Compostation Prototype

Statement of Problem:
Design a solar-powered composting system capable of degrading food waste, paper waste, and pet waste into a nutrient-dense humus for local land application.

Objectives:
- Decrease organic material transported to landfills.
- Source system energy from renewable sources.
- Increase public awareness of the benefits of composting.
- Produce Class A biosolids for agricultural uses.

Motivation:
- Population increases have lead to strains on landfills and waste treatment facilities.
- Growing public concern of greenhouse gas emissions and environmental impacts.
- Availability of waste streams which can be converted to high-value products.

Market Share
- Niche markets already predisposed to energy conservation technologies.
- Populations where grants are available to provide funding for the development of environmentally friendly processes.
- Targeted customers include: apartment complexes, college campuses, and public parks.

Societal and Global Impacts

Positive Impacts
- Mitigation of greenhouse gas emissions due to reduction in waste transport.
- Inputs otherwise treated as waste are utilized to generate a value-added product.
- Educational benefits provided to the community at large.
- Reduced capacity requirements for local landfills.

Potential Design Drawbacks
- Net increase in emissions if the system installation is not accompanied by a reduction in garbage collection.

Process Goals:
- Production of Class A biosolids
- High substrate conversion
- Cost effective

Alternatives Considered:
- Shredding
 - Cascaded shredders
 - Industrial biaxis shredder
 - Multipurpose blender
- Thermophilic Decomposition
 - Screw conveyor
 - Belt conveyor
 - Aerated fermenter
 - Plug flow reactor
 - Screw conveyor
- Air Filter
 - Carbon Filter
 - Biofiber filter
 - Combined water and air filter
- Mesophilic Decomposition
 - Dual fermentation tanks
 - Batch fermentation tank

Design Constraints and Challenges
- EPA Class A biosolids design standards require that compost be maintained at an operating temperature of 40 degrees Celsius for a minimum of five days, and exceed 55 degrees Celsius for at least four hours.
- Availability of solar energy due to weather fluctuations.
- Addition of non-biodegradable substrates to the feed stream.

Economic Analysis:
- The gross earnings of the installed pilot system has been evaluated.
- Annual Sales and Savings Income: $2,685.61

Direct Costs:
- Purchased Equipment: $3,250
- Installation: $812.50
- Instrumentation and Controls: $325.00
- Total: $4,387.50

Indirect Costs:
- Consultation and Design Costs: $1,316.25
- Total: $5,703.75

Fixed-Capital Investment (P):
- $5,703.75

Fixed-Capital Investment (A):
- $1,597.48

Direct Production Costs:
- Maintenance and Repairs: $1,140.75
- Depreciation: $570.375
- Total Product Cost (A): $1,140.75
- Annual Cash Flow: $71.99

Moving Forward
- Obtain experimental data for the proposed prototype to measure the final quality of the finished compost.
- Analyze finished compost to confirm there are no measurable quantities of pathogenic bacteria to comply with EPA Class A biosolids guidelines.
- Design a visual model highlighting the aesthetic features of the system for marketing purposes.
- Develop a functioning prototype.