PURDUE UNIVERSITY

Jacob Wheatley (Agricultural Engineering), Jared Whiteside (Agricultural Systems Management)

1. Problem Statement

- Design and develop a fluidized bed roaster for roasting malted Barley under designated humidity and temperature conditions
- Utilize principles of particle bed fluid flow and energy efficiency
- Decrease cost and energy requirement for roasting
- End result: 2 bushel test size that can be easily scaled up to 12-15 bushels

2. Background

Approximated Ergun Equation to calculate air velocities needed to suspend a given bed of particles:

- Proof that fluid bed can roast malt
- Problems with condensation in return line
- Want to apply recirculation into larger-scale model

Requirements:

- 1. 150-600° F Roasting Temperature
- 2. Quenching system
- Construction cost <\$10k-20k
- 4. 12-15 bushel capacity

- Over half of all malt produced in the world comes from 10 different malting companies
- Inexpensive small batch roasters have potential to disrupt malting market

Sponsor: Sugar Creek Malt Co.

Technical Advisor: Dr. Martin Okos

CAPSTONE/SENIOR DESIGN EXPERIENCE 2018 Fluidized Bed Malt Roaster

3. Alternative Solutions & Evaluations

Option 1: External Return

- Easy but bulky construction
- Condensation issues
- Less compact
- Loading/ unloading issues

4. Final Design & Qualification Analysis

Instructors: Dr. Margaret Gitau Dr. Robert Stwalley Dr. John Lumkes

Acknowledgements: Caleb Michalke Scott Brand Alex Gunter **ABE Business Office**

Option 2: Internal Return

- Compact but complicated construction
- Better efficiency
- Disrupted fluidization area
- No condensation in return

5. Impact & Sustainability

- Offers low-cost solution for malt roasters over drum roasters
- Accessibility for smaller brewers due to small batch size and lower up-front cost
- Long-term life of heater/blower still in question

6. Economic Analysis

tem	Quantity	Total Price
an	1	\$2,433.00
Dampers	3	\$80.76
Oucting Parts & Assembly	12	\$2,443.13
R-38 Insulation	5	\$224.90
hermocoupling and Electronics	7	\$84.65
.8" Round metal mesh	1	\$34.98
light Glass	1	\$43.95
Aisc. Hardware	4	\$95.00
	Total	\$5,440.37

7. Assessment/Recommendations

- Full construction and testing of the prototype design still needed
- Gauge market interest
- Develop operating safety guidelines in accordance with OSHA
- More automation possible
- Ensure proper roasting and operation to scale up to full size model

