BURDUE UNIVERSITY

Profitable, Waste Reducing Plant Design for Production of Salsa

Puja Banerjee(BE), Nidhi Menon(BE), Katie Schwartz (BE), and Evelyn Zaleski (BE)

Fresh cleaned diced tomatoes

Extruder strainer

Tomato paste collected

Background

Problem Statement: It is estimated that over half of the produce from the student run farm at Purdue is discarded because it goes unused.

Aim: Design a profitable plant for producing salsa using vegetables produced at the student run farm, thereby reducing waste.

Objectives:

- Design and optimize unit operations for the plant
- Develop sustainable processes to minimize environment and energy impact
- Determine selling price for 20% ROI
- Create employment opportunities for students

Demand for Salsa at Purdue: Data provided by the food Services department at Purdue gave us the demand for salsa on campus. As a new business, our product will aim to take close to 10% of the market's share.

Technical Advisor & Instructor: Dr. Okos

Acknowledgements: Dr. Okos for his assistance in designing the process and providing lab equipment for our experiment

CAPSTONE EXPERIENCE 2015

SWOT Analysis		
 Strengths The market shows a rise in salsa purchases for the past several years All vegetables are sourced locally from the Purdue community There is an educational benefit to students employed by the 	 Weaknesses The annual yield of product is small as compared to larger producers Production will be limited to harvest months Though the salsa market is rising, it remains a small fraction of the overall 	Washing Chemical Wash Reverse Osmosis Wash Statistics Mixing & Cooking Mixing Scraped Heat Mixing Scraped Heat Mixing Scraped Heat
 students employed by the production process. Opportunities Production can easily be expanded and modified to accommodate different products There are market opportunities outside of the Purdue community to include local supermarkets and grocery stores 	 Formality a small fraction of the overall food buying market. Threats Production hinges on the productivity of the Student Run Farm Purdue may pull funding from the operation and halt production 	Heat Exchanger Air -Cooled Heat Exchanger Air Cooled Heat Exchanger Air Cooled Gondenser Sterili Moist Heat Ultraviole t

References:

1. Peters, M, K. Timerhaus, R. West, 2003, Plant Design and Economics for Chemical Engineers. 5th Edition, McGrall Hill, NY, NY. http://www.heinzen.com/LinkClick.aspx?

fileticket=f1BCjgadxeg= 2. https://books.google.com/books?id=4VZI6JEpMY0C&pg=PA45&lpg=PA45&dq=advantages+of+machine+peeler+vs+human +peelers&source=bl&ots=MERysjYve2&sig=33umIRnmULNV9sm5pQ0JeUV7CNk&hl=en&sa=X&ei=9dIaVcHWHpL6oQTT1YKgCQ&ved=0CEgQ6AEwBg#v=onepage&q=advantages %20of%20machine%20peeler%20vs%20human%20peelers&f=false

http://generalbacteriology.weebly.com/sterilization-and-disinfection.html 4. Yam, K., 2009. The Wiley encyclopedia of packaging technology (3rd ed., p. 531). Hoboken, N.J.: John Wiley & Sons. 5. Geankoplis, Christie, 2003, Transport Processes and Separation Process Principles. 4th Edition, Prentice-Hall, Inc., Upper Saddle River, New Jersey. MarketResearch.com Academic. The 2013-2018 Outlook for 16-Ounce Canned Salsa in the United States (2012). Retrieved April 15, 2015, from MarketResearch.com Academic. Mintel. (2009). Chips, Salsa, and Dip-US - Jan 2015. Retrieved from Mintel Oxygen database.

E N G I

Sponsors: **PURDUE AGRICULTURE** PURDUE UNIVERSITY **Purdue University**

Economic Analysis

or studen

year round

• Redesign as

• Improve consumer

supermarkets and

• Increase suppliers to

include local area

• Reduce overall cost

base to area

grocery stores

farms

per can

continuous process

PURDUE

Student

Market

Expansion

ENGINEERING

Think **impac**t