PURDUE UNIVERSITY

Sacheev Mandhle (ENRE) and Rebecca Werner (ENRE)

Problem Statement

Grace United Methodist Church, located at 615 North 22nd Street in Lafayette, Indiana, is experiencing issues with their parking lot regarding the management of rainwater. They experience heavy flooding and erosion and currently only have a small drain at the low point of the lot to deal with the problem. The Church experiences erosion due to the concentration of water from the downspouts of the roof (Fig. 1), flooding at the entrance of the education building after rain (Fig. 2), and single outlet drain in the northwest corner which consistently gets blocked by leaves and other debris (Fig. 3).

Figure 1: Erosion on side of church

Figure 2: Flooding after small storm

The **goal** of this project is to develop a design that would improve stormwater management for the church in a cost effective manner.

Alternative Solutions

- Instead of the outlet redesign, the team initially designed a bioswale to run the entire length of the northern driveway. However, there are electrical poles about 100 feet from the original drain, so this was not a feasible construction option
- The team also considered a large infiltration basin, but we would not be able to adhere to the 10-foot property line setback with this design • A cistern was considered but rejected as justified below

	nolacica bal rejectea ao justilica	\sim
<u>Criteria</u>	<u>Cistern</u>	
Volume	500 + gallons	
Location	Excavation and piping required	
Pump	Larger pump	

Project Schedule

Task	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
Survey	X							
Conceptual design	X	Х	X	X	X			
Cost analysis				X	Х	Х		
Grant proposal						Х	Х	
Course deliverables		Х		X		Х	Х	Х

<u>Sponsor:</u> Rev. Lore Gibson Dr. Laura Bowling

Technical Advisors:

- Dr. Keith Cherkauer
- Dr. Sara McMillan, P.E.

CAPSTONE EXPERIENCE 2015 Parking Lot Runoff Management

Figure 3: Current drain blocked

Rain Barrels

50 gallons/barrel

Flexible location

Gravity-driven

Instructors:

Dr. Bernard Engel, P.E. Dr. Robert Stwalley, P.E.

ultimately decided on the design displayed below (Fig. 4 and 5).

			AA	
0°00°	°° ° ° °		000	6" Pe
Pervious Cond	rete			
				10" No
N-DA			0.07	
0404	0000			2" F
Aggregate Res	servoir	THE LE		0"
	1.00	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-6" 3

Quantity	Design	Method Used and	Poquirod Inputo	
Calculated	component	Source	Required inputs	
Peak Flow	Inlet size	Rational Method;	Drainage area, rainfall	10-y
		Lafayette SW Manual	intensity, slope, land use	stor
	Basin volume,	SCS Method; NRCS	Rainfall depth, potential max	10-y
Runoff Depth	Permeable		soil moisture retention	stor
	pavement depth			
	Inlet structure	Chainsaw Routing;	Inflow, outflow, volume,	Neg
Volume sizing		Dr. Malcom (NCSU),	stage-storage relationship	volu
		Stormwater Design		infilt

Societal Impact

This design, along with the other two projects at Grace Methodist Church, was filed for a grant application with the Wabash River Enhancement Corporation (WREC). In compliance with the proposal, this design will help improve local water quality and can serve as an educational opportunity for the neighboring intermediate school.

> Acknowledgement: Sara Peel, WREC

PURDUE AGRICULTURE PURDUE UNIVERSITY

ENGINEERING PURDUE Think impact.

\$200

\$13,480

Rain Barrels

Total

Purdue University is an equal opportunity/equal access institution.