INTRODUCTION

- Greek yogurt market has grown to $2 billion per year industry in recent years, and market growth is expected to continue to rise.
- No standard identity of “Greek” yogurt by FDA
 - No mandatory straining step
 - Whey toxic byproduct is sustainability issue
 - Milk protein concentrates often used in industrial production
- Sustainability will become growing concern in yogurt industry

OBJECTIVES

- Create a process to expand production of Lafayette-based Parthenon Greek Restaurant
- Goal is to sell packaged yogurt in local grocery stores; e.g. Marsh and Payless
- Perform small-scale experimental procedure to measure: pH, viscosity, lactic acid, and rheology
- Perform scale-up optimal design of plant and economic analysis to give highest rate of return
 - Alternative design options
 - Optimal design/Equipment sizing
 - Economic Analysis

EXPERIMENTAL DESIGN

- Model non-constant temperature fermentation:
 - Ferment yogurt at four temperatures: 90°F, 100°F, 110°F, 120°F
 - Record pH hourly for 8 hours
- Analyze rheology of products from fermentation experiment:
 - Flow sweep: 25°C, 0.01 to 20 1/s
 - Strain sweep: 25°C, 1.0 Hz, logarithmic sweep, strain percent 0.5% to 10.0%
 - Frequency sweep: 25°C, 0.02 to 35 Hz

ALTERNATIVE DESIGNS

- Cases examined to optimize economics:
 - Case 1: Heat exchanger, fermenter, packaging
 - Case 2: Jacketed vessel, fermenter, packaging
 - Case 3: Heat exchanger, packaging
 - Case 4: Batch vessel for all operations

IMPACT & SUSTAINABILITY

- Design process eliminates whey waste because of lack of straining step
- Product adds to already huge national Greek yogurt market
- Product fits with trend to buy local food, and adds to local economy
- Product adds to local economy
- $2 billion per year in national Greek yogurt market
- Greek yogurt was 19% of yogurt market in 2011, growing from 2% of market in 2008
- Few full fat Greek yogurt producers
 - Less competition in market
 - Less available market