High Fiber Nutrition Drink

Goals and Objectives

Goal: To create a high fiber nutritional drink to meet the needs of the average adult in a market lacking such products.

Objectives:
- Provide higher amounts of fiber and protein than competitors
- Provide easy way for consumers in 18 - 24 age demographic to meet nutrition requirements

Motivation:
- Dietary fiber intake reduces risk of stroke, hypertension, diabetes, etc.
- Most individuals in America consume less than half their recommended levels of dietary fiber

Market and Market Size

- Purdue students, West Lafayette, Lafayette, and Indianapolis (1 million)
- The target demographic is primarily millennials, ages 18 - 24
- Millennials are largest group of consumers with 26% of population
- The 18 - 24 age demographic consumes more smoothie type drinks than any other demographic
- Beverage consumption data shows a 5.1% increase in nutritional drink sales between 2014 – 2015

Constraints

- Competitors: Odwalla, Evolutions Fresh, Kombucha, Ensure, Boost
- Consumer preferences in IN
- Processing Time
- Availability of fresh ingredients

Impact and Sustainability

- Spent grain makes up 85% of beer brewing byproducts
- Average water consumption during brewing is 5 - 6 L/beer
- Encourage consumption of nutrient dense food in a high obesity state

Prototype Analysis

Parameters: Mixing speed, consistency, ingredient amounts, and taste

Observations: spinach particles, color, and semi-stable emulsion

Product Recipe

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Functionality</th>
<th>Amount per Batch [lbs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apples</td>
<td>Flavor/Nutrition</td>
<td>552</td>
</tr>
<tr>
<td>Bananas</td>
<td>Flavor/Nutrition</td>
<td>552</td>
</tr>
<tr>
<td>Spinach</td>
<td>Nutrition</td>
<td>165</td>
</tr>
<tr>
<td>Cocoa Powder</td>
<td>Flavor</td>
<td>11</td>
</tr>
<tr>
<td>Water</td>
<td>Reduce Viscosity</td>
<td>2,370</td>
</tr>
<tr>
<td>PB2</td>
<td>Flavor/Protein</td>
<td>165</td>
</tr>
<tr>
<td>Spent Grain</td>
<td>Fiber</td>
<td>88</td>
</tr>
<tr>
<td>Oil</td>
<td>Emulsifier</td>
<td>552</td>
</tr>
</tbody>
</table>

For a serving size of 8 fluid ounces, we meet 33% of the daily recommended amount of fiber and 24% of the daily recommended amount of protein for an adult female.

Process Flow

Schedule

Processing Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Amount</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produce/Powder Inputs</td>
<td>1,202</td>
<td>lbs</td>
</tr>
<tr>
<td>Spent Grain input</td>
<td>88</td>
<td>lbs</td>
</tr>
<tr>
<td>Cycle Time</td>
<td>2</td>
<td>days</td>
</tr>
<tr>
<td>Water Req. for Product</td>
<td>75</td>
<td>L</td>
</tr>
<tr>
<td>Water Req. for Processing</td>
<td>1,000</td>
<td>L</td>
</tr>
<tr>
<td>Thermal Load</td>
<td>2,522.32</td>
<td>MJ</td>
</tr>
<tr>
<td>Monthly Production</td>
<td>150,000</td>
<td>bottles</td>
</tr>
</tbody>
</table>

Alternatives

1. Drying spent grain was considered, but was deemed a waste of energy
2. Blending/Milling: food processor, blender
3. Emulsification: high pressure homogenizer
4. Pasteurization: UV, pulse light treatment, high speed pressure

Economic Analysis

Processing Time

Future Work

Determine most effective plant location for market
Create and implement public marketing strategies
Research additives to alter the finished appearance
Develop defined roles for managerial positions

Costs Per Bottle

Costs: Production $4.73, Raw Price $5.40, Profit $0.67

Equipment Costs

Technical Advisor and Instructor: Dr. Martin Okos

Acknowledgements: Special thanks to Troy Torney, Yvonne Hardebeck, and Carol Weaver

References:

Purdue University is an equal opportunity/educational access institution.