Introduction

Problem Statement:
- To design a versatile tie-rod that can be adjusted to change the tread width of the machine with ease.

Background:
- Different row crops require various row spacing and in order to prevent customers from having to purchase separate tie-rods for each row spacing they require, an adjustable tie-rod will be implemented.

Criteria:
- Must fit within the given space-claim
- Must withstand high-buckling loads from steering dynamics
- Must perform safely under high tension and compression loads
- Must deliver precise adjustments of 4 inch increments

Alternative Solutions

<table>
<thead>
<tr>
<th>Design #1</th>
<th>Removable Midsection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design #2</td>
<td>Overlapping Joints</td>
</tr>
<tr>
<td>Design #3</td>
<td>Boxed Midsection</td>
</tr>
<tr>
<td>Design #4</td>
<td>Hydraulic Cylinders</td>
</tr>
</tbody>
</table>

Societal Impacts & Sustainability

Benefits:
- Customer can have access to many different tread settings while only purchasing one tie-rod
- Ease of adjustment of tie-rod will create the customer more uptime
- Requires less material than the current option
- Allows the company to invest in the production of 1 tie-rod assembly vs. the production of several

Disadvantages:
- Leakage of hydraulic fluid in hydraulic design may have negative environmental impacts
- Rusting of steel, especially bolt holes in mechanical designs, may decrease the overall lifetime of the tie-rod

Economical Analysis of Design #2

<table>
<thead>
<tr>
<th>Cost of Material:</th>
<th>$1,160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of custom machining:</td>
<td>$17</td>
</tr>
<tr>
<td>Cost of Forging:</td>
<td>$53</td>
</tr>
<tr>
<td>TOTAL cost per part:</td>
<td>$1,230</td>
</tr>
</tbody>
</table>

*Assume 1,000 parts produced in total

Final Solution
- The team's final recommended solution to the given problem statement is Design #2: Overlapping Joints
- The material selected for the final solution is Armstrong Ultra 960 steel
 - Provides F.S. = 1.2, given analysis results
- Why this solution was the best:
 - Stresses shown in analysis were allowable
 - Minimum parts required
 - Meets all design criteria
 - Cost effective

Calculations & Analysis

- Through a mid-design review, 2 alternative solutions were chosen to move forward with analysis
 - Design #2: Overlapping Joints
 - Design #4: Hydraulic Cylinders
- Hand calculations were performed on both models to get the following results:
 - Buckling loads
 - Deflection
 - Bolt Shear Stress
- Creo FEA was also performed on both models and the results were comparable to the hand calculations
- Through analysis, several iterations were made to both Design #2 and #4