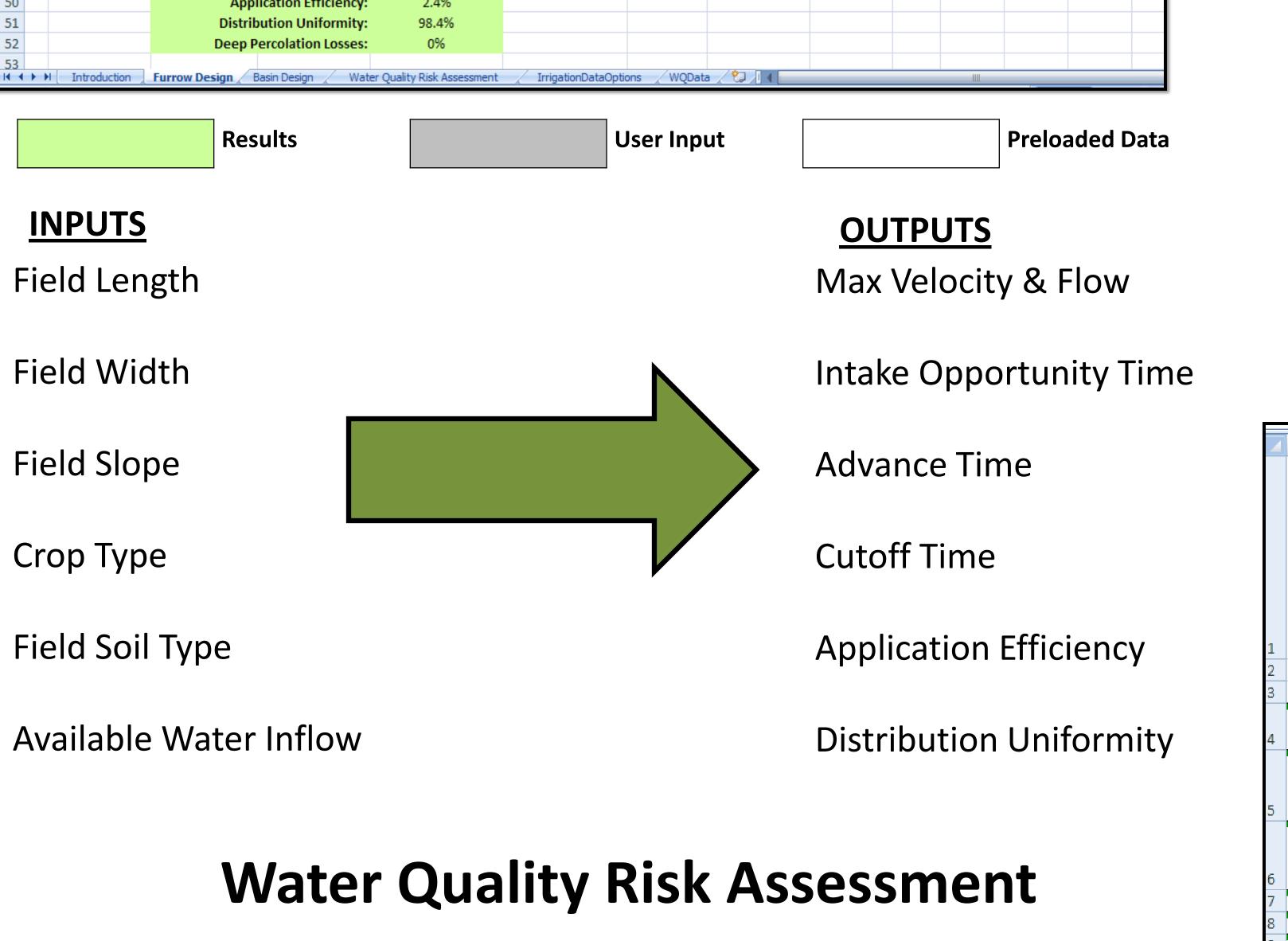
Surface Irrigation Design, Water Quality Risk Assessment, & Irrigation Scheduling Tool Global Design Team

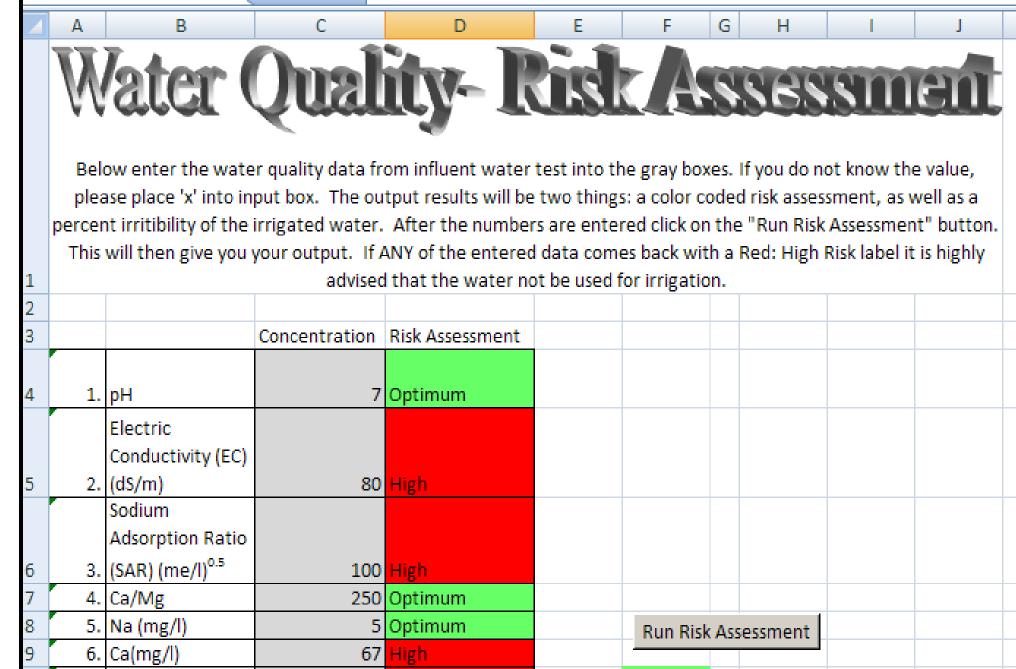
Andrew Pursifull, Victoria DeStazio, Mark Parsley, Nathaniel Fuller, Jared Engelberth Agricultural and Biological Engineering-ENRE, Purdue University, West Lafayette, IN

Quick Design & Assessment Tool

Getting Started


On the "Introduction" tab of the spreadsheet, users are given a concise description and tutorial of the software. Inputs for the model are kept basic in nature to ensure ease-of-use. Of course, design parameter outputs are only a computed suggestion and should be adapted to specific field conditions. The introduction page is shown in the screen capture to the right.

Н	14	- (0	f_{x}							
A A		В		С	D	E	F	G	Н	I.
1 Irrig	ation (Quick De	sign T	ool				Field	Informatio	n
2								Field Width:	50	m
3 This is	designed t	to help quickly	y return d	esign para	meters	5		Field Length:	100	m
4 for Fur	row and Ba	asin irrigation	systems,	assess wa	iter qua	lity,		Field Slope:	1	%
5 and pr	ovide irriga	ation scheduli	ing. Alon	g the bott	om of tl	his page		Crop:	Peas	
6 you w	ill find mu	ltiple tabs. Ea	ich tab is s	set up to h	elp			Field Soil type:	Loam	
7 design	the type of	of irrigation sy	stem with	h which th	e tab is	labeled.	Availa	ble Water Inflow:	5000	L/s
8										
9 To use	the desigr	n tool, all the	user must	do is fill i	n			Root Depth:	0.8	m
10 the cel	ls that are	shaded light	gray. The	white box	kes					
11 are dat	a that are	pre-loaded in	to the too	ol and are	not					
		user. The val		-						
.3 are the	values th	at are returne	d to the u	iser for th	eir					
.4 design	needs.									
.5										
		Water Quality								
17 provid	e an asses	sment of the o	quality of	the water	to					
.8 be use	d. The use	er inputs the c	oncentrat	tion of the	contar	ninants				
19 listed.	The tool v	vill return eit	her High, I	Low, or op	timum	for				
20 each co	ontaminan	it.								
21										
22										
		e Global Desig				ity				
		mbers: Andre			arsely,					
	-	, Nathan Fulle								
		Dawuni Busia,	Internati	onal Wate	er Mana	gement				
-	te, West A	frica Office.								
28										
29										
80										
81										
32										
33										
34										
85										
86										
57										
8	Introductio	n Furrow Des	ian Res	in Design 📿	Wate	r Quality Risk	Assessment	IrrigationDataOptions	WQData /	
		II A HUNOW DES	igir _X bas	in beagn - <u>X</u>	wate	- Quanty Mak	nascoament /	Ingedenbeddopdons	X WORD X (


4	Α	В	С	D	E	F	G	Н	- I	J	K	L	M
		(Wette	ed Perimeter) P=	86.16	cm								
2		Inflow Veloci	ty & Flow			Design Intake O	pportuni	ty Time/Adva	nce Time				
3			V _{allowed} :	0.65	m/s	Intake	e Opportunit	y Time Required:	246.0	min	Coloulate		
4			Q _{allowed} :	0.042	m³/s			Advance Time:	10.4	min -	Calculate		
5			V _{actual:}	0.44	m/s								
26			Q _{actual} :	0.028	m³/s			Cutoff Time:	256.4	min			
7							Volum	ne of Water Used:	435.0	m³	**this is volu	me of wate	er used per furro
8			Water Available:	0.100	m³/s								
29	_				water flow must be re	stricted!							
30	_	Duny water t	vanable is greate	r didirinax jioti,		stritten.							
31													
32		Furrow Field	Performance										
	_		Distance Along		Intake Opportunity								
			Furrow	Advance Time	Time	Depth Infiltrated	Volume						
33			(m)	(min)	(min)	(cm)	(m³)						
34			0	0.00	256.4	10.70							
35			10	0.55	255.9	10.69	1.070						
36			20	1.34	255.1	10.67	1.068						
37			30	2.24	254.2	10.64	1.065						
38			40	3.24	253.2	10.61	1.062						
39			50	4.31	252.1	10.58	1.059						
40			60	5.44	251.0	10.55	1.056						
11			70	6.62	249.8	10.51	1.053						
12			80	7.85	248.6	10.48	1.049						
43			90	9.13	247.3	10.44	1.046						
4			100	10.44	246.0	10.40	1.042						
5						- ··		Percent of Total					
46					T-4-11-010	Depth	Volume	Water Input					
47					Total Infiltrated:		10.6	2.4%	**If this numbe	er is over 1	l00%, you must	use more v	vater
48					Total Runoff:	424.41	424.4	97.6%					
49													

Surface Irrigation Design

In most instances the farmer knows what type of irrigation is best suited

based on the crop being grown. The tool allows them to choose either furrow or basin irrigation, as these are the two most common types of irrigation used in under-developed countries that cannot afford sprinkler or drip systems.

In addition to the development of the primary irrigation design spreadsheet, a water quality component has been added to provide a risk assessment of the irrigation water.

The user may enter pertinent information, such as pH and various chemical concentrations found in a water sample. If any outputs display a "High Risk" value, the water should be diluted to a safer level before use in irrigation.

10	7.	Cl ⁻ (mg/l)	500	High			=	optimum		
11	8.	Cd (mg/l)	12	High			=	low risk		
12	9.	Cr (mg/l)	13	High			=	high risk		
13	10.	Pb (mg/l)	75	High						
14	11.	Fe (mg/l)	15	High						
15	12.	TDS (mg/l)	2300	High						
16	13.	F (mg/l)	50	High						
17	14.	NO₃ ⁻ N (mg/l)	700	High						
18	15.	B (mg/l)	803	High						
19	16.	Ca/K	6	Low						
20	17.	Mg/K	14	Low						
21	18.	RSC (me/l)	200	High						
22	19.	SO4	1	Optimum						
23										
24		W	ater Irratibility:	42.63%						
25										
26										
• •	► N [Introduction 🖌 F	urrow Design 🏒	Basin Design 🚽 Wa	ter Quality	Risk Asses	sm	ent / Irrig	gationDataO	otions 📈 WQ

Irrigation Design Tool, Water Quality Risk Assessment, Irrigation Scheduling Andrew Pursifull, Victoria DeStazio, Mark Parsley, Nathaniel Fuller, Jared Engelberth

Agricultural Biological

April 2009

Introduction

In developing countries, where food sources are limited, maximizing crop yield is essential to the survival and well-being of the local population. The Global Design Team (GDT) of Agricultural and Biological Engineering at Purdue University has been working in conjunction with the International Water Management Institute-West Africa Region to develop a master system in Microsoft Excel. This software package generates a variety output data which users can apply to find solutions for several common



irrigation obstacles, including:

 Optimal design parameters for furrow and basin irrigation systems

- Risk assessment of irrigation water quality
- Suggested irrigation calendar

Global Design Team Specific Objectives:

• Develop software which outputs irrigation design parameters, irrigation water quality risk and a basic irrigation schedule.

• Ensure that the software is user-friendly by requiring only basic inputs and utilizing a streamlined layout.

• Communicate with contacts from IWMI's Ghana extension to help guide software development.

Irrigation Design

The primary source of information used to develop the GDT's master system is the Food and Agriculture Organization (FAO) of the UN. The FAO is the leader in the research and design of surface irrigation systems in Africa, hence their manual *Guidelines for Designing and Evaluating Surface Irrigation Systems*. The GDT also referenced a spreadsheet developed by USDA Arid-Land Agricultural Research Center.

There are many factors that determine the design of a furrow or basin system. The object of the design is to optimize Application Efficiency (AE). Following are some of the equations

1)
$$E_a = \frac{Z_{req} \cdot L}{Q_o \cdot t_{co}}$$
 2) $T_2 = T_1 + \frac{Z_{req} - kT_1^a - f_o T_1}{\frac{a \cdot k}{T_1^{1-a} + f_o}}$ 3) $V_z = W \int_0^L (k\tau^a + c\tau) dx$

Eq. 1 was used to determine the Application Efficiency. It takes into account the required volume of water that must infiltrate, the length of the field, flow rate, and cutoff time. Eq. 2 is a basic equation that was manipulated to help determine the intake opportunity time. Both 1 & 2 came from the FAO's guidelines. Eq. 3 was found in the previously created spreadsheet which is manipulated to calculate the advance time. Eq. 3 comes from the American Society of Agricultural Engineers' Standards, standard EP419.1 DEC99.

Irrigation Design Tool, Water Quality Risk Assessment, Irrigation Scheduling Andrew Pursifull, Victoria DeStazio, Mark Parsley, Nathaniel Fuller, Jared Engelberth

April 2009

Irrigation Scheduling

Methodology

The irrigation scheduling design spreadsheet uses the water balance model to compute a suggested irrigation calendar:

Irrigation + Rainfall = Evapotranspiration + Runoff + Deep Percolation + Soil Moisture Change

Evapotranspiration is calculated using the Penman-Monteith equation (FAO-56).

Necessary inputs, including parameters for effective rainfall, climate data, soil properties and crop characteristics are derived from empirical information supplied by FAO and IWMI.

Basic I	nputs								
Select the	soil type for	the field:						Loam	
	21								
Enter the	management	-allowed de	pletion of thi	is available v	vater before	irrigation sh	nould begin.	Higher allowed depleti	on
allows les	s frequent irr	igation but	more risk of p	lant stress. S	Suggested va	lue is 45%.			45
		e manageme	ent-allowed s	oil moisture	at the time o	of seeding:			
(Use 20%	if unknown)								20
	n unknownj								20
5									20
Select the	e crop to be in	rigated:						Cassava (First Year)	
	e crop to be in								
							5	Cassava (First Year) January	
Select cro	e crop to be in	te:					5	January	
Select cro	e crop to be in	te:					5	January Ghana, Tamale Ghana, Salt Pond Ghana, Sefwi Bekwai Ghana, Takoradi	
Select cro	e crop to be in	te:					5	January Ghana, Tamale Ghana, Salt Pond Ghana, Sefwi Bekwai	

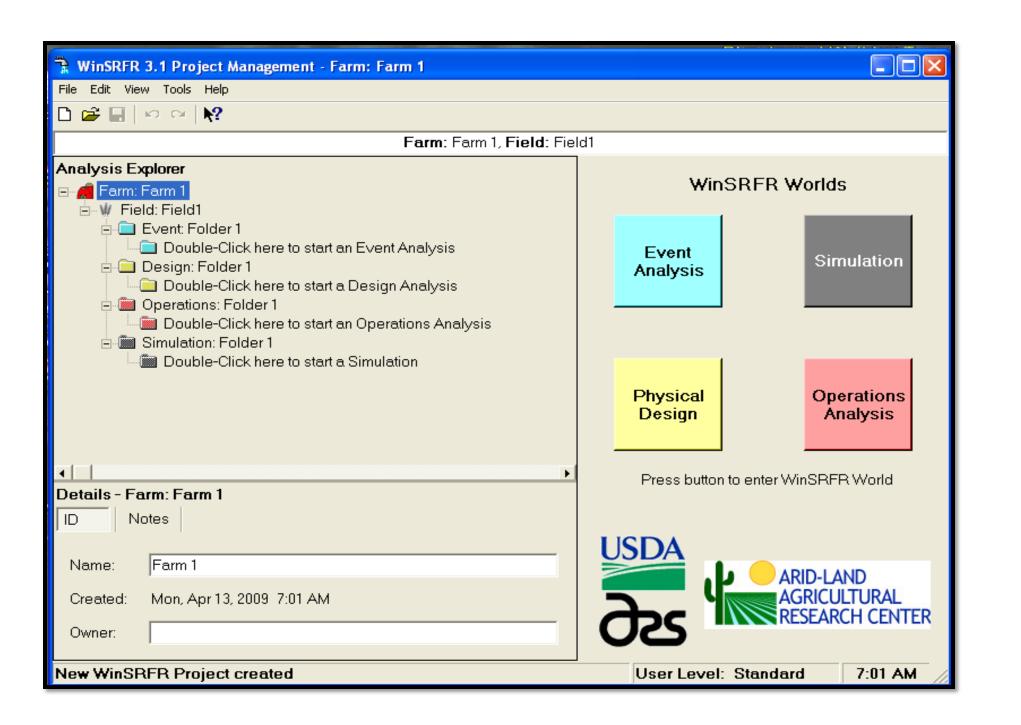
User Interface

Six basic inputs are required for output of an irrigation calendar: Soil type, management-allowed depletion, soil moisture at time of seeding, crop type, planting date, and location.

Month	Day	Irrigate Today?	Management- Allowed Remaining Water (mm)	Calculated Effective Rainfall (mm)	Actual Evapotranspiration (mm/day)	Development Day	Growth Stage	Day of Growth Stage	Effective Root Zone (m)	Crop Coefficient (K _c)
January	1									
January	2									
January	З									
January	4									
January	5		3.78		1.49	1	INITIAL	1	0.30	0.30
January	6		2.29		1.49	2	INITIAL	2	0.31	0.30
January	7		0.79		1.49	3	INITIAL	3	0.31	0.30
January	8	Irrigate	19.85		1.49	4	INITIAL	4	0.32	0.30
January	9		18.35		1.49	5	INITIAL	5	0.32	0.30
January	10		17.26	0.40	1.49	6	INITIAL	6	0.33	0.30
January	11		15.76		1.49	7	INITIAL	7	0.33	0.30
January	12		14.27		1.49	8	INITIAL	8	0.34	0.30
January	13		12.77		1.49	9	INITIAL	9	0.34	0.30

If no pre-listed options for a basic parameter are appropriate (i.e. a crop type isn't listed), users are able to enter custom information to best suit their needs.

When all basic inputs and any necessary custom inputs have been entered, users may click on the "Crop Calendar" tab to see a computed irrigation calendar. The calendar is based on a steady rainfall pattern and should be adjusted for adverse conditions.


The calendar shown to the left is a sample of the output determined by the basic inputs entered in the above image.

With the main design of the program complete, we have now moved on to validating our program. We decided to test our program against one commonly used for furrow and basin design, WinSRFR 3.1 Project Management Tool. We have set up several case studies(some of which are shown to the right) and compare the results against one another.

With this information we have gone back and tweaked our program so that we are getting very similar answers out of both programs.

31											
32	Crop	SType	Inflow(L/s)	Fspacing(m)	TWidth(cm)	F Depth(cm)	DWater(cm)	Sim.(hrs)	Sim.(min)	Ours(min)	
33	Soybeans	Silty Clay	1500	0.75	30	20	15	0.11	6.6	27.3	
34	Soybeans	Clay	1000	1	40	30	22.5	0.04	2.4	5.4	
35	Soybeans	Silty Clay Loam	1250	1	50	30	22.5	0.08	4.8	5.4	

We decided to use the WinSRFR program because it is commonly used by the USDA and the **Arid-Land Agricultural** Research Center to improve on furrow design. We thank them for letting us use the program for comparison.

References & Acknowledgements

References

•_Guidelines for Designing and Evaluating Surface Irrigation Systems. W. R. Walker, consultant to FAO (1989)

• ASAE Standards, 2000

• FAO Corporate Document Repository

•Clemmens, A.J., Journal of Land & Water, 2007, Vol. 1, 20-43

Acknowledgements

This project would not be possible with out the help of some great people. We would like to acknowledge the following people for providing us technical support and valuable advice that only experience can offer:

Rabi Mohtar, Project Advisor- Purdue University Dawuni Busia, IWMI Representative – West Africa Office Anne Dare, Global Engineering Program contact - Purdue University Joseph Irudayaraj – Ag. & Bio. Engineering, Purdue University, Class Coordinator Dr. Madhumita Das – Purdue University

