PURDUE UNIVERSITY

Problem Statement

The goal of this project is to design, fabricate, and test a pulling tractor that meets all rules and regulations of the American Society of Agricultural and Biological Engineers (ASABE) 2014 International ¹/₄ Scale Competition (IQS). The tractor has been divided into five distinct areas: Drive Train, Frame, Electronics and Data Acquisition, Operator Station, and Exhaust.

Design Criteria & Constraints

- Weight limit of 800 lbs
- Must be easily manufactured with low overhead costs
- Drive train must be durable and robust
- Operator's station must be comfortable and safe
- Sound produced by tractor must be less than 91 dB
- Electronics must be reliable and versatile

Creo model of PQS14

Design Tools

Software Packages Utilized:

- Creo (Pro/Engineer)
- Mechanica (FEA)
- ANSYS Workbench (FEA)
- Microsoft Excel
- IQAN Design Studios
- ETS National Instruments (Dynamometer Software)

Sponsor: Dr. John Lumkes Faculty Advisor: Dr. Bob Stwalley Graduate Advisor: Daniel Skelton Special thanks: Dr. Bernie Engel, Scott Brand Garry Williams, John Andruch

JOHN DEERE

CAPSTONE EXPERIENCE 2014 Purdue Quarter Scale (POS14)

Nathan Chupp (MSE), Adam Cross (MSE), Dalton Harbison (ASM), Rebecca Kallal (MSE), Samantha Schmelz (MSE), Tucker Stout (MSE), and Jason Strasemeir (MSE)

Drive Train

Objectives

- Provide more than 2 gear selections
- Allow for smooth shifting
- Contain necessary reductions to achieve required operating speeds
- Improve ease of manufacture
- Improve maneuverability

Four Speed Transmission

Shaft brake

Best 2 and 4 Wheel Drive 1000 lb Hooks, 2013 σ Sp H) MPI (MPI My m 100 200 **Distance Traveled (ft)** PESC Ð POLARIS.

PQS14 Cost Analysis										
Section	Category	Purchased			Fabricated		Total Cost			
1	Engine System	\$	1,416.00	\$	8.15	\$ 1	,424.15			
2	Transmission/Transaxle	\$	2,335.00	\$	-	\$2	2,335.00			
3	Drive Train	\$	519.75	\$	115.50	\$	635.25			
4	Tires & Wheels	\$	202.80	\$	-	\$	202.80			
5	Steering	\$	378.50	\$	16.83	\$	395.33			
6	Frame	\$	-	\$	534.09	\$	534.09			
7	Body	\$	36.79	\$	122.89	\$	159.68			
8	Brake System	\$	222.89	\$	34.89	\$	257.78			
9	Electrical System	\$	192.00	\$	-	\$	192.00			
10	Fasteners	\$	90.00	\$	-	\$	90.00			
11	Safety Equipment	\$	17.00	\$	120.04	\$	137.04			
12	Trim	\$	46.00	\$	150.00	\$	196.00			
13	Miscellaneous	\$	13.00	\$	-	\$	13.00			
14	Final Assembly	\$	-	\$	50.63	\$	91.63			
15	Overhead	\$	-	\$	-	\$	41.00			
	TOTAL					\$6	6,704.75			

Solutions

- A four speed synchromesh transmission coupled with a planetary
- Simple mounting brackets that minimize manufacturing costs
- A shaft brake after the CVT

Oerlikon Fairfield Planetary

- -Kentucky (251.5) 2WD –Wisconsin (187.8) 2WD -South Dakota (184.18) 2WD -Kansas (206.8) 4WD
- -Nebraska (190.72) 4WD
- 300

PQS2014 Drive Train

Specifications

- 31 hp engine
- 7380 ft-lbs; 2800RPM
- 18 MPH max ground speed

Weight	Sound	Cost	Serviceability	Maneuverability	Safety	Ergonomics	Efficiency	Reliability	Performance	Variability	Score
0	6	6	6	12	6	6	9	9	20	10	100
9	9	8	9	8	8	7	9	7	8	9	83
6	5	7	6	9	7	8	6	7	7	10	72
6	5	6	5	9	7	9	6	6	6	10	69
8	8	10	8	6	9	8	10	9	9	8	84

Decision matrix for alternative drive train solutions

Frame

Objectives

- Provide adequate support and mounting points for drive train and operator station components
- Provide shielding for rotating parts
- Contribute minimally to overall tractor weight
- Simplify manufacturing and reduce cost where possible Solutions
- 14 gauge bent sheet metal frame rails
- 1/4" aluminum plate components met shielding requirements.
- FEA analysis verified component strength, and was utilized to determine ways to remove weight and material cost from components.
- Manufacturing and design changes saved nearly \$70/tractor

Exhaust System

Objectives

- Provide an exhaust system that decreases noise without adversely reducing power
- Shield hot surfaces properly to avoid operator injury
- Divert exhaust emissions away from operator

Double – walled pipe exhaust

Sound testing of previous exhaust systems

Solutions

- Implemented factory exhaust with modifications
- Created shielding that allowed for maximum heat escape without operator being harmed
- Added dual walled pipe to force exhaust to exit above operator

CAPSTONE EXPERIENCE 2014 Purdue Quarter Scale (POS14)

Brake mount FEA Deflection at 350 lbf= 0.12 in

Electronics and Data Acquisition

Objectives

- Install a data acquisition system using low cost components
- Meet the customer's preferences with several mechanical/electrical packages
- Output data for visual reference and use that data to evaluate the efficiency of tractor operation

Solutions

- Implemented Parker IQAN electronic components
- Jtilized both electrical and mechanical components, which can be swapped on or off the tractor
- Utilized large display screens, from Parker IQAN, to display important data

- bends, and welds
- Easy-to-use IQAN interface

