SENIOR CAPSTONE/ SENIOR DESIGN EXPERIENCE 2024

Non-Alcoholic Blackcurrant Wine

Hannah Slabach¹, Jenna Hans¹, Nathan Greenland¹ Dr. Martin Okos¹, Daniel Hauersperger¹

¹Biological Engineering, Purdue University, West Lafayette, IN

Process Design

To create a unique and fun alcohol alternative to create inclusivity in social settings

Objective

Design Considerations

- Environmental Impact
- Consumer Opinion
- **Flavor Profile**

Market Analysis

- 28% of consumers purchase a new beverage if it has a unique flavor
- 60% of Consumers in 2023 believe that the quickest way to improve health is to decrease alcohol consumption
- 57% of Women choose wine as their primary alcoholic beverage
- 20% of women participate in a sober curious lifestyle

Pasteurization Ferme

Fermentation Stripping

Controls	Monitor outlet temperature to correct incoming heating/cooling fluid rate	Temperature and level sensors to counteract generated heat and CO ₂	Temperature and Differential Pressure Sensors to alert operators of values outside allowable range
Alternatives	Sulfites	Semi-Batch	Reverse Osmosis (RO)
	Thermal Pasteurization	Perfusion	Evaporative Pertraction (EP)
Optimization	HX Plate Optimal Gap	Reactor Volume	Vapor-Liquid Flow Mass Ratio
	4.59 mm	1,474 L	5.60
	Cost: \$27,500	Cost: \$54,160	Cost: \$12,700
Experimental Results	Thermal-sonication at 55°C with a frequency of 20 Hz & power density of 16.2 W/mL has a log reduction of 3.3 of saccharomyces cerevisiae ⁵	Gased on blackcurrant sugar content, a fermentation time of 8 days is needed ²	SCC reduced the ethanol content o wine to the lowest ABV of all commercially-viable techniques at 0.3% ³ Dealcoholized wine by SCC was found to have better sensory characteristics than raw wine by tasting panel ⁴

Economic Analysis

Total Capital Investment	\$7,858,018.92
Raw Material Cost/kg Product	\$5.66/kg
Total Product Cost	\$4,105,346.34
Break Even Production Rate	269,000 kg/yr

After 10 years of production

Sales/kg	\$38.33/kg
Sales/750 mL bottle	\$24.44/bottle
Annual Sales	\$5,766,286.98
ROI	31.2%
DCFR	4.33%

Plant Design

Wastewater Management

Recycling water used in HEX

- Reactor Waste Management
- Recycling yeast (with careful monitoring)
- Selling blackcurrant pomace as compost
- Engineering yeast to utilize CO₂

Ethanol Waste Management

Stripped ethanol used for energy valorization

Future Work

- Improve product taste while minimizing added sugar
- Collect experimental data with updated recipe and physical distillation equipment
- Maximize flavor compounds postfermentation and stripping
- Determine optimal yeast nutrition

Acknowledgements: Thank you to Daniel Hauersperger, ABE Faculty and Staff, and PBO

2-Anneghawa, A. Ophick, S. & Kölmine, C. (202). Konict Moldling of Ethania Inhibition funding Alculal Immunition of Ours Source using Sancharappes Convision. IEEE, ACJ, M. 1983.
3: Son S. F. Li, A. J. S. Min, K. Wang, L. Ling, Y. Ling, S. Hais, S. (200). Holisouris Disordiantian of Minos: The Integration of Minos: The