operatorname{rank}\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]=\operatorname{rank} \boldsymbol{B}_{2}+\operatorname{rank} \boldsymbol{D}
$$

implies the matrix rank condition of Hautus

$$
\operatorname{rank}\left[\begin{array}{cc}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D} \\
\boldsymbol{D} & \boldsymbol{O}
\end{array}\right]=\operatorname{rank} \boldsymbol{D}+\operatorname{rank}\left[\begin{array}{c}
-\boldsymbol{B}_{2} \\
\boldsymbol{D}
\end{array}\right]
$$

Proof of Theorem: Notation for the various matrix rank

 conditions(1) $\mathcal{S} \Longleftrightarrow \operatorname{rank}\left[\boldsymbol{C} \boldsymbol{B}_{2}\right]=\operatorname{rank} \boldsymbol{B}_{2}$
(2) $\mathcal{G} \Longleftrightarrow \operatorname{rank}\left[\begin{array}{ll}\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}\end{array}\right]=\operatorname{rank} \boldsymbol{B}_{2}+\operatorname{rank} \boldsymbol{D}$
(3) $\mathcal{M} \Longleftrightarrow \operatorname{rank}\left(\boldsymbol{C} \boldsymbol{B}_{2}+\boldsymbol{D}\right)=\operatorname{rank}\left[\begin{array}{c}\boldsymbol{B}_{2} \\ \boldsymbol{D}\end{array}\right]$, when $\boldsymbol{C} \boldsymbol{B}_{2}+\boldsymbol{D}$ is defined
(9) $\mathcal{H} \Longleftrightarrow$ Hautus' matrix rank condition:

$$
\operatorname{rank}\left[\begin{array}{cc}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D} \\
\boldsymbol{D} & \boldsymbol{O}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{c}
\boldsymbol{B}_{2} \\
\boldsymbol{D}
\end{array}\right]+\operatorname{rank} \boldsymbol{D}
$$

Well known equalities

- For any matrix \boldsymbol{M}, let

$$
\begin{aligned}
\mathfrak{c}(\boldsymbol{M}) & =\text { Number of columns of } \boldsymbol{M} \\
\operatorname{ker} \boldsymbol{M} & =\{\boldsymbol{v}: \boldsymbol{M} \boldsymbol{v}=\mathbf{0}\}
\end{aligned}
$$

- We will make use of the well known equality

$$
\mathfrak{c}(\boldsymbol{M})=\operatorname{rank} \boldsymbol{M}+\operatorname{dim} \operatorname{ker} \boldsymbol{M}
$$

- Note that \mathcal{G} implies that $\operatorname{rank}\left(\boldsymbol{C B}_{2}\right)=\operatorname{rank} \boldsymbol{B}_{2}$ and thus $\boldsymbol{C B}_{2} \boldsymbol{v}=\mathbf{0} \Longleftrightarrow \boldsymbol{B}_{2} \boldsymbol{v}=\mathbf{0}$
- Equivalently, $\operatorname{ker}\left(\boldsymbol{C B}_{2}\right)=\operatorname{ker} \boldsymbol{B}_{2}$

More notation

- If $\boldsymbol{u}, \boldsymbol{v}$ are column vectors, we let

$$
\boldsymbol{u} \oplus \boldsymbol{v}=\left[\begin{array}{l}
\boldsymbol{u} \\
\boldsymbol{v}
\end{array}\right]
$$

- If U, V are vector spaces of column vectors, we let

$$
U \oplus V=\{\boldsymbol{u} \oplus \boldsymbol{v}: \boldsymbol{u} \in U, \boldsymbol{v} \in V\}
$$

- It is easy to see that

$$
\operatorname{dim}(U \oplus V)=\operatorname{dim} U+\operatorname{dim} V
$$

- Just note that if $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{p}\right\}$ and $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{q}\right\}$ are bases of U, V, respectively, then $\left\{\boldsymbol{u}_{1} \oplus \mathbf{0}, \ldots, \boldsymbol{u}_{p} \oplus \mathbf{0}, \mathbf{0} \oplus \boldsymbol{v}_{1}, \ldots, \mathbf{0} \oplus \boldsymbol{v}_{q}\right\}$ is a basis for $U \oplus V$

Lemma 1

- Recall

$$
\mathcal{G} \Longleftrightarrow \operatorname{rank}\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]=\operatorname{rank} \boldsymbol{B}_{2}+\operatorname{rank} \boldsymbol{D}
$$

If \mathcal{G}, then

$$
\operatorname{ker}\left(\left[\begin{array}{ll}
\boldsymbol{C B}_{2} & \boldsymbol{D}
\end{array}\right]\right)=\operatorname{ker} \boldsymbol{B}_{2} \oplus \operatorname{ker} \boldsymbol{D}
$$

Proof of Lemma 1

- \mathcal{G} and equality $\mathfrak{c}(\boldsymbol{M})=\operatorname{rank} \boldsymbol{M}+\operatorname{dim} \operatorname{ker} \boldsymbol{M}$ imply

$$
\begin{aligned}
& \operatorname{dim} \operatorname{ker}\left(\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]\right) \\
= & \mathfrak{c}\left(\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]\right)-\operatorname{rank}\left(\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]\right) \\
= & \mathfrak{c}\left(\boldsymbol{C} \boldsymbol{B}_{2}\right)+\mathfrak{c}(\boldsymbol{D})-\operatorname{rank}\left(\boldsymbol{B}_{2}\right)-\operatorname{rank} \boldsymbol{D} \\
= & \operatorname{dim} \operatorname{ker} \boldsymbol{B}_{2}+\operatorname{dim} \operatorname{ker} \boldsymbol{D} \\
= & \operatorname{dim}\left(\operatorname{ker} \boldsymbol{B}_{2} \oplus \operatorname{ker} \boldsymbol{D}\right)
\end{aligned}
$$

- It is immediate that

$$
\operatorname{ker} \boldsymbol{B}_{2} \oplus \operatorname{ker} \boldsymbol{D} \subset \operatorname{ker}\left(\left[\begin{array}{ll}
\boldsymbol{C B}_{2} & \boldsymbol{D}
\end{array}\right]\right)
$$

- Hence, $\operatorname{ker}\left(\left[\begin{array}{ll}\boldsymbol{C B}_{2} & \boldsymbol{D}\end{array}\right]\right)=\operatorname{ker} \boldsymbol{B}_{2} \oplus \operatorname{ker} \boldsymbol{D}$

Lemma 2

If \mathcal{G}, then $\operatorname{ker}\left(\boldsymbol{C} \boldsymbol{B}_{2}+\boldsymbol{D}\right)=\operatorname{ker} \boldsymbol{B}_{2} \cap \operatorname{ker} \boldsymbol{D}$

- Proof: We have

$$
\operatorname{ker} \boldsymbol{B}_{2} \cap \operatorname{ker} \boldsymbol{D} \subset \operatorname{ker}\left(\boldsymbol{C} \boldsymbol{B}_{2}+\boldsymbol{D}\right)
$$

- Suppose $\left(\boldsymbol{C B} \boldsymbol{B}_{2}+\boldsymbol{D}\right) \boldsymbol{v}=\mathbf{0}$, then

$$
\left[\begin{array}{ll}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{v} \\
\boldsymbol{v}
\end{array}\right]=\mathbf{0}
$$

- It follows from Lemma 1 that

$$
\left[\begin{array}{l}
\boldsymbol{v} \\
\boldsymbol{v}
\end{array}\right] \in \operatorname{ker} \boldsymbol{B}_{2} \oplus \operatorname{ker} \boldsymbol{D}
$$

- Therefore $\boldsymbol{B}_{2} \boldsymbol{v}=\mathbf{0}$ and $\boldsymbol{D} \boldsymbol{v}=\mathbf{0}$ and the lemma follows

Lemma 3

If \mathcal{G} then \mathcal{M}

- Proof: Observe that

$$
\operatorname{ker}\left[\begin{array}{c}
\boldsymbol{B}_{2} \\
\boldsymbol{D}
\end{array}\right]=\operatorname{ker} \boldsymbol{B}_{2} \cap \operatorname{ker} \boldsymbol{D}
$$

- Thus by Lemma 2, we have

$$
\operatorname{ker}\left(\boldsymbol{C} \boldsymbol{B}_{2}+\boldsymbol{D}\right)=\operatorname{ker}\left[\begin{array}{c}
\boldsymbol{B}_{2} \\
\boldsymbol{D}
\end{array}\right]
$$

- This is equivalent to the claim of the lemma since the two matrices have the same number of columns

Proof of the Theorem

- Assume \mathcal{G}
- Then the above lemmas hold and all will be used
- The Hautus matrix rank condition is

$$
\operatorname{rank}\left[\begin{array}{cc}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D} \\
\boldsymbol{D} & \boldsymbol{O}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{c}
\boldsymbol{B}_{2} \\
\boldsymbol{D}
\end{array}\right]+\operatorname{rank} \boldsymbol{D}
$$

- By Lemma 3, the above is equivalent to

$$
\operatorname{rank}\left[\begin{array}{cc}
\boldsymbol{C B}_{2} & \boldsymbol{D} \\
\boldsymbol{D} & \boldsymbol{O}
\end{array}\right]=\operatorname{rank}\left(\boldsymbol{C B}_{2}+\boldsymbol{D}\right)+\operatorname{rank} \boldsymbol{D}
$$

- This is equivalent to

$$
\operatorname{rank}\left[\begin{array}{cc}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D} \\
\boldsymbol{D} & \boldsymbol{O}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
\boldsymbol{C} \boldsymbol{B}_{2}+\boldsymbol{D} & \boldsymbol{O} \\
\boldsymbol{O} & \boldsymbol{D}
\end{array}\right]
$$

Proof of the Theorem-Contd

- We prove

$$
\operatorname{rank}\left[\begin{array}{cc}
\boldsymbol{C} \boldsymbol{B}_{2} & \boldsymbol{D} \\
\boldsymbol{D} & \boldsymbol{O}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
\boldsymbol{C} \boldsymbol{B}_{2}+\boldsymbol{D} & \boldsymbol{O} \\
\boldsymbol{O} & \boldsymbol{D}
\end{array}\right]
$$

by showing that the two matrices have the same kernel

- Suppose

$$
\left[\begin{array}{cc}
C B_{2} & D \\
D & O
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=0
$$

Then

$$
\left[\begin{array}{ll}
C B_{2} & \boldsymbol{D}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{u} \\
\boldsymbol{v}
\end{array}\right]=\mathbf{0}, \boldsymbol{D} \boldsymbol{u}=\mathbf{0}
$$

Proof of the Theorem—Use Lemma 1

- By Lemma $1, \boldsymbol{C} \boldsymbol{B}_{2} \boldsymbol{u}=\mathbf{0}, \boldsymbol{D} \boldsymbol{v}=\mathbf{0}, \boldsymbol{D} \boldsymbol{u}=\mathbf{0}$
- It follows that

$$
\left[\begin{array}{cc}
C B_{2}+D & O \\
O & D
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\mathbf{0}
$$

- Conversely, suppose

$$
\left[\begin{array}{cc}
C B_{2}+D & O \\
O & D
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=0
$$

- Then

$$
\left(\boldsymbol{C B} \boldsymbol{B}_{2}+\boldsymbol{D}\right) \boldsymbol{u}=\mathbf{0}, \boldsymbol{D} \boldsymbol{v}=\mathbf{0}
$$

By Lemma 6,

$$
\boldsymbol{C} \boldsymbol{B}_{2} \boldsymbol{u}=\mathbf{0}, \boldsymbol{D} \boldsymbol{u}=\mathbf{0}, \boldsymbol{D} \boldsymbol{v}=\mathbf{0}
$$

Conclusion of Proof of Theorem

- Represent

$$
\boldsymbol{C B} \boldsymbol{B}_{2} \boldsymbol{u}=\mathbf{0}, \quad \boldsymbol{D} \boldsymbol{u}=\mathbf{0}, \boldsymbol{D} \boldsymbol{v}=\mathbf{0}
$$

in matrix format

- Thus

$$
\left[\begin{array}{cc}
C B_{2} & D \\
D & O
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=0
$$

- Therefore the two matrices in question have the same kernel and therefore the same rank since they clearly have the same number of columns

Conclusions

- Unknown Input Observer (UIO) - powerful and promising tool for detecting and monitoring malicious attacks in networked control systems
- Promising directions-large-scale systems
- Significant industrial applications around the corner
- UIO-Way To Go!

