Fluidized Bed Malt Roaster

1. Problem Statement
 - Design and develop a fluidized bed roaster for roasting malted barley under designated humidity and temperature conditions
 - Utilize principles of particle bed fluid flow and energy efficiency
 - Decrease cost and energy requirement for roasting
 - End result: 2 bushel test size that can be easily scaled up to 12-15 bushels

2. Background
 Approximated Ergun Equation to calculate air velocities needed to suspend a given bed of particles:
 \[N_{Re,mf} = \frac{(33.7)^2 + 0.0408 D_p^2 \rho_p (\rho - \rho_g)}{\mu^2} - 33.7 \]
 - Proof that fluid bed can roast malt
 - Problems with condensation in return line
 - Want to apply recirculation to larger-scale model

3. Alternative Solutions & Evaluations
 - Option 1: External Return
 - Easy but bulky construction
 - Condensation issues
 - Less compact
 - Loading/unloading issues
 - Option 2: Internal Return
 - Compact but complicated construction
 - Better efficiency
 - Disrupted fluidization area
 - No condensation in return

4. Final Design & Qualification Analysis
 Considerations:
 - Avoiding condensation problem through close return pipe and insulation
 - Spouted bed to prevent root tangling
 - Fan selected to make design compact
 - Easy unloading mechanism
 - Damper placements to control/mix air flow
 - Control of heater/blower for different malt needs
 - Loading problem fixed

5. Impact & Sustainability
 - Offers low-cost solution for malt roasters over drum roasters
 - Accessibility for smaller brewers due to small batch size and lower up-front cost
 - Long-term life of heater/blower still in question

6. Economic Analysis
<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan</td>
<td>1</td>
<td>$2,433.00</td>
</tr>
<tr>
<td>Dampers</td>
<td>3</td>
<td>$80.76</td>
</tr>
<tr>
<td>Ducting Parts & Assembly</td>
<td>12</td>
<td>$2,443.13</td>
</tr>
<tr>
<td>R-38 Insulation</td>
<td>5</td>
<td>$224.90</td>
</tr>
<tr>
<td>Thermocoupling and Electronics</td>
<td>7</td>
<td>$84.65</td>
</tr>
<tr>
<td>18” Round metal mesh</td>
<td>1</td>
<td>$34.98</td>
</tr>
<tr>
<td>Sight Glass</td>
<td>1</td>
<td>$43.95</td>
</tr>
<tr>
<td>Misc. Hardware</td>
<td>4</td>
<td>$95.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$5,440.37</td>
</tr>
</tbody>
</table>

7. Assessment/Recommendations
 - Full construction and testing of the prototype design still needed
 - Gauge market interest
 - Develop operating safety guidelines in accordance with OSHA
 - More automation possible
 - Ensure proper roasting and operation to scale up to full size model

Sponsor: Sugar Creek Malt Co.
Technical Advisor: Dr. Martin Okos
Instructors: Dr. Margaret Gitau, Dr. Robert Stwalley, Dr. John Lumkes
Acknowledgements: Caleb Michalke, Scott Brand, Alex Gunter, ABE Business Office