Problem Statement and Background

- PUP (Purdue Utility Project) develops sustainable transportation and utility for developing countries.
- These vehicles are capable of running attachments such as maize grinders or water pumps.
- PUP vehicles typically cost between $1500-2000 USD, higher than most smallholder farmers can afford.
- The MiniPUP I has been prototyped to lower cost and comparable capabilities to the full-size PUP counterparts.
- A next generation MiniPUP will be produced to address design weaknesses with the MiniPUP I.

Project Goals

1. Allow for the sourcing of vehicle parts from local vendors in developing countries.
2. Lower the cost and weight of the vehicle in comparison to the MiniPUP I platform.
3. Resolve safety concerns with MiniPUP I, with an emphasis on vehicle center of gravity and weight distribution.
4. Improve manufacturability of vehicle with emphasis on larger scale production.
5. Reduce number of drivetrain wear components and possible points of failure for improved drivetrain durability and longevity.

Design Specifications:

- 6.5 hp engine (4.5hp – 8hp optional)
- 5-speed transmission with reverse
- ≤ 740 lb. empty weight
- 30"m x 30"m x 3mm angle iron frame
- 1000 lb. payload capacity
- ≤ 20 mph top speed
- 70/30, rear/front weight distribution
- Automotive front strut suspension

Impact on Society and Sustainability

- Team will travel to Cameroon to reproduce the design in the future using locally available resources.
- The MiniPUP II will be used on a day-to-day basis by ACREST hauling food, water, supplies, and other utility needs.
- The vehicle will reduce small-holder farmer labor challenges and improve productivity and food security.
- Reproducing this design locally on a micro-factory scale creates sustainable employment opportunities.
- Creation of this vehicle within Purdue ABE brings awareness to the challenges faced by the people of Africa’s developing countries.

Final Design

- ⅜" steel plate weldment designed to replace angle iron spindle mounts reduce build time, provides more consistent wheel alignment, and improves mount strength.
- Parts mirrored to allow for assembly in both left and right wheel configurations.
- Laser cut to maintain dimensional accuracy.
- Direct drive powertrain utilizing 6:1 reduction gearbox eliminates all chains and sprockets.
- Compact layout reduces engine bay area, reducing vehicle size.
- Placement of all drivetrain components ahead of rear axle and below driver lowers center of gravity, improves front/rear weight distribution.
- Reduced cargo area minimizes opportunity for overloading, maintains short wheelbase to ensure nimble handling.
- Center driver placement allows for easier use in row crop applications.

Cost Analysis

- The MiniPUP II used 56% of the angle iron the MiniPUP I prototype used, and only 27% of the angle iron of a full size PUP vehicle to save cost on frame materials.
- Reduction in frame materials alone saves 71 lbs. from the prototype MiniPUP I (MiniPUP II frame of 89 lbs vs. MiniPUP I frame of 160 lbs.)
- Reduction in power transfer components (shafts, bearings, sprockets) maintains comparable drivetrain costs to MiniPUP I vehicle.
- The cost of a single MiniPUP II prototype is $897, but cost will decrease as production begins in country.

Alternative Solutions

- Four ideas were generated for the vehicle driveline.
- The potential solutions were direct drive (1), belt drive (2), chain drive with a reduction (3), and a chain drive without a reduction (4).
- Considerations were based on the merits of cost, manufacturability, performance, ergonomics, and durability.
- A weighted matrix helped highlight the strong areas of each design, as well as a best power transfer solution for the MiniPUP II.

Acknowledgements:

Team:
- Vincent Kitio, ACREST

Sponsor:
- Dr. John Lumkes

Technical Advisor:
- Dr. Stwalley

Instructors:
- Dr. Engel, Dr. Stwalley

Acknowledgements:
- Scott Brand, Rachel Seals, Dan Gentilini, MiniPUP Team