<u>Production of a Novel Automotive Wax Utilizing</u> <u>Zero-Discharge Technology</u>

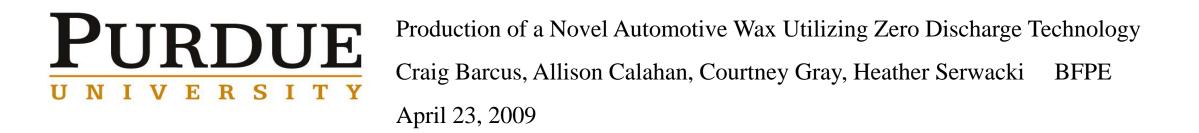
Craig Barcus, Allison Calahan, Courtney Gray, Heather Serwacki

April 23, 2009

Overview:

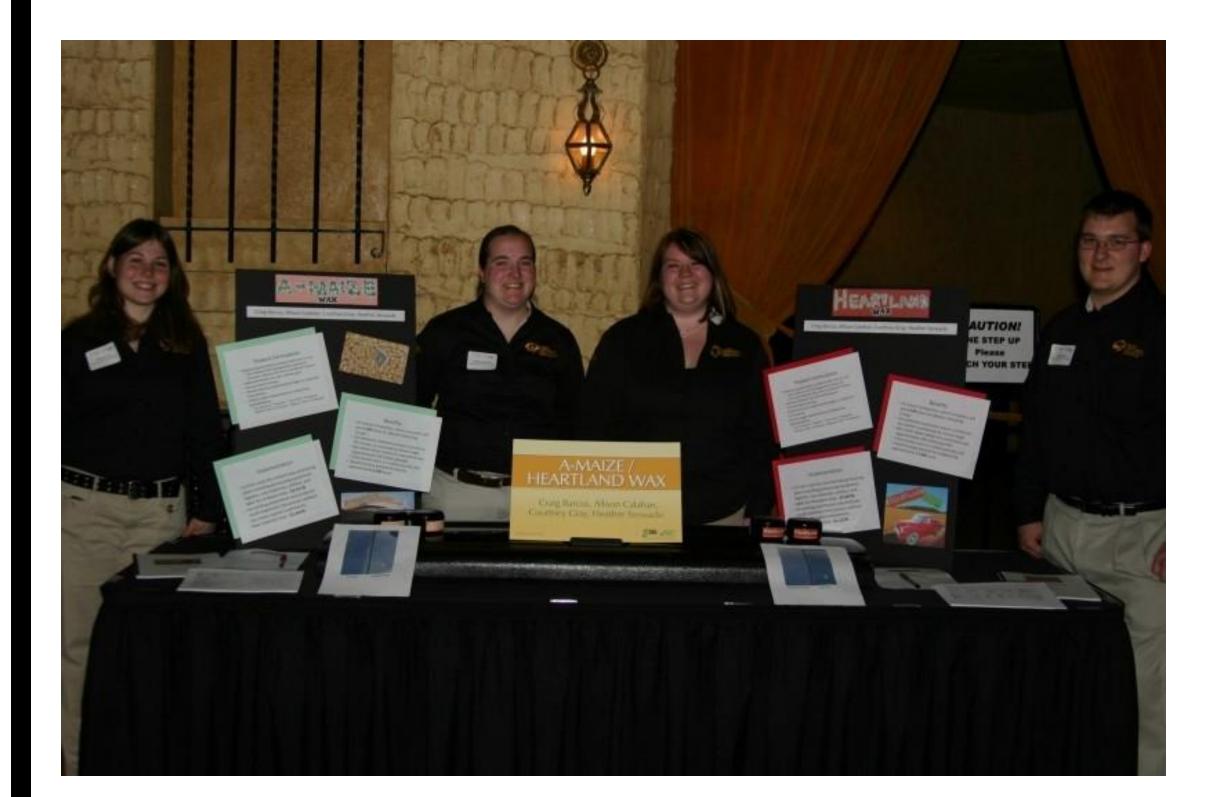
The current automotive wax market is comprised entirely of products that utilize petroleum based formulations. In an effort to lessen dependence on petroleum

products, a novel automotive wax was formulated that does not contain any petroleum products. The new formulation is comprised of all natural ingredients. Heartland Wax utilizes completely renewable resources for every component including: partially hydrogenated soybean oil, soybean lecithin, soybean hulls, and xanthan gum (a fermented product). Preliminary testing of the wax indicates that it outperforms top brands currently on the market based on contact angle measurements. To further create a product that is truly environmentally friendly, a plant design that has zero discharge and minimizes energy usage was developed. The operation utilizes products and by-products produced from soybean oil refining. The only component that must be outsourced is xanthan gum and Soyblend solvent. The plant has no discharge of waste water or hydrogen gas (from hydrogenation) and utilizes regenerative heating to minimize energy usage. Overall, this allows Heartland Wax to be produced cheaper and enhances the marketability of the all natural, environmentally friendly product.


Background Information and Formulation of the Product

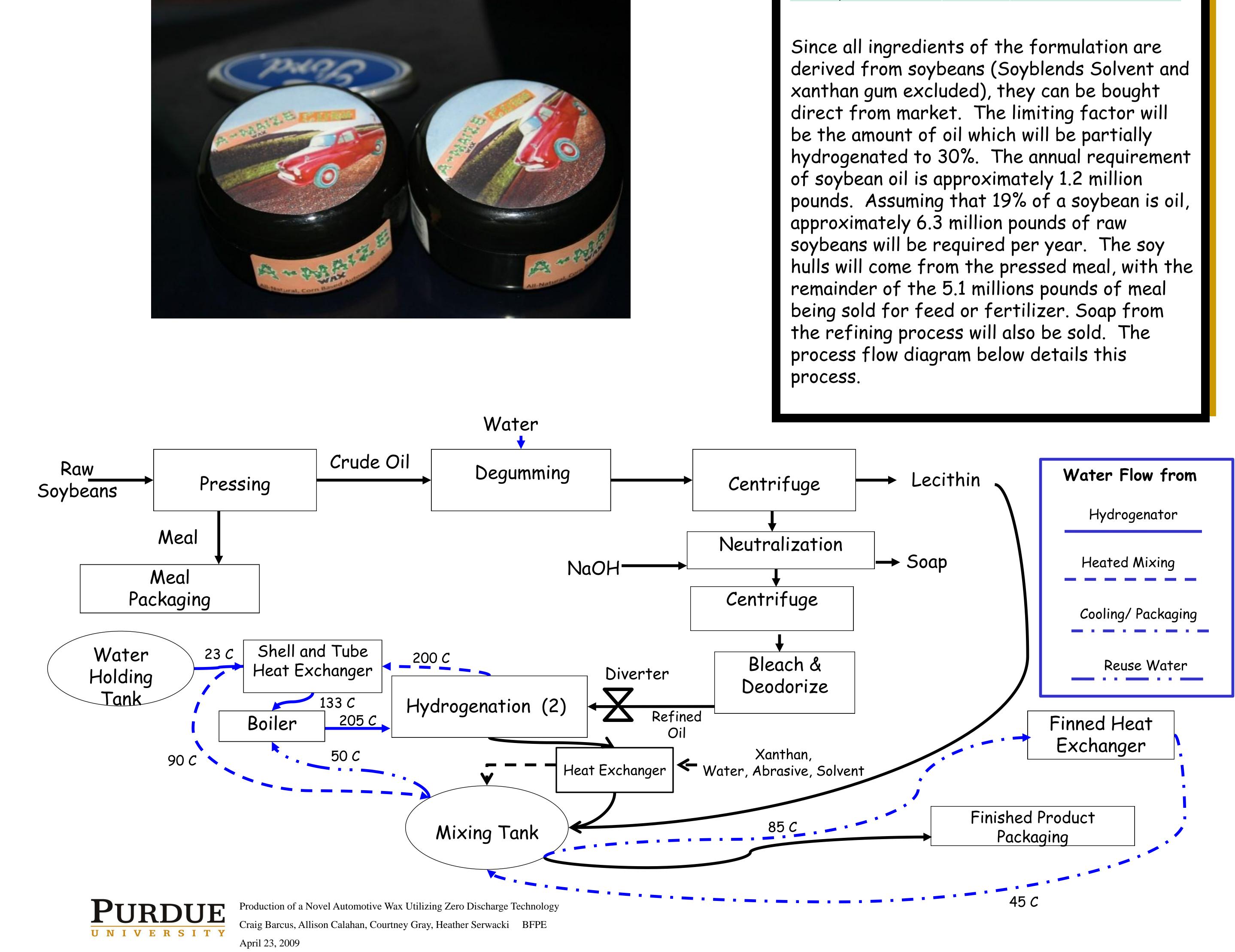
Automotive waxes are utilized to protect paint against oxidation from the outside world. Salt in the winter, excessive rain in the spring, damaging heat in the summer, and decay in the fall can all lead to oxidation of the paint. A thin coat of wax prevents this damage by repelling water and creating a physical barrier against the elements. Current automotive waxes are almost uniformly made of petroleum products, such as kerosene and petroleum based hydrocarbon waxes. Due to the limited amount of resources available, these products will soon become extremely expensive to manufacture.

Our product completely replaces all petroleum products and other nonrenewable resources with components that are renewable. The table below details these changes.


Prior Art Component	Prior Art Percentage	Heartland Wax Component	Heartland Wax Percentage
Water	18.26%	Water	18%
Morpholine (Emulsifier)	1.01%	Soybean Lecithin	1%
Abrasive	12.75%	Soybean Hulls	3%
5000-15000 cst Silicone Oil	0.97%	10,000 cst Xanthan Solution	2%
50-200 cst Silicone Oil	5.76%	300 cst Xanthan Solution	6%
Tall Oil Fatty Acid	1.88%	30% Hydrogenated Oil	60%
Montan Wax	4.38%	Citrus Soyblends Solvent	10%
Kerosene	5.69%		
Aliphatic Hydrocarbon	8.37%		
Aromatic Compound	40.89%		

Heartland Wax is processed utilizing the procedure described by Van Der et al(Van Der 1983). Briefly, Phase 1 consists of adding water, 30% hydrogenated SBO, 10,000 cst xanthan solution, soybean lecithin, soybean hulls, and 10% initial citrus soybean solvent to a beaker and stirring to create a suspension. This suspension is then placed into a water bath at $85^{\circ}C$ and stirred on medium power with a stir bar. The mixture is stirred for ten minutes in the water bath once it has reached $70^{\circ}C$ to ensure the melting of the hydrogenated oil. Phase 2 begins with the addition of 300 cst xanthan solution. Once the 300 cst xanthan solution is added, the mixture is stirred at $85^{\circ}C$ for five minutes. Phase 3 begins with the addition of 90% citrus soybean solvent, removal from the water bath, and hand stirring to homogenize the Heartland Wax. It should be of note that with larger volumes, human mixing becomes tedious and the help of a powered mixer is utilized to create a homogeneous product. Once the Heartland Wax reaches $50^{\circ}C$, it is poured into the packaging containers, allowed to cool for one hour, and then it is ready to be used.

		Plackett-Burman Design and Feasibility Testing																
	Factor	High	Low		Experiment	A	В	С	D	Ε	F	G	Η	Ι	J	K	L	
Α	Cooling Rate	10 C/min	2.75 C/min		#													
В	Shear	Frother	Stir Bar		1	+	+	-	-	+	-	+	-	-	-	+	+	
С	Solvent	15%	10%		2	+	+	+	-	-	+	-	+	-	-	-	+	
D	Dummy	-	-		3	+	+	+	+	-	-	+	-	+	-	-	-	
Е	Hydrogenated Oil	25%	20%		4	+	+	+	+	+	-	-	+	-	+	-	-	
F	Oil	45%	40%		5	-	+	+	+	+	+	-	-	+	-	+	-	
G	Xanthan Gum – high viscosity	3%	2%		6 7	-	-	+	+	+	+	+	- +	-	+	- +	+	
Н	, Xanthan Gum – Iow	8%	6%		8	+	-	-	-	+	+	+	+	+	-	-	+	
-	viscosity				9	-	+	-	-	-	+	+	+	+	+	-	-	
T	Dummy	-	-		10	+	-	+	-	-	-	+	+	+	+	+	-	
J	Temperature	90 C	85 C		11	-	+	-	+	-	-	-	+	+	+	+	+	
K	Time -Phase I	20 min	10 min		12	-	-	+	-	+	-	-	-	+	+	+	+	
L	Time - Phase II	10 min	5 min		13	+	-	-	+	-	+	-	-	-	+	+	+	
Μ	Dummy	-	-		14	-	-	-	-	-	-	-	-	-	-	-	-	


Factor	Effect	t-value	P-value	Re	sult
C Solvent	-10.07	-1.98	0.80	Low amount	10%
G Xanthan Gum - High Viscosity	-8.21	-1.62	0.80	Low amount	2%
F Oil	-7.07	-1.39	0.70	Low amount	40%
B Shear - Phase 1 & 3	4.93	0.97	0.50	High amount	Milk frother
E Hydrogenated Oil	-4.79	-0.94	0.50	Low amount	20%
L Time - Phase 2	1.93	0.38	0.40	High amount	10 minutes
K Time - Phase 1	-1.79	-0.35	0.40	Low amount	10 minutes
H Xanthan Gum - Low Viscosity	-1.21	-0.24	0.40	Low amount	6%
A Cooling Rate - Phase 3	-1.07	-0.21	0.40	Low amount	Slow
J Temperature - Phase 1 & 2	-0.93	-0.18	0.40	Low amount	85 C

M

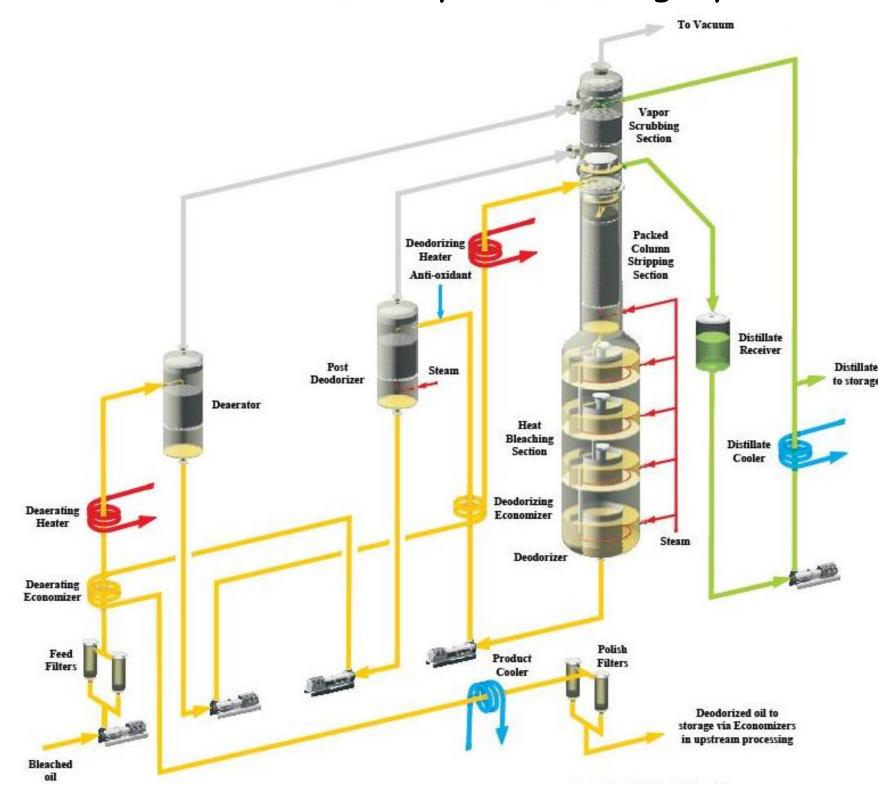
-

Experiment	Contact Angle	Experiment	Contact Angle
1	63.5	8	69.0
2	55.0	9	70.5
3	64.0	10	44.0
4	63.0	11	72.0
5	56.0	12	71.5
6	38.0	13	64.5
7	49.0	14	73.5

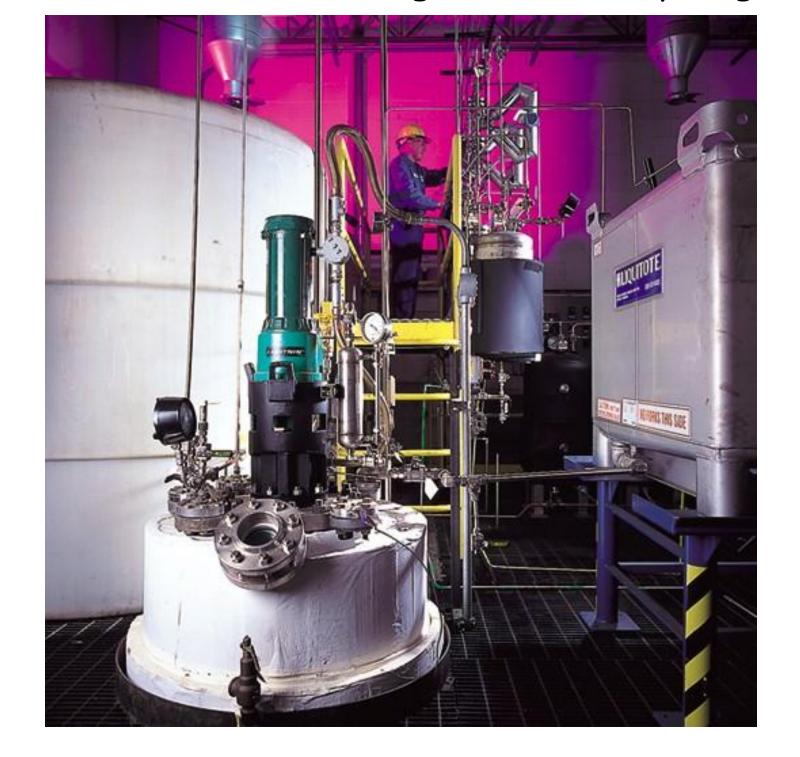
Formulation 14 was chosen due to its large contact angle and its material costs (detailed later) were lowest. We have assumed a market share of 2%, which corresponds to two million pounds of finished product per year. Total material balances per year are shown below.

Component	w/w %	Amount needed (lbs)
Water	18.00%	360,000
30 % Hydrogenated		
Soybean Oil	60%	1,200,000
10000 cst Xanthan	2.00%	40,000
350 cst Xanthan	6.00%	120,000
Soyblends Solvent	10.00%	200,000
Soybean Lecithin	1.00%	20,000
Soybean Hulls	3.00%	60,000

Energy Balance and Usage


In an effort to minimize the energy required to operate our plant, we incorporated many heat transfer operations to "recapture" heat. By doing so, we have saved approximately 4000 kW of energy (based on non-recycle versus recycling of water). All of the equipment in the plant, other than the boiler, is powered by electricity. Unfortunately, the process does not produce enough biodiesel (a simple conversion in the processing can make biodiesel from soap) to provide energy savings. Overall electricity requirements per day are 2,938,831 BTU/day. Overall water heating requirements are, assuming a gas-fired boiler, 16,757,505 BTU per day. A detailed summary of electricity and hot water

Step	Process Type	Equipment Needed	Processing Conditions	Water	Unit	Heated	Water	Unit	Electrical	Unit	Other
Pressing	Continuous	Twin Screw French Expeller Press							979,603	Btu	
Degumming	Continuous	Heated tank	70C for 15 minutes	30.08	lbs/hr						
		Pump							15,264	Btu	
		Centrifuge							939,582	Btu	
Neutralization	Continuous	Stir tank					11,768	Btu			Base (NaOH)
		Centrifuge							939,582	Btu	
Bleaching	Continuous	Stir tank				50,400		Btu			High Activity Clo
Deodorizing		Falling film heat exchanger	1-3% steam at high temp and vacuum								5 ,
		Vacuum									
Hydrogenation	Batch	Hydrogenator - filling/running	200C for 2 hours			1	20,803	Btu			
		Hydrogenator - running/emptying				1	20,960	Btu			
Mixing	Batch	Stir tank				8,054		Btu			
		Water pump	4 hP for 1 hour	192.31	lbs/hr				64,800	Btu	
Boiler	Continuous	Boiler	14,256 lbs/hr			4,8	74,400	Btu			ramp up requirement
						11,57	1,120				running requirement
		Holding tank (10,000 kg)									


usage is to the right.

16,757,505 Btu 2,938,831 Btu Per Day

MaxEfficiency Deodorizing System

200 Gallon Jacketed High Pressure Hydrogenator

Plant Estimates (FCI)	Costs
Total Equipment Costs	\$1,289,844.06
Purchased Equipment Installation	\$552,790.31
Instrumentation (Installed)	\$479,084.94
Piping (Installed)	\$94,027.13
Electrical (Installed)	\$184,263.44
Buildings (Services Included)	\$142,557.26
Service Facilities (Installed)	\$184,263.44
Engineering and Supervision	\$589,643.00
Construction	\$626,495.69
.egal	\$73,705.38
Contractor	\$350,100.53
Contingency	\$681,774.72
Norking Capital	\$1,381,975.78
Total	\$6,630,525.68

Equipment an	d Installations	Labor, B	Electric	city, S	team	
	Fixed Capital					
Total Costs	Investment	Variable	Costs		Material Costs	
\$ 8,905,902	.71 \$6,632,039.00) \$2,273,	863.72			
					\$1,878,311.02	Soy
\$ 1,749,515.	18 \$/yr					•
Total Product	Costs (Assume Fi	ixed Costs	s are ar	nualize	ed over 5 years	at 10% with no
depreciation	(minimal costs))				·	
		Income				
Cost Per	•	from				
Year	\$5,901,689.92	meal	\$212,	500	Total Cost	\$ 5,689,189.92
Total Cost p	per Pound					
\$ 5.69						
Selling Price \$9.00						
\$9.00	per pound					

Fixed Capital Investment and Plant Costs

The total fixed capital investment was calculated from equipment costs from various manufacturers (watertanks.com, Anderson International (screwpress), Pressure Chemical Company (hydrogenators), and Peters, MS. The table to the left shows the equipment costs, electricity costs, water costs, gas costs (for the boiler), and FCI.

Future Work in the Development of Heartland Wax

- Refining formulations to optimize the functionality of Heartland Wax.
- Develop pilot plant to elucidate the effects of scale-up on production processes, with emphasis on hydrogenation.

• Shelf life testing, microbial growth challenge studies, and functional life span in use.

Anderson Duo Expeller Press

Acknowledgements

Special thanks to Bunge Inc. for providing fully hydrogenated soybean oil.
Indiana Soybean Alliance and Corn Marketing Council for providing funding and the opportunity to compete in the 2009 Student Innovation Competition.
Dr. Martin Okos for his insights and guidance.
Dr. Jenna Rickus for advising our team during the Student Innovation

PURDUE UNIVERSITY Production of a Novel Automotive Wax Utilizing Zero Discharge Technology Craig Barcus, Allison Calahan, Courtney Gray, Heather Serwacki BFPE April 23, 2009

Competition.