Statement of the Problem

- A new, modern electrical trainer for ASM 104
- Introduce basic sensor demonstration, current students have no experience with sensors in a classroom setting
- Updated lesson plan and lab manual for students to understand
- Current students have trouble understanding the basic principles that the current electrical trainers teach them

Background

- 2 hour lab period split in half
 - 1 hour for wiring lab
 - 1 hour for sensor demonstration
- ASM students need a basic understanding of wiring and sensors due to the prevalence in modern industry

Alternative Solutions

- **Power Source**
 - AC – DC power source
 - 6V lantern Battery
 - 12V mini Automotive battery
- **Temperature sensor**
 - Negative Temp. Coefficient Thermistor
 - Resistance Temp. Detector
 - Thermocouple
 - Semiconductor-Based
- **RPM Sensor**
 - Laser
 - Hall Affect
- **Storage/Organization**
 - Storage tray with organized board
 - Loose items in storage box

Final Design & Qualification Analysis

- **Lights and wiring setup**
 - This configuration of lights allow circuits of parallel, series and combination to be shown
 - These lights allow the bulb to be removed and show how power will flow through these different circuits
 - Alligator clips for convenience of connection, focus on concept not physical wiring
- **Power Source**
 - AC-DC power converter
 - Allows for variability when making circuits and setting up sensors
- **Temperature Sensor**
 - Resistance Temperature Detector for the best accuracy at the best price
 - Use of body heat and ice water to give different readable temperatures
- **RPM Sensor**
 - Hall effect is used for the prevalence of its use in industry today
 - Shaft speed created by a small electrical motor
- **Storage/Organization**
 - Storage Tray with circuit parts mounted on board
 - Allows trainers to be stored easily
 - Mounted pieces allows the circuits to be made easier

Impact & Sustainability

- Will give ASM students a basic understanding of wiring and circuitry that can be applied when moving forward real world application
- Demonstrate sensors and sensor technology that will be used in industry with the increase on reliance on sensors

Economics

- Preliminary budget of $150 per set

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-DC converter</td>
<td>1</td>
<td>$59.99</td>
<td>$59.99</td>
</tr>
<tr>
<td>Multimeter</td>
<td>1</td>
<td>$25.99</td>
<td>$25.99</td>
</tr>
<tr>
<td>Lights</td>
<td>4</td>
<td>$2.59</td>
<td>$10.36</td>
</tr>
<tr>
<td>Light Sockets</td>
<td>4</td>
<td>$3.89</td>
<td>$15.56</td>
</tr>
<tr>
<td>Terminals</td>
<td>1</td>
<td>$2.99</td>
<td>$2.99</td>
</tr>
<tr>
<td>Test Leads</td>
<td>10</td>
<td>$0.60</td>
<td>$6.00</td>
</tr>
<tr>
<td>RPM sensor</td>
<td>1</td>
<td>$15.99</td>
<td>$15.99</td>
</tr>
<tr>
<td>Temperature Sensor</td>
<td>1</td>
<td>$10.87</td>
<td>$10.87</td>
</tr>
<tr>
<td>Storage Container</td>
<td>1</td>
<td>$13.57</td>
<td>$13.57</td>
</tr>
<tr>
<td>Building Supplies</td>
<td>1</td>
<td>$15.00</td>
<td>$15.00</td>
</tr>
<tr>
<td>Total Cost</td>
<td></td>
<td>$176.32</td>
<td></td>
</tr>
</tbody>
</table>

Design and Project Assessment

- Shows the basic principles of wiring and sensors.
- Good for students with limited knowledge on subject

Recommendation

- More time should be spent on sensors then the time allotted for this demonstration
- ASM students have a lack of knowledge when using sensors and sensor technology