Micro Malt House Process & Design

Ben Daugherty (BE), Jessica Wade (BE & Biochemistry), Nicholas Davis (BE), and Jay Tenhundfeld (BE)

Background
- Practice that dates back to ancient times
- Process remains same
- Current market is dominated by macro-malters
 - 20 companies own 70% of Market
 - Macro-malters hold a majority of patents
- Equipment oriented
- Macro-malters generally have similar equipment
- Malt is a by-product of the brewing process
- Malt can be made from other materials such as:
 - Sorghum, millet, corn, wheat, and rice
 - Comes in varieties of 2 row and 6 row

Objectives
- Create a process to produce high quality malt
 - Process remains same
 - Fit the project to the local market
 - Increase demand for local products and environmental sustainability
 - Increase demand for craft brews
 - Increase reinvestment into local community
 - Decreasing CO2 emission & pollution
 - Requires growth of craft brewing by ~18% per annum
 - Requires local material sourcing
- A locally processed malt product can fill two market niches by:
 - Providing a useful information to Mr. Jim Mosely to create full scale operation
 - Performing scale-up to meet malt demand for 1% of Indiana Malt Market (110,000 lbs. per year)
 - Performing experiments to identify key variables in production to obtain a consistent and saleable product
 - Providing local product for brewers and consumers
 - Providing infrastructure to connect local farmers and brewers in a sustainable economic relationship

Method
- Steep: Performed 3 immersion cycles of 8/4 hours submerged and couching respectively.
 - Steeping temperature and germination time had the most significant effect on the final sugar content.
 - Steeping temperature and germination time had less effect than trial number.
- Germination: Sprayed with water and mixed every 4 hours to stimulate release of sugars.
 - Measured sugar content in Brix over 30 minutes.
- Kiln: A fluidized bed dryer was used to decrease MC to 4% with 40 or 60" C, 1.5 m/s air.
- Hulls of seeds milled and submerged in 65° C water to mimic benefits.
- Cleaning: Cleaning agents: Lack recyclability, more costly than water
- Optimization
- Decreasing CO2 emission & pollution
- Requires growth of craft brewing by ~18% per annum
- Requires local material sourcing
- A locally processed malt product can fill two market niches by:
 - Providing a useful information to Mr. Jim Mosely to create full scale operation
 - Performing scale-up to meet malt demand for 1% of Indiana Malt Market (110,000 lbs. per year)
 - Performing experiments to identify key variables in production to obtain a consistent and saleable product
 - Providing local product for brewers and consumers
 - Providing infrastructure to connect local farmers and brewers in a sustainable economic relationship

Results
- Steeping temperature and germination time had the most significant effect on the final sugar content.
- Steeping temperature and germination time had less effect than trial number.
- Problems:
 - Several trials experienced contamination from the lack of an HTST cleaning cycle
 - Actual germination times deviated from the planned schedule
 - Rootlet to seed length exceeded desired ratio

Analysis
- Raw material cost:
 - $0.065 per lb. feed barley
 - $0.095 per lb. malt barley
- Break even price: $0.20 per lb.
- Price for ROI of 20%: $0.83 per lb.
- Scaling up to 5x production yield ROI of 29%

Economic Analysis
- Raw material costs:
 - $0.065 per lb. feed barley
 - $0.095 per lb. malt barley
- Break even price: $0.20 per lb.
- Price for ROI of 20%: $0.83 per lb.
- Scaling up to 5x production yield ROI of 29%

Equipment Energy Use
- Equipment
 - Energy Use per Year (kWh)
 - Humidifier: 1,645
 - Condenser and Heat Exchanger: 440
 - Kiln: 470
 - Blowers: 205
 - Decanter: 220
 - Pumps: 460
- Total: 2,760

Scheduling
- 1 day Steeping
- 4 day germination
- 6.26 days per batch
- 67.4 batches per year
- 52 available weeks per year
- Water recycled from Clean and Steeping decreases waste. Water is also recovered from wet barley as the kiln dries them.

Design Alternatives
- Clean:
 - Steam: High cost to purchase, storing tank would be more expensive due to pressure requirements, heating requirements offset by pumping requirements to maintain pressure.
 - Cleaning agents: Lack recyclability, more costly than water
- Germination:
 - Floor germination: Difficult to maintain moisture content and environmental control
 - Kiln: Floor kiln: Increase difficulty in recapturing water
- Kip: Single vessel: Increase in equipment cost for a unified design, careful scheduling can mimic benefits
- Tank Design:
 - Single tank for cleaning and holding water: Increase in heating and cooling costs

Acknowledgements
Dr. Martin Okos (ABE)
Mr. Jim Mosely
People’s Brewery