SENIOR CAPSTONE/ SENIOR DESIGN EXPERIENCE

Alginate Vegan Sausage

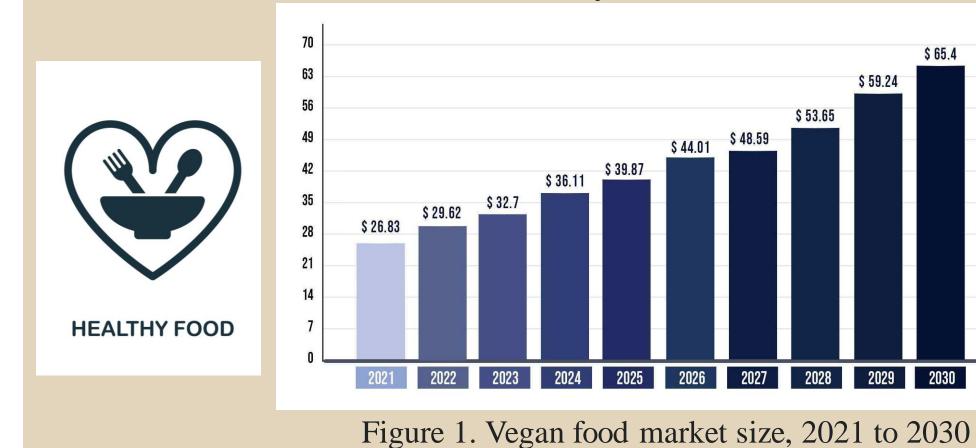
Andrea Garcia (BE), Milo Anderson (BE), Zhujin Xia (BE)

Purdue University, Department of Agriculture and Biological engineering

West Lafayette, IN

Agricultural and Biological Engineering

Objective


• To design a novel food product for the increasing vegan market by utilizing a sodium alginate casing and a wheat gluten/soy protein concentrate formulation.

2024

• To develop a large-scale production, 33 million sausage/year, and create a profitable business focused on minimal energy use and minimal waste.

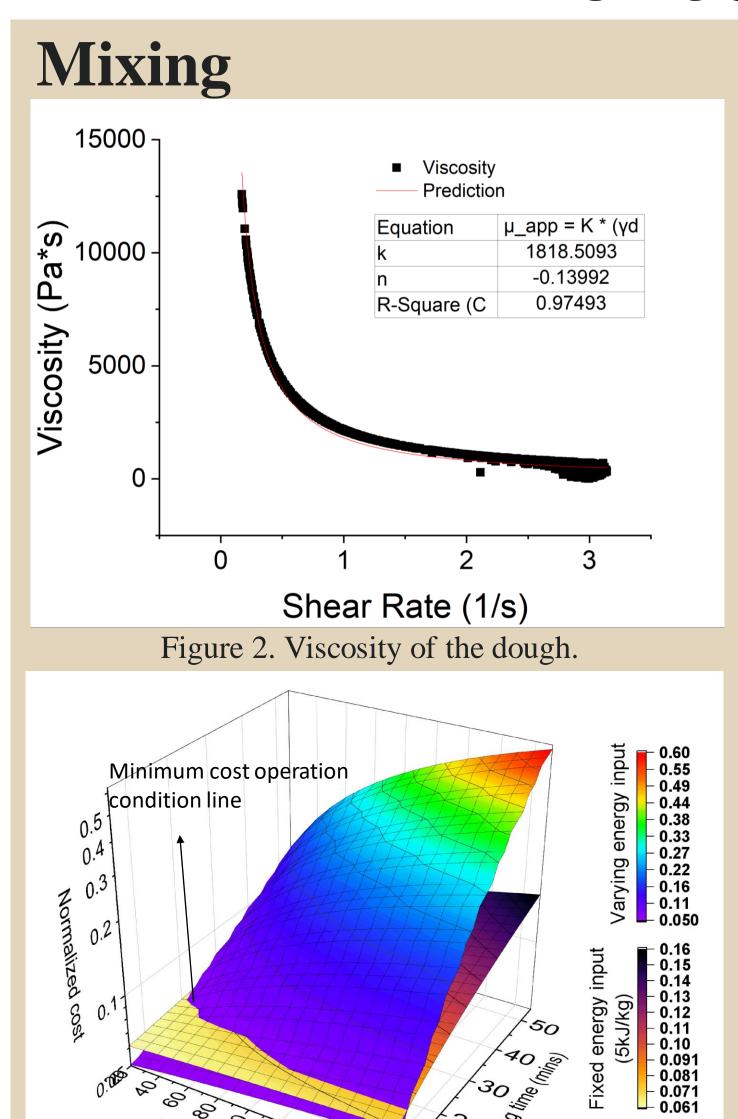
Market analysis

- The market for plant-based sausages is valued at **955** millions in 2022.
- There is a growing health consciousness amongst consumers and the demand for healthier food choices has almost **doubled** in last 4 years.

(USD Billion)

Global factors

- Consumers are becoming more aware of the environmental impact that comes from meat production.
- Plant-based sausages have a **lower**environmental footprint compared
 to meat sausages, which aligns with
 the consumer sustainability values.



Unit Operations and Alternatives

onic operations and internation	
Unit Operation	Alternative Solutions
Mixing	Spiral mixer, Chorleywood bread process (CBP), Continuous mixer
Extruding	Co-extrusion, extrusion, and vacuum filling
Preparation & Preservation	Curing, Fermentation, and Drying

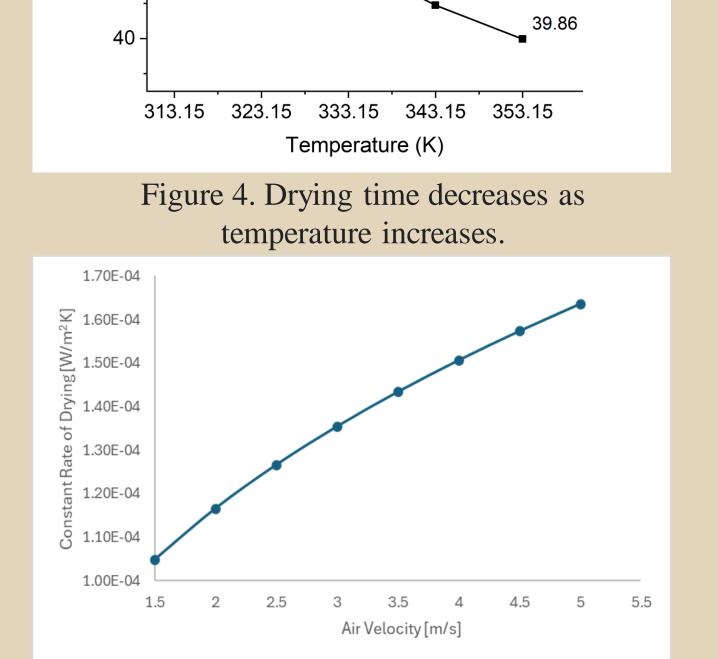
Process Flow diagram **Nutrition Facts** Serving size Sau sage in gredient 21.6 kg/hr Amount Per Serving **337.5** kg/hr **240 Calories** % Daily Value Total Fat 10g 337.5 kg/hr Saturated Fat 1g 359.1 kg/hr 0 kg/hr Trans Fat 0g Wet dough Cholesterol 0mg Continuous extr / XLJ-101 337.5 kg/hr Casing by coextrusion Sodium 460mg **Total Carbohydrate** 6g Mixing tank/TM-101 Dietary Fiber 1g Coated sau sage Total Sugars 0g Dough mixing and kneading Includes 0g Added Sugars Protein 32g Vitamin D 0mcg 339.7.1 kg/hr Calcium 80mg 359.1 kg/hr Cased sausage Iron 4.1mg 250.02 kg/hr otassium 90mg * The % Daily Value (DV) tells you how much a nutrient in a serving of food contributes to a daily diet. 2,000 calories a day Calcium chlorid / V-103 Tray Drying / TDR-101 Final product Casing formation Cold air Tray Drying Hot air % Ingredients Ingredients Ingredients 42-80 KW 40.3 Cumin Garlic powder Wheat gluten 20.1 Onion powder Soy protein concentrate Potassium sorbate 0.6 kg/hr Vary based on condition 0.9 Citric acid 16.5 alginate Sunflower oil 0.8 |Sugar Salt Heating / HX-101 0.7 |Xanthan gum Avocado oil 1.1 Fennel seeds

Unit Operation and Optimization

Extrusion Increasing screw diameter

• Increasing screw diameter or channel width decreases rotational speed.

RPM


 These can be optimized to decrease power consumption if SME is known

Dex (m)

0.06	205
0.07	175
0.08	153
0.09	136
0.1	123
NAL (1000)	DDN 4
W (m)	RPM
w (m) 0.01	RPIVI 205
•	
0.01	205
0.01	205 169.5
0.01 0.011 0.012	205 169.5 142.43

Drying

60 -

—■ Time Dry

Figure 5. Increasing Air flow Velocity increase drying rate.

Plant systems

Mixing

- CIP and QA to ensure the safety of food.
- Sustainable energy source.

Extrusion

- HAACP and QA
- Their implementation can minimize waste by reducing the likelihood of defects, rework or disposal of non-conforming material.
- Feedback loops to maintain pressure and flowrate can aid in critical control points

Drying

- Utilize air-to-air heat exchanger to improve energetic performance of tray dryer.
- Solar energy can be used to minimize carbon footprint

Economic analysis

- Total equipment cost: 464,410\$
- Total capital investment: 2,275,609 \$
- Total product cost: 13.78 \$/kg
- Break-even cost in 10 years: 14.61 \$/kg
- Annual production: 8093 batches, 2,023,250kg

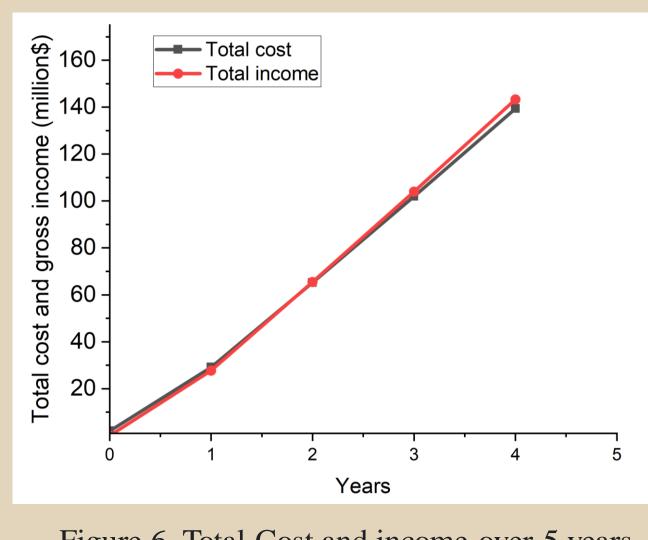


Figure 6. Total Cost and income over 5 years for 15 \$/kg sale price.

Simple Truth® Plant- 12.63

Based Veggie Dogs \$/kg

Future work

Unit operations

- Using solar energy to power tray drying
- Finding the SME for different RPM to further optimize the extruder

Final product

• Adding more nutritional value by adding vegetables into the formulation

Technical Advisor: Daniel Hauersperger

Instructor: Dr. Martin Okos

Figure 3. Cost optimization for mixing.

References: https://www.precedenceresearch.com/vegan-food-market

https://www.peta.org/about-peta/faq/how-does-eating-meat-harm-the-environment/

https://www.gminsights.com/industry-analysis/plant-based-sausages-

market#:~:text=Plant%2Dbased%20Sausages%20Industry%20Analysis,CAGR%20from%202023%20to%202032