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Problem Statement and Motivation
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Networked Control System (NCS) Security

Networked Control Systems depend on wireless communication—a
major challenge in the NCS design is their security

Actuators and sensor measurements exposed to malicious attacks
in communication networks

Methods of detecting sparse malicious packet drop attacks in the
communication networks proposed

Limitations of the previously presented methods—malicious
attacks assumed to be sparse
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Our Proposed Approach
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Plant Model

x[k + 1] = Ax[k] +B1u[k] +B2w[k]

y[k] = Cx[k] +Dv[k],

where

A ∈ Rn×n, B1 ∈ Rn×m1 , B2 ∈ Rn×m2 , rankB2 = m2, C ∈ Rp×n,
D ∈ Rp×r, and rankD = r

Control input—u[k] ∈ Rm1

Unknown input—w[k] ∈ Rm2

Output disturbance—v[k] ∈ Rr

w[k] and v[k] uniformly bounded as functions of k

7 / 79



Objectives

Construct Unknown Input Observer (UIO) to estimate the plant
state in the presence of unknown input w[k] and output
disturbance v[k]

Estimate the unknown input and output disturbance
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Unknown Input Observer (UIO) Synthesis
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UIO Synthesis: Preliminaries

Begin by representing x[k] as

x[k] = x[k]−MCx[k] +MCx[k]

= (In −MC)x[k] +M(y[k]−Dv[k])

= (In −MC)x[k] +My[k]−MDv[k])

where

M ∈ Rn×p is to be determined

Select M such that
MD = On×r

where On×r is an n-by-r matrix of zeros

We obtain:
x[k] = (In −MC)x[k] +My[k]
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Manipulations

We have: x[k] = (In −MC)x[k] +My[k]

Let z[k] = (In −MC)x[k]

Hence
x[k] = z[k] +My[k]

We will now show that an estimate of the state x[k] can be
obtained from

x̂[k] = z[k] +My[k]

The signal z[k] is obtained from

z[k + 1] = (In −MC)x[k + 1]
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Manipulations—Contd.

Substitute the state dynamics equation into
z[k + 1] = (In −MC)x[k + 1] to obtain

z[k + 1] = (In −MC)(Ax[k] +B1u[k] +B2w[k])

Substitute x[k] = z[k] +My[k] into the above

z[k + 1] = (In −MC)(Az[k] +AMy[k] +B1u[k])

+(In −MC)B2w[k]

Select M so that
(In −MC)B2 = O
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Open-Loop UIO

z[k + 1] = (In −MC)(Az[k] +AMy[k] +B1u[k])

x̂[k] = z[k] +My[k]

Observation error e[k] = x[k]− x̂[k]

Observation error dynamics

e[k + 1] = (In −MC)Ae[k]

Add innovation term—the closed-loop UIO
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Synthesis of the Closed-Loop UIO

Observation error dynamics of the open-loop UIO

e[k + 1] = (In −MC)Ae[k]

= A1e[k]

Add −L(y[k]− ŷ[k]), where L ∈ Rn×p and

ŷ[k] = Cx̂[k] = C(z[k] +My[k])

Observation error dynamics of the closed-loop UIO

e[k + 1] = (A1 −LC)e[k]−LDv[k]
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Closed-Loop UIO

Observation error dynamics of the closed-loop UIO

e[k + 1] = (A1 −LC)e[k]−LDv[k]

The closed-loop UIO

z[k + 1] = (In −MC)(Az[k] +AMy[k] +B1u[k])

+L(y[k]− ŷ[k])

x̂[k] = z[k] +My[k]

B. Alenezi, M. Zhang, S. Hui, and S. H. Żak, Simultaneous Estimation of the
State, Unknown Input, and Output Disturbance in Discrete-Time Linear Systems,
IEEE Transactions on Automatic Control, Date of Publication: 24 February 2021
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UIO Synthesis: Solving for M

Theorem

There exists a solution M to

(In −MC)B2 = On×m2

MD = On×r

if and only if

rank

[
CB2 D
B2 On×r

]
= rank

[
CB2 D

]
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Solving for M—Proof of Theorem

Represent

(In −MC)B2 = On×m2

MD = On×r

as
M
[
CB2 D

]
=
[
B2 On×r

]
A necessary and sufficient condition (NASC) for M to solve the
above matrix equation is that the space spanned by the rows of
the matrix

[
B2 On×r

]
is in the range of the space spanned by

the rows of the matrix
[
CB2 D

]
This is equivalent to

rank

[
CB2 D
B2 On×r

]
= rank

[
CB2 D

]
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Solving for M—Another NASC

Theorem

There exists a solution M to

M
[
CB2 D

]
=
[
B2 On×r

]
if and only if

rank
[
CB2 D

]
= rank(B2) + rank(D)

We have

rank
[
CB2 D

]
= rank

[
CB2 D
B2 O

]
= rank

([
Ip −C
O In

] [
CB2 D
B2 O

])
= rank

[
O D
B2 O

]
= rank(B2) + rank(D)
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A Formula to Compute M

Represent

(In −MC)B2 = On×m2

MD = On×r

as
M
[
CB2 D

]
=
[
B2 On×r

]
If rank

[
CB2 D

]
= rank(B2) + rank(D) then[

CB2 D
]

has full column rank and therefore it is left invertible
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Computing M—Contd.

We are solving

M
[
CB2 D

]
=
[
B2 On×r

]
We obtain

M =
[
B2 On×r

] [
CB2 D

]†
A general class of solutions

M =
[
B2 On×r

] ([
CB2 D

]†
+H0

(
Ip −

[
CB2 D

] [
CB2 D

]†))
where H0 ∈ R(m2+r)×p is a design parameter matrix
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More on the Synthesis of the UIO

Proposed UIO

z[k + 1] = (In −MC)(Az[k] +AMy[k] +B1u[k])

+L(y[k]− ŷ[k])

x̂[k] = z[k] +My[k]

Observation error dynamics:

e[k + 1] = (A1 −LC)e[k]−LDv[k]

where A1 = (In −MC)A

B. Alenezi, M. Zhang, S. Hui, and S. H. Żak, Simultaneous Estimation of the
State, Unknown Input, and Output Disturbance in Discrete-Time Linear Systems,
IEEE Transactions on Automatic Control, Date of Publication: 24 February 2021
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More on the Synthesis of the UIO—Contd.

Observation error dynamics:

e[k + 1] = (A1 −LC)e[k]−LDv[k]

where A1 = (In −MC)A

Note that if an L exists such that (A1 −LC) is Schur stable and

LD = O,

then the error dynamics become

e[k + 1] = (A1 −LC)e[k]
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UIO Synthesis—Example 1
System model matrices

A =

 0.5 0 0
0 0.5 0
0 0 0.5

 B2 =

 1
1
0

 ,
C =

[
0 2 1
1 0 0

]
, D =

[
0

0.2

]

The matrix rank condition satisfied

Solve for M =

 0.5 0
0.5 0
0 0


Construct

A1 = (I3 −MC)A =

 0.5 −0.5 −0.25
0 0 −0.25
0 0 0.5
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Example 1 Contd.

Can we find an L such that (A1 −LC) is Schur stable and

LD = O

so that the error dynamics would become

e[k + 1] = (A1 −LC)e[k]?

Used cvx to obtain L =

 −0.25 0
−0.05 0
0.10 0


Eigenvalues of (A1 −LC) at

0.5, 0.0, 0.5
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UIO Synthesis—Example 2
System model matrices

A =

 −1 0 0
0 −2 0
0 0 −0.3

 B2 =

 −2
−3
−4

 ,
C =

[
1 0 0
0 1 0

]
, D =

[
2
2

]

The matrix rank condition satisfied

Solve for M =

 −2 2
−3 3
−4 4


Construct

A1 = (I3 −MC)A =

 −3 4 0
−3 4 0
−4 8 −0.3
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Example 2 Contd.

Can we find an L such that (A1 −LC) is Schur stable and

LD = O,

so that the error dynamics would become

e[k + 1] = (A1 −LC)e[k]?

Used cvx to obtain L =

 −3.4974 3.4974
−3.4936 3.4936
−5.9137 5.9137


Eigenvalues of (A1 −LC) at

0.3000, 1.0000, 0.0038

No such luck in this example
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Conclusions from the examples

In general it may not be possible find an L such that (A1 −LC)
is Schur stable and

LD = O,

so that the error dynamics would become

e[k + 1] = (A1 −LC)e[k]

We thus need to analyze the error dynamics

e[k + 1] = (A1 −LC)e[k]−LDv[k]
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Stability of the Observation Error
Dynamics
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l∞-stability with performance level (p.l.) γ

Recall the observation error dynamics of the closed-loop UIO

e[k + 1] = (A1 −LC)e[k]−LDv[k]

Notation

For any vector v ∈ Rn, denote ‖v‖ =
√
v>v

For a sequence of vectors v∞k=k0
, denote

‖v‖∞ , sup
k≥k0
‖vk‖

B. Alenezi, M. Zhang, S. Hui, and S. H. Żak, Simultaneous Estimation of the
State, Unknown Input, and Output Disturbance in Discrete-Time Linear Systems,
IEEE Transactions on Automatic Control, Date of Publication: 24 February 2021
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l∞-stability definition

The system e[k + 1] = f(k, e[k],v[k]) is globally uniformly l∞-stable
with performance level γ if

1 e[k + 1] = f(k, e[k],0) globally uniformly exponentially stable
with respect to the origin

2 for e[k0] = 0, and every bounded unknown input v[k],
‖e[k]‖ ≤ γ‖v[k]‖∞ ∀k ≥ k0

3 for any e[k0] = e0 and v[·],

lim sup
k→∞

‖e[k]‖ ≤ γ‖v[k]‖∞

A. Chakrabarty, S. H. Żak, and S. Sundaram, State and unknown input
observers for discrete-time nonlinear systems, 2016 IEEE 55th CDC, Las Vegas, Dec
12–14, 2016, pp. 7111–7116
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Sufficient condition for l∞-stability

Lemma

Suppose that for e[k+ 1] = f(k, e[k],v[k]), there exists V : Rn → R and
scalars δ ∈ (0, 1), β1, β2 > 0 and µ1, µ2 ≥ 0 such that

β1‖e[k]‖2 ≤ V (e[k]) ≤ β2‖e[k]‖2

and

∆V [k] ≤ −δ(V (e[k])− µ1‖v[k]‖2)
‖e[k]‖2 ≤ µ2V (e[k])

for all k ≥ 0, where ∆V [k] = V (e[k + 1])− V (e[k]). Then, the error
system is globally uniformly l∞-stable with performance level
γ =
√
µ1µ2 with respect to the disturbance input sequence v[k]

31 / 79



Proof of the sufficient condition

Expand ∆V [k] ≤ −δ(V (e[k])− µ1‖v[k]‖2)
Use ∆V [k] = V (e[k + 1])− V (e[k]) to obtain

V (e[k + 1]) ≤ (1− δ)V (e[k]) + δµ1‖v[k]‖2

Hence

V (e[k]) ≤ (1− δ)kV (e[0]) + δµ1

k−1∑
j=0

‖v[k]‖2

≤ (1− δ)kV (e[0]) + µ1‖v‖2∞

for any k ≥ 0 since 0 < δ < 1

32 / 79



Proof of the sufficient condition—Contd.

We have V (e[k]) ≤ (1− δ)kV (e[0]) + µ1‖v‖2∞
Hence

‖e[k]‖2 ≤ µ2V (e[k])

≤ µ2(1− δ)kV (e[0]) + µ1µ2‖v‖2∞

This implies
lim sup
k→∞

‖e[k]‖2 ≤ µ1µ2‖v‖2∞

In sum, the error dynamics are l∞-stable with performance level
γ =
√
µ1µ2

33 / 79



Stability of the error dynamics

Recall the observation error dynamics of the closed-loop UIO

e[k + 1] = (A1 −LC)e[k]−LDv[k]

Theorem

The observation error dynamics are globally uniformly l∞-stable with
performance level γ if (A1 −LC) is Schur stable and either of the
conditions of the definition of the l∞-stability is satisfied
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In sum: We proved stability of the error dynamics
lemma that we will use next

Observation error: e[k + 1] = (A1 −LC)e[k]−LDv[k]

Lemma

Suppose there exists a function V : Rn → R and scalars δ ∈ (0, 1),
β1, β2 > 0 and µ1, µ2 ≥ 0 such that

β1‖e[k]‖2 ≤ V (e[k]) ≤ β2‖e[k]‖2,

∆V [k] ≤ −δ(V (e[k])− µ1‖v[k]‖2), ‖e[k]‖2 ≤ µ2V (e[k])

for all k ≥ 0. Then, the observation error is globally uniformly
l∞-stable with performance level γ =

√
µ1µ2 with respect to the output

disturbance v[k]
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Observation error stability test

e[k + 1] = (A1 −LC)e[k]−LDv[k] := Ee[k] +Nv[k]

Theorem

If there exist matrices P = P> � 0 and L, and α ∈ (0, 1) such that[
E>PE − (1− α)P ∗

N>PE N>PN − αI

]
� 0

then the state observation error is l∞-stable with performance level
γ = 1/

√
λmin(P )

36 / 79



Error stability test proof

Since P = P> � 0, conditions of the lemma are satisfied with
β1 = λmin(P ), β2 = λmax(P ), and µ2 = 1/λmin(P )

Let V [k] = e[k]>Pe[k] be a Lyapunov function candidate for the
estimation error dynamics

Evaluate the first forward difference ∆V [k] = V [k + 1]− V [k] on
the trajectories of the error dynamics

∆V [k] = e[k]>(E>PE − P )e[k] + 2e[k]>E>PNv[k]

+v[k]>N>PNv[k]

Let ζ =
[
e[k]> v[k]>

]>
Pre-multiplying and post-multiplying the “big” matrix inequality
by ζ> and ζ, respectively, gives

∆V [k] + α(V [k]− ‖v[k]‖2) � 0
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Error stability test proof—Contd.

Condition of the lemma holds with µ1 = 1

The observer error satisfies

lim sup
k→∞

‖e[k]‖ ≤ γ lim sup
k→∞

‖v[k]‖∞

where

γ = 1/
√
λmin(P )

In summary, the state error dynamics are `∞-stable with
performance level γ
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From matrix inequality to an LMI

Let Z = PL, then solving the “big” matrix inequality is equivalent
to solving the LMI [

−P ∗
Ω21 Ω22

]
� 0,

for P and Z, where

Ω21
> =

[
PA1 −ZC −ZD

]
and

Ω22 =

[
−(1− α)P On×m2

Om2×n −αI

]
Take the Schur complement

Ω22 + Ω21P
−1Ω21

> � 0

which yields the “big” matrix inequality

39 / 79



Sufficient condition for UIO existence

Theorem

The UIO exists if

1 there exists M such that

(In −MC)B2 = On×m2
and MD = On×r

2 the pair (A1,C) is detectable

If (A1,C) detectable, then we can find the observer gain matrix L such
that (A1 −LC) is Schur stable
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Interpretation of the UIO Conditions

Lemma

If the pair ((I −MC)A,MC) := (A1,MC) is detectable, then the
pair (A1,C) is detectable

Proof by contraposition

Suppose (A1,C) is non-detectable

Then there exists an eigenvalue |z1| ≥ 1, which is an unobservable
mode of the pair (A1,C) such that

rank

[
z1I −A1

C

]
< n

41 / 79



Lemma proof—Contd.

There exists a vector v1 ∈ Cn such that

rank

[
z1I −A1

C

]
v1 = 0

Thus Cv1 = 0

Pre-multiply the above by M to obtain MCv1 = 0

Therefore rank

[
z1I −A1

C

]
< n

Thus, z1 also corresponds to a non-detectable mode of the pair
(A1,MC), that is, the pair (A1,MC) is non-detectable

42 / 79



Another lemma

Lemma

If

rank (CB2) = rank (B2) = m2

rank (In −MC) = n−m2,

then, the following are equivalent:

1 (A1,MC) is detectable

2 rank

[
z(In −MC)−A1

MC

]
= n for all |z| ≥ 1

3 rank

[
zIn −A −B2

MC On×m2

]
= n+m2 for all |z| ≥ 1
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Proof of the second lemma

First, we prove that conditions 1 and 2 are equivalent

(A1,MC) being detectable is equivalent to

rank

[
zIn −A1

MC

]
= n for all |z| ≥ 1

This is equivalent to

rank

([
In −zIn
O In

] [
zIn −A1

MC

])
= rank

[
z(In −MC)−A1

MC

]
for all |z| ≥ 1

Thus conditions 1 and 2 are equivalent
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Proof of the second lemma—Contd.

We will show that conditions 2 and 3 are equivalent

Since B2 has full column rank, it is left invertible

Take, for example, B2
†B2 = Im2

Then, ker
(
B2
†
)
∩ ker(In −MC) = {0} and

rank

[
In −MC

B2
†

]
= n

Let

S =

 In −MC On×p
B2
† Om2×p

Op×n Ip

, T =

[
In On×m2

−(zB2
† −B2

†A) Im2

]

where S ∈ R(n+p+m2)×(n+p), T ∈ R(n+m2)×(n+m2), and rank(S) = n+ p
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Conditions 2 and 3 equivalent

We have

rank

[
zIn −A −B2

MC O

]
= rank

(
S

[
zIn −A −B2

MC O

]
T

)

= rank

[
z(In −MC)−A1 O

O Im2

MC O

]

= rank

[
z(In −MC)−A1

MC

]
+m2

= n+m2

This concludes that conditions 2 and 3 are equivalent
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The role of system zeros

Theorem

If

rank
[
CB2 D

]
= rank(B2) + rank(D)[

−B2

D

]
is defined and has full column rank

rank

[
I −MC O

O M

]
= n

rank

[
z(In −MC)−A1

MC

]
= n for all |z| ≥ 1

then

rank

[
zIn −A −B2

C D

]
= n+m2 for all |z| ≥ 1
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Proof of theorem

If the matrix rank condition satisfied then there exists a solution
M that satisfies [

I −MC O
O M

] [
−B2

D

]
= O

Let M̃ =

[
I −MC O

O M

]
There exists M1 ∈ R(p−m2)×(n+p) such that

M1

[
−B2

D

]
= O

and rank

[
M̃
M1

]
= n+ p−m2
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Proof of theorem—Contd.

Since

[
−B2

D

]
has full column rank, it is left invertible, that is,

[
−B2

D

]† [ −B2

D

]
= Im2

Therefore,

ker

[
M̃
M1

]
∩ ker

[
−B2

D

]†
= {0}

and

rank


M̃
M1[
−B2

D

]†
 = n+ p
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Proof of theorem—Almost there

Let S =


M̃
M1[
−B2

D

]†
 and

T =

 In O

−
[
−B2

D

]† [
zIn −A
C

]
Im2


Then,

rankS

[
zIn −A −B2

C D

]
T

= rank


M̃

[
zIn −A
C

]
O

M1

[
zIn −A
C

]
O

O Im2
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Proof of theorem—Two more steps

We continue

rank


M̃

[
zIn −A
C

]
O

M1

[
zIn −A
C

]
O

O Im2


= rank

 M̃

[
zIn −A
C

]
M1

[
zIn −A
C

]
+m2

Note that

M̃

[
zIn −A
C

]
=

[
z(I −MC)−A1

MC

]
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Proof of theorem—Finally!

Therefore, rank

[
zIn −A −B2

C D

]
= n+m2 for all |z| ≥ 1 if

rank

[
z(I −MC)−A1

MC

]
= n, for all |z| ≥ 1

Recall that rank

[
z(I −MC)−A1

MC

]
= n, for all |z| ≥ 1 implies

detectability of the pair (A1,C)
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Constructing S

Recall, S =


M̃
M1[
−B2

D

]†


How to compute M1?

Note that M1 is such that[
M̃
M1

] [
−B2

D

]
=

[
O2n×m2

O(p−m2)×m2

]
rank

[
M̃
M1

]
= n+ p−m2

Can compute M1, using MATLAB, as

M>
1 = null

[
M̃[

−B>2 D>
] ]
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What about rank S?

Recall, rankS = rank


M̃
M1[
−B2

D

]†
 = n+ p

We also have,

ker

[
M̃
M1

]
∩ ker

[
−B2

D

]†
= {0}

rank

[
M̃
M1

]
= n+ p−m2

Hence, we have to have

rankS = n+ p
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Simple MATLAB code to compute S

function[]=trans_mat_S()

clc

clear

% Example 1:

A=[-1 0 0;0 -2 0;0 0 -0.3];

B2=[-2 -3 -4]’;

C=[1 0 0;0 1 0];

D=[2 2]’;

% Example 2

A=[1 0;1 1];

B2=[0 1]’;

C=[2 1;0 1];

D=[1 0]’;
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MATLAB code to compute S—Contd.

% Dimensions

n=size(A,1);

m2=size(B2,2);

p=size(C,1);

r=size(D,2);

% Solving for M

M=[B2 zeros(n,r)]*pinv([C*B2 D]);

Mtilde=[(eye(n)- M*C) zeros(n,m2+r);zeros(n,n) M];

M1=null([-B2’ D’;Mtilde])’;

% Transformation matrix

S=[Mtilde;M1;pinv([-B2;D])]
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Unknown input and output disturbance estimators
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Unknown input estimator

Pre-multiply both sides of the state dynamic B†2

B†2x[k + 1] = B†2Ax[k] +B†2B1u[k] +B†2B2w[k]

Use B†2B2 = Im2
to obtain

w[k] = B†2x[k + 1]−B†2Ax[k]−B†2B1u[k]

The unknown input estimator:

ŵ[k] = B†2x̂[k + 1]−B†2Ax̂[k]−B†2B1u[k]

The above estimator depends on x̂[k + 1]

Can estimate the unknown input with one sampling period
time-delay

ŵ[k − 1] = B†2x̂[k]−B†2Ax̂[k − 1]−B†2B1u[k − 1]
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Unknown input estimator performance

Unknown input estimation error, ew[k] = w[k]− ŵ[k]

Then, ew[k] = B†2e[k + 1]−B†2Ae[k]

We have, lim supk→∞ ‖e[k]‖ ≤ γ‖v[k]‖∞
Unknown input estimation error bound

lim sup
k→∞

‖ew[k]‖ ≤ ‖B†2‖(γ‖v[k + 1]‖∞ + ‖A‖γ‖v[k]‖∞)

≤ ‖B†2‖(1 + ‖A‖)√µ‖v[k]‖∞

Let γw = ‖B†2‖(1 + ‖A‖)√µ
Then, lim supk→∞ ‖ew[k]‖ ≤ γw‖v[k]‖∞
Unknown input estimator performance level γw
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Output disturbance estimator

Pre-multiply output equation by D†

D†y[k] = D†Cx[k] +D†Dv[k]

Rearrange to obtain, v[k] = D†y[k]−D†Cx[k]

Output disturbance estimator

v̂[k] = D†y[k]−D†Cx̂[k]

Output disturbance estimation error:

ev[k] = v[k]− v̂[k]

Hence, ev[k] = −D†Ce[k]
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Output disturbance estimator performance

We have
ev[k] = −D†Ce[k]

Recall that lim supk→∞ ‖e[k]‖ ≤ γ‖v[k]‖∞
Output disturbance estimation error bound

lim sup
k→∞

‖ev[k]‖ ≤ ‖D†‖‖C‖γ‖v[k]‖∞

≤ ‖D†‖‖C‖√µ‖v[k]‖∞

Output disturbance estimator performance level,

γv = ‖D†‖‖C‖√µ
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Relations With the Strong Observer of Hautus

System considered by Hautus

x[k + 1] = Ax[k] +B2w[k]

y[k] = Cx[k] +Dw[k]

UIO (strong observer) exists ⇐⇒

1 rank

[
CB2 D
D O

]
= rankD + rank

[
−B2

D

]
2 the system zeros of the system defined by quadruple (A,B2,C,D)

are in the open unit disc

M. L. J. Hautus, Strong Detectability and Observers, Linear Algebra and Its
Applications, Vol. 50, pp. 353–368, 1983
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From our model into the Hautus model

Need the same unknown input and output disturbance

x[k + 1] = Ax[k] +B1u[k] +
[
B2 O

] [ w[k]
v[k]

]
y[k] = Cx[k] +

[
O D

] [ w[k]
v[k]

]
Apply the Hautus matrix rank condition

rank

[
CB2 O O D
O D O O

]
= rank[ O D ]

+rank

[
−B2 O
O D

]
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Manipulations

The Hautus matrix rank condition

rank

[
CB2 O O D
O D O O

]
= rank[ O D ]

+rank

[
−B2 O
O D

]
We obtain

rank
[
CB2 D

]
= rank(B2) + rank(D)

The matrix rank conditions equivalent for the augmented system
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System zeros conditions

The Hautus system zeros condition applied to the augmented
system

rank

[
zI −A −B2 O
C O D

]
= n+m2 + r for all |z| ≥ 1

If the rank condition

rank

[
zIn −A −B2

C D

]
= n+m2 for all |z| ≥ 1

not satisfied, then there are v1 and v2, not both zero, such that[
zIn −A −B2

C D

] [
v1
v2

]
=

[
0
0

]
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System zeros conditions—Contd

Then [
zIn −A −B2 O
C O D

] [ v1
v2
v2

]
=

[
0
0

]

The system zero condition for the augmented system implies the
system zero condition for the original system
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Matrix rank conditions

Theorem

The matrix rank condition

rank
[
CB2 D

]
= rankB2 + rankD

implies the matrix rank condition of Hautus

rank

[
CB2 D
D O

]
= rankD + rank

[
−B2

D

]
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Proof of Theorem: Notation for the various matrix rank
conditions

1 S ⇐⇒ rank
[
CB2

]
= rankB2

2 G ⇐⇒ rank
[
CB2 D

]
= rankB2 + rankD

3 M⇐⇒ rank(CB2 +D) = rank

[
B2

D

]
, when CB2 +D is defined

4 H ⇐⇒ Hautus’ matrix rank condition:

rank

[
CB2 D
D O

]
= rank

[
B2

D

]
+ rankD

68 / 79



Well known equalities

For any matrix M , let

c(M) = Number of columns of M

kerM = {v : Mv = 0}

We will make use of the well known equality

c(M) = rankM + dim kerM

Note that G implies that rank(CB2) = rankB2 and thus
CB2v = 0 ⇐⇒ B2v = 0

Equivalently, ker(CB2) = kerB2
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More notation

If u, v are column vectors, we let

u⊕ v =

[
u
v

]
If U, V are vector spaces of column vectors, we let

U ⊕ V = {u⊕ v : u ∈ U,v ∈ V }

It is easy to see that

dim(U ⊕ V ) = dimU + dimV

Just note that if {u1, . . . ,up} and {v1, . . . ,vq} are bases of U , V ,
respectively, then {u1 ⊕ 0, . . . ,up ⊕ 0,0⊕ v1, . . . ,0⊕ vq} is a basis
for U ⊕ V
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Lemma 1

Recall
G ⇐⇒ rank

[
CB2 D

]
= rankB2 + rankD

If G, then

ker(
[
CB2 D

]
) = kerB2 ⊕ kerD
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Proof of Lemma 1

G and equality c(M) = rankM + dim kerM imply

dim ker(
[
CB2 D

]
)

= c(
[
CB2 D

]
)− rank(

[
CB2 D

]
)

= c(CB2) + c(D)− rank(B2)− rankD

= dim kerB2 + dim kerD

= dim(kerB2 ⊕ kerD)

It is immediate that

kerB2 ⊕ kerD ⊂ ker(
[
CB2 D

]
)

Hence, ker(
[
CB2 D

]
) = kerB2 ⊕ kerD
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Lemma 2

If G, then ker(CB2 +D) = kerB2 ∩ kerD

Proof: We have

kerB2 ∩ kerD ⊂ ker(CB2 +D)

Suppose (CB2 +D)v = 0, then

[
CB2 D

] [v
v

]
= 0

It follows from Lemma 1 that[
v
v

]
∈ kerB2 ⊕ kerD

Therefore B2v = 0 and Dv = 0 and the lemma follows
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Lemma 3

If G then M

Proof: Observe that

ker

[
B2

D

]
= kerB2 ∩ kerD

Thus by Lemma 2, we have

ker(CB2 +D) = ker

[
B2

D

]
This is equivalent to the claim of the lemma since the two matrices
have the same number of columns
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Proof of the Theorem

Assume G
Then the above lemmas hold and all will be used

The Hautus matrix rank condition is

rank

[
CB2 D
D O

]
= rank

[
B2

D

]
+ rankD

By Lemma 3, the above is equivalent to

rank

[
CB2 D
D O

]
= rank(CB2 +D) + rankD

This is equivalent to

rank

[
CB2 D
D O

]
= rank

[
CB2 +D O

O D

]
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Proof of the Theorem—Contd

We prove

rank

[
CB2 D
D O

]
= rank

[
CB2 +D O

O D

]
by showing that the two matrices have the same kernel

Suppose [
CB2 D
D O

] [
u
v

]
= 0

Then [
CB2 D

] [u
v

]
= 0, Du = 0

76 / 79



Proof of the Theorem—Use Lemma 1

By Lemma 1, CB2u = 0, Dv = 0, Du = 0

It follows that [
CB2 +D O

O D

] [
u
v

]
= 0

Conversely, suppose [
CB2 +D O

O D

] [
u
v

]
= 0

Then

(CB2 +D)u = 0, Dv = 0

By Lemma 6,

CB2u = 0, Du = 0, Dv = 0
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Conclusion of Proof of Theorem

Represent

CB2u = 0, Du = 0, Dv = 0

in matrix format

Thus [
CB2 D
D O

] [
u
v

]
= 0

Therefore the two matrices in question have the same kernel and
therefore the same rank since they clearly have the same number
of columns
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Conclusions

Unknown Input Observer (UIO)—powerful and promising tool for
detecting and monitoring malicious attacks in networked control
systems

Promising directions—large-scale systems

Significant industrial applications around the corner

UIO—Way To Go!
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