Hood Latching Mechanism Improvement

Introduction
- Problem Statement
 - Identify a system that automates the open/close motion with the push of a button for the Case IH Magnum series tractors.

Background
- New tractor designs are creating limitations of the current gas strut opening/closing system, in order to eliminate limitations a new design idea is required and an automated solution will be implemented.

Design Criteria
- Target open/close time should be 10 to 20 seconds
- Must operate on a 12 volt circuit
- Support a hood weight of 1295N

Constraints
- Must fit in currently available space
- Must maintain minimum opening angle of 25°
- Must withstand high ambient temperatures
- Support a hood weight of 1295N

Alternate Solutions
- High Torque Rotary Motor
 - Advantage: Compact
 - Disadvantage: Intricate opening mechanism
- Hydraulic Cylinder
 - Advantage: Very robust and strong
 - Disadvantage: Additional hydraulic capabilities needed
- Air Cylinder
 - Advantage: Simplicity of system
 - Disadvantage: Additional air compressor system required
- Linear Actuator
 - Advantage: Simplicity and ease of compatibility
 - Disadvantage: Product Capability

Design #1
- Gas Strut Replacement
 - Force Calculations with Excel Tool
 - Actuator Sizing
 - Insufficient force capabilities

Design #2
- Single Actuator in Available Space
 - Modeling of space available for actuator
 - Available mounting bracket is available in the space allotted for the design
 - There is insufficient space for actuator with the required stroke length

Social Impacts & Sustainability
- Benefits
 - Customer has access to a solution that requires little aptitude
 - Operator ease
 - Adaptability to other models
- Disadvantages
 - More costly design
 - Mechanical solution for in case of design failure
 - Ease of engine repair

Failure Mode Effect Analysis (FMEA)
- Possible Points of Failure
 - Actuator processor failure
 - Damaged Wire
 - Bracket failure (bending or breaking)

Project Outcomes & Expectations
- Completed
 - Multiple design trial and error
 - Actuator exploration and knowledge
 - Tool for calculating forces
 - Identification of vast limitations
- Future
 - Examine linear actuator relocation
 - After radiator
 - Closer to hinge point
 - Special mechanisms to compensate for stroke length

Design Calculations

<table>
<thead>
<tr>
<th>Component</th>
<th>Force (N)</th>
<th>Y Component (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force Required</td>
<td>2478.4</td>
<td></td>
</tr>
<tr>
<td>Force Applied</td>
<td>1483.1</td>
<td></td>
</tr>
<tr>
<td>Moment Balance</td>
<td>1295</td>
<td></td>
</tr>
<tr>
<td>Actuator Sizing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force Triangle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion
- A new design idea is required to eliminate limitations created by new tractor designs.
- A new automated solution will be implemented to meet customer needs.

Acknowledgements
- Katie Carnahan (ASM), Tyler Vigar (ASM)
- Doug Waco (CNH)
- Dr. Daniel Egg
- Dr. John Lumkes
- Mr. Brent Gettelfinger
- Mr. David Wilson

Sponsor
- Ken McCabe (CNH)
- Dr. John Lumkes