Project Overview

The PUP (Practical Utility Platform) exists to assist developing countries in producing a low cost, simple, multipurpose utility platform that provides a user access to services such as:

- Transportation
- Agricultural Processes
- Mobile power sourcing

This design team exists to construct and install a high/low driveline option to provide custom gearing ratios for more flexible use. The design uses a motorcycle transmission commonly found in Africa to help provide a 3-way reduction for different speeds/torques. This allows end users to use the PUP to enact a wider range of activities, ranging from high torque applications (plowing) to high speeds applications like travel.

Alternative Solutions/Design

Designs Considered

- DIY Gearbox
 - Custom made gearbox
- Belt System
 - Two clutching bell pulleys with different ratios
- Chain Derailure System
 - Similar to bicycle gearing

Selection of Final Design

It was determined via decision matrix that using a locally-sourced motorcycle transmission (shown below) with a pulley clutch system was the most efficient design based on the following criterion:

- Estimated Cost
- Availability in Africa
- Durability
- Feasibility
- Repair Time
- Size and Weight

Evolving the Design Using Autodesk Fusion

Step 1. Internal Modeling

Modeling all of the purchased gearing and shafts required precise measuring and reverse engineering.

Step 2. Deciding on an Outside Shape

The base material, ½" steel, was chosen in order to be able to tap ¼" holes into the sides. Dimensions were gathered from internal modeling to model spacing of holes and set the size of the box.

Step 3. Select Bearings

Proper bearing selection considering rating and size ensures smooth rotation of the shafts.

Step 4. Specify Spacing

Specifications were made of press fit depth for the bearings and how to effectively space gearaway from the gearbox walls.

Step 5. Specify Sealing

3 methods were used to seal based on industry standards

- Seal Carrier with O-Ring given in the Parker
- Gasket Maker on the Inside manual (right)
- External Lip Seal

Step 7. Add Oil Fill Implements

The addition of oil fill holes and a sight gauge, allowing with specifying oil ensured proper lubrication.

System Overview

The following chart breaks down the different gearing options. The system uses a 6.5 hp engine and a 3.5 primary reduction based on a pulley clutch system. This compares to the original system ranging between 4-20 MPH and 100-500 lbs. tractive force.

<table>
<thead>
<tr>
<th>Vehicle Speed (MPH)</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tractive Force (lbs)</td>
<td>1200</td>
<td>1000</td>
<td>800</td>
<td>600</td>
<td>400</td>
</tr>
</tbody>
</table>

Vehicle Speed & Tractive Force

Manufacturing/Assembly

The manufacturing for this project was accomplished in the new Bechtel Innovation Design Center and the ADM Agricultural Innovation Center.

Step 1. Developing the CAM

A mill was selected due to the precision needed for the shaft and bearing holes/depths. In order to prepare the mill, the CAM was developed (Example above).

Step 2. Milling the Parts

Machine time was scheduled and the code was implemented, sometimes taking up to an hour to finish one side of a part, but resulting in a quality, tightly tolerance part.

Step 3. Assembly/Fine Tuning

Lastly, the gearbox was carefully assembled and sealed paying special attention to the alignment of the shifting cylinder for proper function and smooth rotation.

Reflection on Design

The life cycle of this product will be determined via testing, but is designed to last five years with regular maintenance. Market threats to the product include part availability, manufacturing precision required, and the ability to successfully communicate the need of replacing manual labor.

Overall, this design will improve the effectiveness of the PUP and increase marketability for end users.

Final Design

Below shows the finished gearbox, prepared to test. An economic analysis along with a gearbox specification follows:

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Weight</th>
<th>Oil Spec.</th>
<th>SAE Grade 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Cost</td>
<td>$250</td>
<td>Min. Reduction</td>
<td>0.958</td>
</tr>
<tr>
<td>Oil/Seal</td>
<td>$45</td>
<td>Max Reduction</td>
<td>2.833</td>
</tr>
<tr>
<td>Total</td>
<td>$307</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgements

Mr. Scott Brand
Mr. Peter Starr
Mr. Dan Gentilini
Mr. Gabe Wilfong
Ms. Carol Weaver
Mr. Peter Rusche

Sponsors:

- Ford
- John Deere

Technical Advisor: Dr. John Lumkes
Instructors: Mr. David Wilson

Impact and Sustainability

Transportation is critical to a growing nation. Reliable transportation of people/commodities impacts food security and regional security. The impact of this project includes:

- Replacing manual labor with mechanization. (Low range)
- Timely transportation of people/commodities (High range)
- Follows the sustainability model of the mini-PUP by utilizing common parts readily available.
- Low-cost part components for production and part replacement.

Purdue University is an equal opportunity/affirmative action institution.