Problem Statement and Background

The AgBOT team this year decided to focus on improving the design of the previous year's model. The team this year decide to focus on several design changes to help improve on what was previously used for competition the previous year. These design changes include:

- Automatic multivator height adjustment
- Installation of electronics on trailer
- Trailer ballasting

Impact

- Revolutionize new technology in the agriculture industry
- Increase field potential to help farmers get more money into their pockets

Environmental Factors

In consideration of today’s growing issues with climate change, environmental pollution, and increased societal pressures to these issues The Purdue AgBOT seeks to:

- Limit application of pesticides onto crops by implementing precision application and mechanical destruction
- Monitor trouble areas of fields with geolocation tagging

Constraints and Criteria

- $5000 max project spending
- The current trailer frame shall be used for 2020 competition
- Current multivators actuators would be used for 2020 competition
- Three-point Hitch would be kept as this allows for changing implements
- Electronics and power equipment to be moved to trailer from UTV

Alternative Solutions

#1 Storage For Electronics
On Trailer:
1. Solid Frame- Lots of storage, simple, roomy, blocks engine and containers
2. Independent Frame- Engine access, electronics access, not as stable

#2

Decision Making

- Design of sprayer tank mounts to utilize slimmer tanks
- Design of automatic depth control of dynamic ground changes though a field
- Design of electronic box brackets to allow trailer to be stand alone
- Pivoting electronic mounts too provides access to various equipment

Economic Analysis

- Estimated Cost of Metal: $150
- Cost of Lidar Sensors: $600
- Use of standard metal tubing reduced cost of materials
- Simple design for equipment rack reduced cost of fabrication in manhours

Process Implementation Plans

Multivator Simulation and Arduino Code for Auto Height Control

Full 3D Model and Drawings For Added Structural Component

Testing Plan for determining Effectiveness of Height Control System

New design

- All Computing on trailer
- Pivoting racks for access
- Racks locked with clevis pins
- Slim chemical containers
- Anti-sway 3-pt hitch
- Auto height control
- GPS on trailer

New configuration allows the system to be moved to any vehicle with a hitch.
Problem Statement and Background
The AgBOT team this year decided to focus on improving the design of the previous year's model. The team this year decided to focus on several design changes to help improve on what was previously used for competition the previous year. These design changes included:

• Automatic multivator height adjustment
• Installation of electronics on trailer
• Trailer ballasting

Impact
• Revolutionize new technology in the agriculture industry
• Increase field potential to help farmers get more money into their pockets

Environmental Factors
In consideration of today’s growing issues with climate change, environmental pollution, and increased societal pressures to these issues, the Purdue AgBOT seeks to:

• Limit application of pesticides onto crops by implementing precision application and mechanical destruction
• Monitor trouble areas of fields with geolocation tagging

Constraints and Criteria
- $5000 max project spending
- The current trailer frame shall be used for 2020 competition
- Current multivators actuators would be used for 2020 competition
- Three-point Hitch would be kept as this allows for changing implements
- Electronics and power equipment to be moved to trailer from UTV

Alternative Solutions
#1 Storage For Electronics
On Trailer:
1. Solid Frame- Lots of storage, simple, roomy, blocks engine and containers

#2 Independent Frame- Engine access, electronics access, not as stable

Decision Making
• Design of sprayer tank mounts to utilize slimmer tanks
• Design of automatic depth control of dynamic ground changes though a field
• Design of electronic box brackets to allow trailer to be stand alone
• Pivoting electronic mounts too provides access to various equipment

Economic Analysis
• Estimated Cost of Metal: $150
• Cost of Lidar Sensors: $600
• Use of standard metal tubing reduced cost of materials
• Simple design for equipment rack reduced cost of fabrication in manhours

Economic Analysis
• Analysis of design to find stress concentrations performed in Creo using 500 lb loading on equipment racks.

Process Implementation Plans
Multivator Simulation and Arduino Code for Auto Height Control
Full 3D Model and Drawings For Added Structural Component

Testing Plan for determining Effectiveness of Height Control System

New design
• All Computing on trailer
• Pivoting racks for access
• Racks locked with clevis pins
• Slim chemical containers
• Anti-sway 3-pt hitch
• Auto height control
• GPS on trailer

New configuration allows the system to be moved to any vehicle with a hitch.

Instructors:
John Lumkes
John Evans
Margaret Gitau

Acknowledgements:
Special thanks to the 2019-2020 AgBot Team and help from previous alumni.

Sponsor:
Roger Tormoehlen

Technical Advisor:
Richard Fox
Problem Statement and Background
The AgBOT team this year decided to focus on improving the design of the previous year's model. The team this year decide to focus on several design changes to help improve on what was previously used for competition the previous year. These design changes include:
• Automatic multivator height adjustment
• Installation of electronics on trailer
• Trailer ballasting

Impact
• Revolutionize new technology in the agriculture industry
• Increase field potential to help farmers get more money into their pockets

Environmental Factors
In consideration of today’s growing issues with climate change, environmental pollution, and increased societal pressures to these issues, The Purdue AgBOT seeks to:
• Limit application of pesticides onto crops by implementing precision application and mechanical destruction
• Monitor trouble areas of fields with geolocation tagging

Constraints and Criteria
• $5000 max project spending
• The current trailer frame shall be used for 2020 competition
• Current multivators actuators would be used for 2020 competition
• Three-point Hitch would be kept as this allows for changing implements
• Electronics and power equipment to be moved to trailer from UTV

Decision Making
• Design of sprayer tank mounts to utilize slimmer tanks
• Design of automatic depth control of dynamic ground changes though a field
• Design of electronic box brackets to allow trailer to be stand alone
• Pivoting electronic mounts too provides access to various equipment

Economic Analysis
• Estimated Cost of Metal: $150
• Cost of Lidar Sensors: $600
• Use of standard metal tubing reduced cost of materials
• Simple design for equipment rack reduced cost of fabrication in manhours

Alternative Solutions
#1 Storage For Electronics
On Trailer:
1. Solid Frame- Lots of storage, simple, roomy, blocks engine and containers
2. Independent Frame- Engine access, electronics access, not as stable
#2 Analysis of design to find stress concentrations performed in Creo using 500 lb loading on equipment racks.

Sponsor:
Roger Tormoehlen

Technical Advisor:
Richard Fox

Instructors:
John Lumkes
John Evans
Margaret Gitau

Acknowledgements:
Special thanks to the 2019-2020 AgBot Team and help from previous alumni.
Title: AgBot-1

Problem Statement and Background
The AgBOT team this year decided to focus on improving the design of the previous year’s model. The team this year decided to focus on several design changes to help improve on what was previously used for competition the previous year. These design changes include:

- Automatic multivator height adjustment
- Installation of electronics on trailer
- Trailer ballasting

Impact
- Revolutionize new technology in the agriculture industry
- Increase field potential to help farmers get more money into their pockets

Environmental Factors
In consideration of today’s growing issues with climate change, environmental pollution, and increased societal pressures to these issues The Purdue AgBOT seeks to:
- Limit application of pesticides onto crops by implementing precision application and mechanical destruction
- Monitor trouble areas of fields with geolocation tagging

Constraints and Criteria
- $5000 max project spending
- The current trailer frame shall be used for 2020 competition
- Current multivators actuators would be used for 2020 competition
- Three-point Hitch would be kept as this allows for changing implements
- Electronics and power equipment to be moved to trailer from UTV

Alternative Solutions
1. Storage For Electronics
 - Solid Frame- Lots of storage, simple, roomy, blocks engine and containers
 - Independent Frame- Engine access, electronics access, not as stable

Decision Making
- Design of sprayer tank mounts to utilize slimmer tanks
- Design of automatic depth control of dynamic ground changes though a field
- Design of electronic box brackets to allow trailer to be stand alone
- Pivoting electronic mounts too provides access to various equipment

Economic Analysis
- Estimated Cost of Metal: $150
- Cost of Lidar Sensors: $600
- Use of standard metal tubing reduced cost of materials
- Simple design for equipment rack reduced cost of fabrication in manhours

Process Implementation Plans
- Linear Actuators
- Old AgBOT Design
- New design
- Multivator Simulation and Arduino Code for Auto Height Control
- Full 3D Model and Drawings For Added Structural Component

Testing Plan for determining Effectiveness of Height Control System

Acknowledgements:
Special thanks to the 2019-2020 AgBot Team and help from previous alumni.

Instructors:
John Lumkes
John Evans
Margaret Gitau

Technical Advisor:
Richard Fox

Sponsor:
Roger Tormoehlen
Problem Statement and Background
The AgBOT team this year decided to focus on improving the design of the previous year’s model. The team this year decide to focus on several design changes to help improve on what was previously used for competition the previous year. These design changes include:

- Automatic multivator height adjustment
- Installation of electronics on trailer
- Trailer ballasting

Impact
- Revolutionize new technology in the agriculture industry
- Increase field potential to help farmers get more money into their pockets

Environmental Factors
In consideration of today’s growing issues with climate change, environmental pollution, and increased societal pressures to these issues The Purdue AgBOT seeks to:
- Limit application of pesticides onto crops by implementing precision application and mechanical destruction
- Monitor trouble areas of fields with geolocation tagging

Constraints and Criteria
- $5000 max project spending
- The current trailer frame shall be used for 2020 competition
- Current multivators actuators would be used for 2020 competition
- Three-point Hitch would be kept as this allows for changing implements
- Electronics and power equipment to be moved to trailer from UTV

Alternative Solutions
#1 Storage For Electronics On Trailer:
1. Solid Frame- Lots of storage, simple, roomy, blocks engine and containers
2. Independent Frame- Engine access, electronics access, not as stable

#2

Decision Making
- Design of sprayer tank mounts to utilize slimmer tanks
- Design of automatic depth control of dynamic ground changes though a field
- Design of electronic box brackets to allow trailer to be stand alone
- Pivoting electronic mounts too provides access to various equipment

Economic Analysis
- Estimated Cost of Metal: $150
- Cost of Lidar Sensors: $600
- Use of standard metal tubing reduced cost of materials
- Simple design for equipment rack reduced cost of fabrication in manhours

Process Implementation Plans
- Multivator Simulation and Arduino Code for Auto Height Control
- Full 3D Model and Drawings For Added Structural Component

Testing Plan for determining Effectiveness of Height Control System

Alternative Solutions
- Storage For Electronics
 - On Trailer:
 1. Solid Frame- Lots of storage, simple, roomy, blocks engine and containers
 2. Independent Frame- Engine access, electronics access, not as stable

Sponsor:
Roger Tormoehlen

Technical Advisor:
Richard Fox

Instructors:
John Lumkes
John Evans
Margaret Gitau

Acknowledgements:
Special thanks to the 2019-2020 AgBot Team and help from previous alumni.
Problem Statement and Background
The AgBOT team this year decided to focus on improving the design of the previous year's model. The team this year decide to focus on several design changes to help improve on what was previously used for competition the previous year. These design changes include:

- Automatic multivator height adjustment
- Installation of electronics on trailer
- Trailer ballasting

Impact
- Revolutionize new technology in the agriculture industry
- Increase field potential to help farmers get more money into their pockets

Environmental Factors
In consideration of today’s growing issues with climate change, environmental pollution, and increased societal pressures to these issues The Purdue AgBOT seeks to:

- Limit application of pesticides onto crops by implementing precision application and mechanical destruction
- Monitor trouble areas of fields with geolocation tagging

Constraints and Criteria
- $5000 max project spending
- The current trailer frame shall be used for 2020 competition
- Current multivators actuators would be used for 2020 competition
- Three-point Hitch would be kept as this allows for changing implements
- Electronics and power equipment to be moved to trailer from UTV

Decision Making

- Design of sprayer tank mounts to utilize slimmer tanks
- Design of automatic depth control of dynamic ground changes though a field
- Design of electronic box brackets to allow trailer to be stand alone
- Pivoting electronic mounts too provides access to various equipment

Economic Analysis

- Estimated Cost of Metal: $150
- Cost of Lidar Sensors: $600
- Use of standard metal tubing reduced cost of materials
- Simple design for equipment rack reduced cost of fabrication in manhours

Alternative Solutions

#1 Storage For Electronics
On Trailer:
1. Solid Frame- Lots of storage, simple, roomy, blocks engine and containers

#2 Independent Frame- Engine access, electronics access, not as stable

- Analysis of design to find stress concentrations performed in Creo using 500 lb loading on equipment racks.

Sponsor:
Roger Tormoehlen

Technical Advisor:
Richard Fox

Instructors:
John Lumkes
John Evans
Margaret Gitau

Acknowledgements:
Special thanks to the 2019-2020 AgBot Team and help from previous alumni.