PURDUE UNIVERSITY

Carter Keirn (Agricultural Systems Management) Seth Farmer (Environmental and Natural Resources Engineering)

1. Introduction

- Problem: Small scale farmers in Uganda must travel distances to retrieve water for irrigation, often resorting to diesel pumps for irrigation
- Objective: Create an affordable dual powered irrigation system capable of moving across rugged terrain for use by small scale farmers in Uganda

. Engineering Tools and Management Principles

- Re-use of last year's pump (2.1 gpm, 12V, 60 Psi)
- Battery Size determined by pump amp draw

Solar Panel Size Determination Solar Intensity x Panel Rating

7. Impact & Sustainability

- System 100% sustainable renewable energy
- Right now can assist small scale farmers in Uganda
- Future improvements on current design could cause wide implementation
- Low cost of materials limit the sustainability of system, with parts needing to be replaced

Sponsor: Dr. Noble Banadda of Makerere University Kampala

Technical Advisor: Dr. Engel

CAPSTONE/SENIOR DESIGN EXPERIENCE 2018 Title: Dual Powered Irrigation System

- Rugged terrain Pump 50m from the water source
- Store up to 20 gallons of water Limit cost to \$600-\$700
- Weight not to exceed 100 kg for mobility

Wind Power Feasibility $P_m(U_m) = \int p(u)W(u)du$ models

Fusion360 used in 3D

5. Final Design

and Pivot Steering, Jerry cans

- RESULTS

 - 1.4 gpm

Testing of mobility, wind, and flow

Instructors: Dr. Gitau Dr. Stwalley Dr. Engel

Acknowledgements: Scott Brandt

2.Background and Constraints Surface Water readily available

with elevation change

2.5 x 2.5 ft Wooden Frame, Angle Iron Post, 18 AH battery, 50W Solar Panel and charge controller, Toyota Alternator, Bike Wheel Pulley System,

Averaged 3:32 to fill 5 gallon bucket up elevation of 7 feet

10 mph wind begins power generation 0.1 Volts 20 mph gusts produces 0.65 Volts

PURDUE AGRICULTURE PURDUE UNIVERSITY

Design Piece Considerations	<u>Cost</u>	Mobility/Storage	Material	<u>Weight</u>
<u>Steel Generator</u> <u>Frame</u>	X		X	∠
<u>Plastic Wind</u> <u>Turbine</u>	X	X	<u>X</u>	∠
<u>Cloth Turbine</u>	<u>√</u>	∠	∡	∠
<u>Car Alternator</u> <u>Turbine</u>	∡	∠	<u>N/A</u>	∠
<u>Wooden Dowel</u> Frame	∡	∠	₹	∠
<u>Square Water</u> <u>Tank</u>	<u>√</u>	X	X	X
Jerry Cans	✓		✓	✓

6. Economic Analysis

Part	Descripition	Cost
AGM Battery	12 Votlt 18 Amp	\$ 52.65
Treated Lumber		
and Wood Screws	1X4; 2x4	\$ 53.45
Car Altenator	Toyota 12V	\$149.99
Solar Panel	50W 12V and Charge Control	\$ 98.25
Tires	10 inch	\$ 72.88
V-Belt	100 inches	\$ 19.64
Water Storage	5 Gallon Jerry Cans	\$ 56.60
Total		\$503.46

- Estimated Time of Assembly: 6-10 hours
- Over \$200 saved by downsizing tank and battery
- Re-use of materials (pump, angle iron, blades, hose, bike wheel)

Blades Tires Bike wheel Alternator Panel Part Estimated Life 1 Month 1 Year 2 Years 10 Years 20 Years

8. Assessments and Recommendations

Improvement in Wind Turbine design and durability Ability to set angle panel to receive most sunlight Pump specifically for drawing water Longer handle for better mobility uphill

