Jeremiah Cottongim (ABE), Jordan Garrity (ABE), Josh Scott (ABE), and Luke Carr (ABE)

Introduction

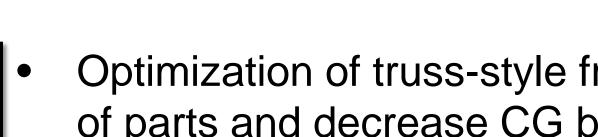
Problem Statement:

- An affordable and reliable form of transportation is lacking in many rural communities in Sub-Saharan Africa
- The team has been tasked with optimization of the PUP driveline and frame for manufacturability, safety, and performance

Background:

- Purdue has partnered with ACREST, a NGO located in Cameroon to provide an affordable vehicle for local transportation of people, water, crops, and supplies
- Local road conditions limit transportation
- Current motorized transportation options incur large capital costs and maintenance costs
- The PUP can carry 2000 lbs, traverse rough roads, and is manufactured locally in Africa, making it affordable to the community
- Using only locally available parts and materials allows the PUP to be a sustainable vehicle for future manufacturing in the micro-factory setting

Impact on Society


Project Goals

- Team will travel in May to reproduce design in Cameroon using only locally available resources
- The PUP will be used on a day-to-day basis by ACREST hauling people, food, water, supplies, etc.
- The vehicle will reduce small-holder farmer labor challenges and improve productivity and food security
- Reproducing this design locally on a micro-factory scale creates sustainable employment opportunities

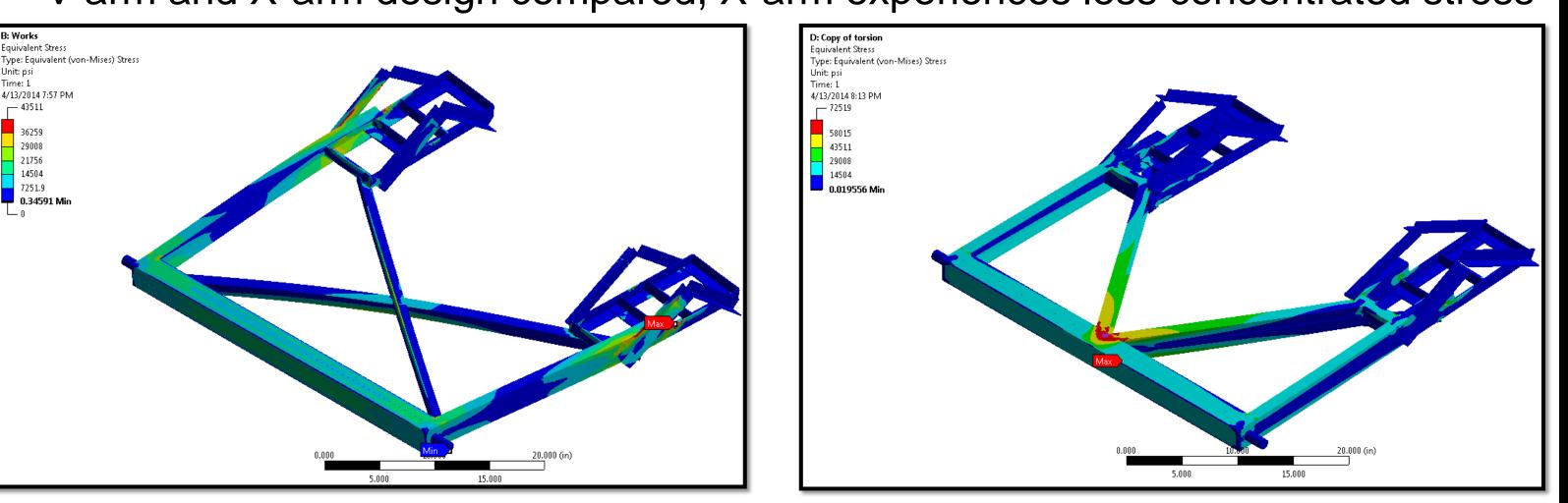

Optimization of truss-style frame to reduce total number of parts and decrease CG by lowering height of bed

- New engine placement to prevent theft, reduce noise & emissions to operator
- Develop a high/low gearing option for transportation or agricultural mechanization
- Explore alternative clutching mechanisms for ease of manufacturability in Africa
- Manufacture prototype to test at Purdue and to compete in an endurance event

Sponsor(s): Vincent Kitio, ACREST Technical Advisor: Dr. John Lumkes

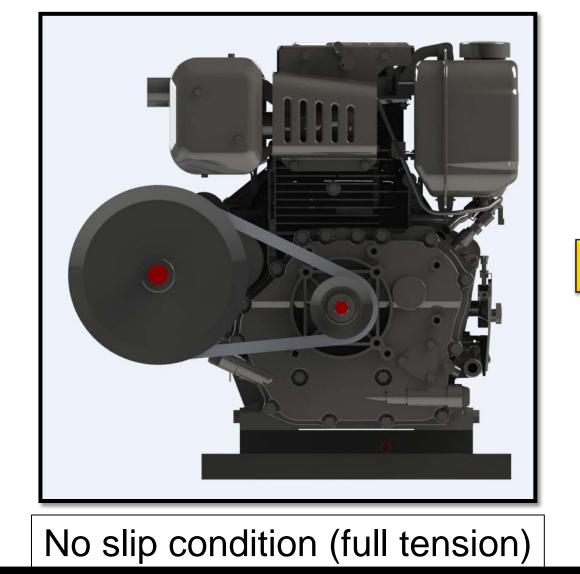
CAPSTONE EXPERIENCE 2014 **Purdue Utility Project**

pumping water, provide higher value to stakeholders



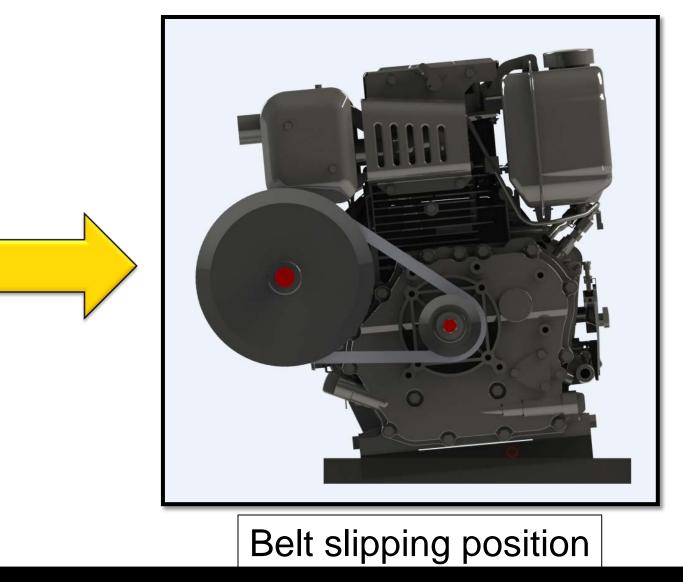
Alternative Solutions Engine Placement:

- front of the transmission were explored


Trailing Arm:

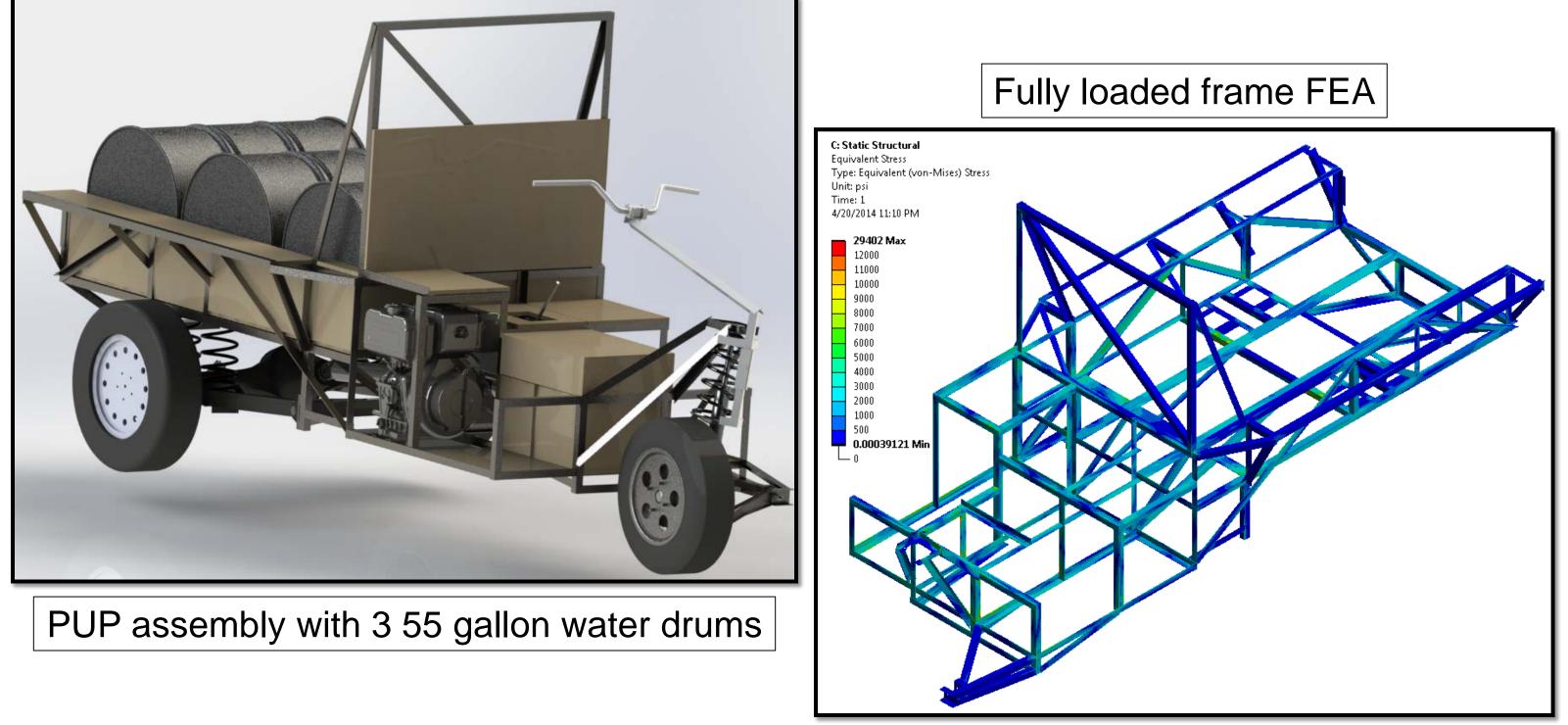
V-arm and X-arm design compared, X-arm experiences less concentrated stress

Clutching Mechanism:


belt continued to slip while experiencing heavy loads under full tension

Engine configurations under the driver's seat, in the cargo bed, and directly in

Criteria for safety, noise, and theft prevention were considered for final choice


Tilting the engine to decrease the center to center pulley distance was tested and

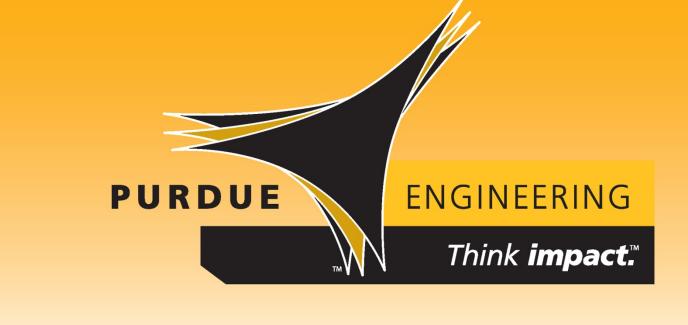
Final Drive Options				
Gear	Vehicle Speed (mph)	Tractive Force (lbf)		
High Option				
1 st	5.1	997.9		
2 nd	8.6	592.7		
3 rd	13.9	368.6		
4 th	20.1	254.0		
REVERSE	4.2	1204.9		
Low Option				
1 st	3.4	1496.8		
2 nd	5.8	889.0		
3 rd	9.3	552.9		
4 th	13.4	381.1		
REVERSE	2.8	1807.3		

Final Design

Vehicle Specifications		
Wheelbase	103 in	
Vehicle Length	144 in	
Vehicle Width	60 in	
Cargo Bed Volume	21.5 ft ³	
Unloaded Weight	1240 lbs	
Rated Payload Capacity	2000 lbs	
Engine	10 HP single cylinder diesel engine	
Transmission	4 speed with reverse, (1989 Toyota truck)	
Clutch	angle iron linkage with idler pulley	
Rear Differential	3.071:1 reduction (1989 Toyota truck)	
Front Strut	Ford Taurus strut with disk brakes	
Rear Suspension	4 coil springs (115 lb/in each) & 2 shocks	

Cost Analysis		
Items	Cost	
Frame		
Angle iron (15 pieces, 6 meters each)	\$300.00	
Plywood	\$75.00	
Driveline		
1989 Toyota Pickup Truck for parts -Transmission, Driveline, Rear Axle, Mic. Parts	\$200.00	
10 HP Diesel Engine	\$625.00	
Rim & Tires	\$ -	
Suspension		
Front Strut – Ford Taurus	\$ -	
Springs (4)	\$60.00	
Shocks (2)	\$50.00	
Driver Ergonomics		
Brake cylinder and lines	\$60.00	
Lights, driver controls, handlebars, pedals	\$30.00	
Miscellaneous		
Misc. Components/Tools/Supplies	\$275.00	
Total	\$1675.00	

Frame made entirely from a common size angle iron


Bed lowered 3.7 inches (Lower center of gravity)

Trailing arm length shortened 11 inches

Roll stiffness increased by moving springs farther from roll center

Engine under passenger seat to reduce emissions and noise to operator

Clutching mechanism utilizes pinned angle iron linkages and idler pulley system

