$A = K \times R \times C \times P \times LS$

 Soil Loss Equation, RUSLE2 were key features that we used throughout our project.

<u>List of Features or</u> <u>Outcomes</u>

- Planting Cover Crops
- Buffer Zones
- No-till or limited tillage practices
- Planting trees
- Rip-rap/Crushed Concrete dumped along river bank at weak spots

Value Proposition

 The idea of our calculations that show how much cover crops and no tillage practices do for erosion puts it into perspective for a farmer to know how much they are really losing by farming the way that they do.

- 5/3/2022
- Agricultural Systems
 Management Capstone
- Luke Weaver, Carter Wait, Travis Patrick, Jack Utter
 - Sponsor: Eric Spurgeon

Vollmer Family Farm: River Shore and LandUse Management

"Saving the soil one buffer zone at a time"

Problem Adressed

Vollmer Family and the farmer who rents the land are suffering from severe soil erosion due to heavy rainfalls and river flooding. The erosion is eating away at the riverbank and they're at risk of losing valuable farmland.

Characteristics of the Problem at Hand

- Severe soil erosion
- Loss of valuable topsoil
- Loss of nutrients (N,P,K) from erosion
- Pollution of East Fork
 White River from chemicals and fertilizers

Customer

- Vollmer Family Farm
- Farmer

Data Collection and Calculations

Figure 1: Map showing different soil types within the field and the area covered by each specific soil type.

Table 2: Field breakdown of soil types and erosion factors

Corn And Soybeans Till and No Till						
Map symbol and soil name	Pct. of map unit	Slope RV	E Slope Lengt	Runoff	T Factor	
						Kf Factor
Apalona, eroded	45	9	124	High	4	0.43
Zanesville, eroded	40	9	124	High	4	0.43
Bloomfield	30	7	98	Very low	5	0.1
Birds	75	0.3	298	Negligible	5	0.43
Martinsville	90	1	200	Low	5	0.32
Moundhaven	90	1	298	Negligible	5	0.1
Pike	95	4.1	150	Low	5	0.43
Wakeland	75	0.5	298	Negligible	5	0.43
Wirt	80	1	298	Very low	5	0.32

Table 3. Soil Loss/Year (Tons & \$)

Soil Loss Total Till	Soil Loss Total No Till	Spring Till with Rye Cover Crop	No-Till with Rye Cover Crop
tons/acre/year	tons/acre/year	tons/acre/year	tons/acre/year
56	14	8.3	7.6
56	14	8.4	6.7
18.9	5.4	1.5	1.2
292.5	36.4	0.5	0.42
159.95	50.27	1	0.83
48	14.8	0.33	0.27
380	100	4.3	3.4
35.36	11.288	0.75	0.62
121.73	39.48	1	1.85
1168.44	285.638	26.08	21.89
\$7.03	\$7.03	\$7.03	\$7.03
\$8,214.13	\$2,008.04	\$366.68	\$307.77

Final Solution

Our project will reach its maximum impact by using cover crops on the entirety of the field while also not tilling up the ground at all. It will cost the customer more per year buying seed in order to put cover crops in, but the farmer is going to have to accept that in order to maximize the amount of soil that they can keep inside the field. Our project is very specific to the Vollmer Family Farm, but the idea of our calculations that show how much cover crops and no tillage practices do for erosion puts it into perspective for a farmer to know how much they are really losing by farming the way that they do.

