CAPSTONE EXPERIENCE 2015

Purdue University Creamery

Lisa DiMeo (B.S. BE), Emily Egolf (B.S. BE), Margot Keimig (B.S. BE), and Alayne Meyer (B.S. BE)
PROBLEM STATEMENT:
A lack of on-campus internship opportunities for
Biological Engineers, coupled with the absence of a
student run production facility.
OBJECTIVES:

1. Design a student run creamery that allows for
internship opportunities and departmental research
2. Provide homemade ice cream products using locally
sourced ingredients
3. Restoration of the previously successful Purdue
creamery
4. Flexibility in production as demand changes

PROJECT BACKGROUND:

-15+ university creameries exist (5 are BIG 10!) -Purdue's original creamery operational 1913-1969

MARKETING AND CONSUMPTION:

-Midwest consumes 17.9% of U.S. ice cream
-Purdue market includes 15,000 students

CE CREAM INGREDIENT FUNCTIONALITY:

Dairy: Milk, Cream, Nonfat solids (NFS) Fat: Provides creaminess and richness of ice cream - NFS: Stabilizes air and influences body and texture Sweeteners: Sugar, Corn Syrup, Sucralose

- Lowers freezing point of mix, allowing fraction of water to remain unfrozen
- Allows product to be scooped and eaten more easily Emulsifiers: Egg yolks, Mono- and Diglycerides
- Keep the fat evenly dispersed in the product during
freezing and storage
Smooth product achieved from even fat distribution,
stabilize the air incorporated

	Scheduling Information
Monday	Milk delivered and processed, process ice cream up to aging
Tuesday	Freeze ice cream
Wednesday	Clean in place
Thursday	Process ice cream up to aging
Friday	Freeze ice cream
Saturday	Clean in place

PROCESS BREAKDOWN:

- Holding Tank: Raw milk sourced from Purdue dairy farms will be held at $37^{\circ} \mathrm{F}$.
Pasteurizer \#1: Raw milk will pass through to ensure killing of microorganisms.
Homogenizer \#1: Milk passes through to ensure stability of final emulsion, by decreasing globule size.
Agitated Holding Tank: Stores milk at $37^{\circ} \mathrm{F}$ Cream Holding Tank: Stores externally sourced cream at $37^{\circ} \mathrm{F}$. Kettle with Agitation: Ice cream mix ingredients are brought together and heated to kill microorganisms.
Heat Exchanger: Cools mix down to storage temperature of $40^{\circ} \mathrm{F}$ Homogenizer \#2: Final ice cream mix is homogenized to ensure acceptable texture of final product and stability during aging. Aging Tanks: Emulsifiers adsorb onto fat droplets and flavor develops Continuous Ice Cream Freezer: Converts ice cream mix to a sem frozen product.
Ingredient Feeder: Allows addition of solid ingredients to specialized ice cream flavors.
Ice Cream Tub Filler: Dispenses semi-frozen product into 3 gallon and quart containers for sale.
Hardening Freezer: Allows final freezing of ice cream and safe storage Production:

16,000 gallons per month [April - September] 8,000 gallons per month [October - March] 144,000 gallons per year [Total]

ORGANIZATIONAL CHART			ECONOMIC ANALYSIS		Annual Costs		Yearly Data	Values
Lead ABE			Initial Costs	$\$ 536,500$			ROI	57.2\%
			Equipment		\% 8		Annual	\$2,456,708
FS/ABE Professor	FS/ABE Professor	HTMProfessor		\$3,104,495			Profit	
			Annual Costs	\$/year			Breakeven	1.25 years
Full-Time	Full-Time Sanitation Employee	Full-Time Store Manager	Electricity	\$133,264			Breakeven Production	$\begin{gathered} 70,250 \\ \text { gallons/yr } \end{gathered}$
Creamery Employee			Labor	\$278,688				
(2)			Packaging	\$313,920	\square Maintenance Electricity			
Part-Time Student Workers (15)	Part-Time Student Workers (15)	$\begin{aligned} & \text { HTM } \\ & \text { Class (5) } \end{aligned}$	Raw Material	\$794,354	- Labor	- Packag		
			Maintenance \$42,586		- Raw Materials			
			Revenue Source		Peer \$	Purdue \$	\% Sales	\$/year
Works Cited Bartholomai, A. (1987). Food Factories: Processes, Equipment, Costs. Weinheim, New York -Goff, H. and Harte, Richard. (2013). Ice Cream -Penn State (2014). Berkey Creamery Process Flow Diagrams. -Pennsylvania Code, The. (December 6, 2014) Raw Milk Testing Schedule and Standards.			Individual Scoops (6 oz.)		\$2-\$3	\$2.50	30\%	\$2,304,000
			Pint		\$5-\$6	\$5.00	12\%	\$691,200
			1/2 Gallon		\$5-\$9	\$8.00	8\%	\$184,320
			Commercial (3 gallon)		\$26-\$40	\$35.00	50\%	\$840,000

PROCESSING ALTERNATIVES:

- Making cream from raw milk
- Using traditional pasteurization method - Combined pasteurizer and homogenizer system - Shorter aging time

FORMULATION ALTERNATIVES:

- Simple Mix: good flavor, slightly grainy - Custard Mix: thick, intense egg flavor, good mouthfeel - Cornstarch Mix: off taste, left coating in mouth

SUSTAINABILITY:

- Environmentally, little to no waste in production - Economically, self sustaining and profitable GLOBAL/SOCIETAL IMPACT:
- Increase student opportunities and University funds - Support of the Purdue dairy and local suppliers Interest by Purdue alumni in the reappearance of the Purdue creamery

