# Adjustable Corn Head Snout

# Agricultural Biological

Zach Carter (AE), Noah Hoek (ASM), Jentry Flesher (ASM), and Josh Schafer (ASM)

### Statement of Purpose

This team worked to design a John Deere adjustable corn head snout that will handle down corn that is laying on the ground and also retract linearly 150mm to better harvest standing corn, all while maintaining a simplistic design that will allow current crop flow with the least amount of parts, manual control, and minimal added weight to the corn head, improve marketability and add profitability.

### Background on Problem

- Deere currently has the longest snout on the market
- Long snouts provide issues like "plow effect"
- Long snouts push over corn plants in the next row on contours
- No adjustable snouts on the market
- The snout must linearly retract 150 mm, then, re-extend to original position



## Design Evaluations

| Locking Mechanisms |               |               |      |              |            |            |       |
|--------------------|---------------|---------------|------|--------------|------------|------------|-------|
| Factors            | Material Flow | Functionality | Cost | Availability | Simplicity | Asethetics | Score |
| Weight             | 2             | 2             | 1    | 2.5          | 2          | 0.5        |       |
| (1) Pin            | 4             | 5             | 4    | 5            | 2          | 2          | 39.5  |
| (2) Spring Loaded  | 5             | 7             | 3    | 6            | 7          | 5          | 58.5  |
| (3) Button         | 6             | 5             | 6    | 1            | 6          | 4          | 44.5  |

| Track System        |               |               |      |              |            |            |       |
|---------------------|---------------|---------------|------|--------------|------------|------------|-------|
| Factors             | Material Flow | Functionality | Cost | Availability | Simplicity | Asethetics | Score |
| Weight              | 2             | 2             | 1    | 2.5          | 2          | 0.5        |       |
| (1) Zach's Design   | 5             | 7             | 7    | 8            | 5          | 5          | 63.5  |
| (2) Jentry's Design | 3             | 2             | 4    | 6            | 5          | 4          | 41    |
| (3) Josh's Design   | 5             | 5             | 2    | 6            | 8          | 7          | 56.5  |

### Impact and Sustainability

- Will provides competitive advantage in marketplace
- No FEA analysis required for this prototype
- Possible residue build-up in track

### **Economic Analysis**

- Total Cost is \$167.33
- Estimated Price is \$600
- \$12.33 in additional cost yields \$150 in revenue per snout.
- Percent Profit:

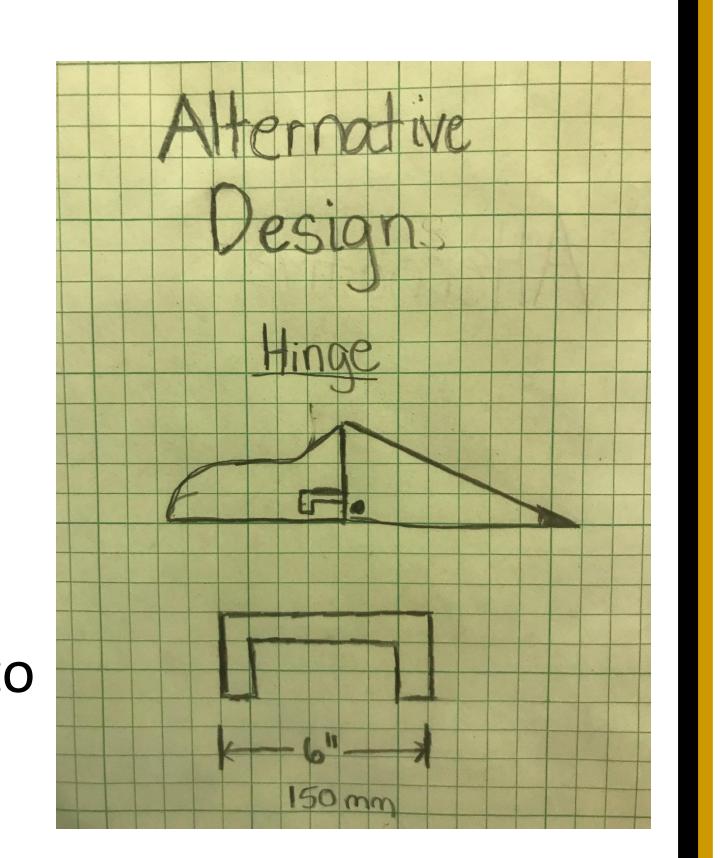
  Conventional Snout 190%,

  Adjustable Snout 260%

# Alternative Solutions Design 1

 A Track incorporated in hinge of the snout

#### **Concerns:**

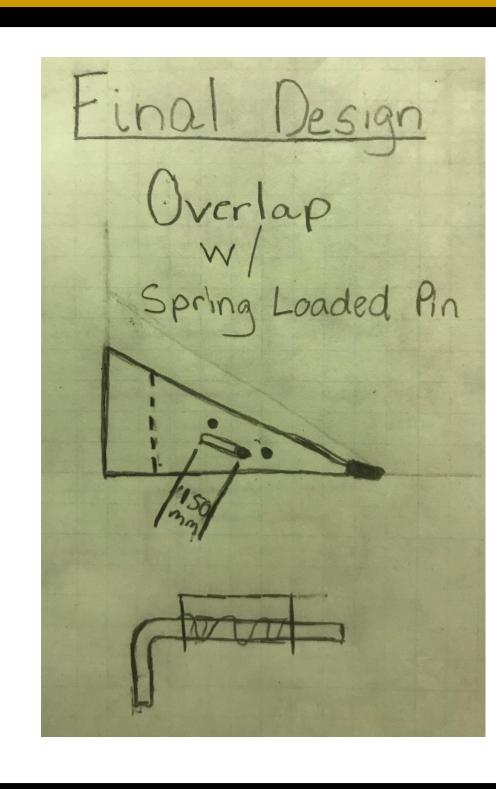

- Hinge functionality
- Design complexity
- Hinge strength after modification
- Crop residue build up in track

### Design 2

Two piece snout, secured by a pin

### Concerns:

- The two pieces of plastic must be unattached
- Time consuming field adjustment
- Having pins poses an opportunity to drop the pins in the field




### Final Design

Two piece snout with incorporated track

### **Benefits:**

- Uses two concepts from earlier designs
- Reduces complexity of modifications
- Under 1 minute transition
- Allows crop material to flow
- Fully retracts 150 mm







| Economic Analysis |               |        |  |  |  |
|-------------------|---------------|--------|--|--|--|
| Quantity          | Part          | Price  |  |  |  |
| 1                 | Pin           | \$7.10 |  |  |  |
| 1                 | Spring        | \$0.03 |  |  |  |
| 1                 | U Bracket     | \$1.16 |  |  |  |
| 1                 | Z Bracket     | \$1.69 |  |  |  |
| 1                 | Plate         | \$1.61 |  |  |  |
| 2                 | Bolt          | \$0.26 |  |  |  |
| 4                 | Washers       | \$0.03 |  |  |  |
| 2                 | Locknut       | \$0.10 |  |  |  |
| 1                 | Plastic Snout | \$75   |  |  |  |
| Total Raw N       | \$87.33       |        |  |  |  |
| 2                 | Labor         | \$40   |  |  |  |
| Tota              | \$167.33      |        |  |  |  |

### **Future Recommendations**

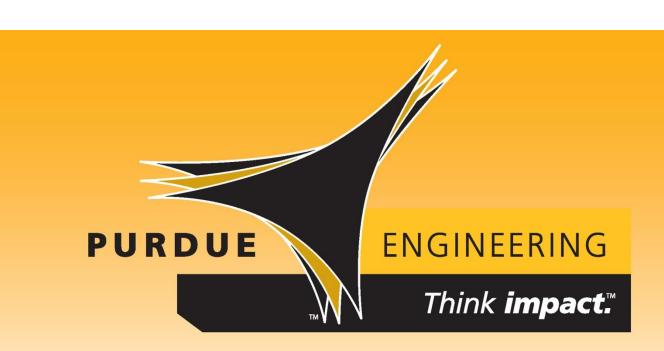
- John Deere will manufacture a new
   2 piece mold
- The design is a prototype, John
   Deere will need to conduct FEA and field testing
- John Deere will need to allow the farmer to adjust from the cab
- Install a rubber flap to keep material from going under the 2 pieces.



Mr. Dennis Silver, John Deere

Technical Advisor:

Dr. Dharmendra Saraswat


Dr. John Lumkes
Dr. Robert Stwalley

Instructors:

Dr. Margaret Gitau

Acknowledgements: We would like to thank our sponsor, Dennis Silver, and the following people for their help: Dr. Lumkes, Scott Brand, Dr. Bob, Dr. Saraswat, Carol Weaver



