Waste Optimization of Cheese Processing

Dolly Mok, Elizabeth Hooper, Frisca Tandeann

Spring 2007

Objective:
To design a mozzarella cheese plant which will:
- Optimize the process of making mozzarella cheese
- Produce zero waste from the process

Background:
There are hundreds of types of cheeses produced around the world, each with different characteristics and compositions. However, in general, cheese has the same basic manufacturing process. The basic steps in process cheese are selecting and blending the raw material (crucial part is stabilizing proteins with emulsifying salts), heat processing, forming, and packaging.

- Milk pretreatment
- Standardization/Homogenization
- Pasteurization
- Coagulation
 - Milk undergoes physical and rheological change
 - Usually enzyme dependent
- Syneresis (formation of whey)
 - Draining of whey controls moisture content of cheese
 - Accelerated by
 - Increased surface area (from cutting of curds)
 - Timing of curd cutting is critical to prevent loss of milk solids (too soon) or high moisture product (too late)
 - Decreased pH
 - Increased temperature of coagulum
 - Heating or cooking facilitates contraction of protein matrix
- Shaping and salting
 - Salt changes texture, flavor, inhibits harmful microbial growth in cheese, dissolves casein, and slows enzyme activity
- Ripening (aging)

Market Size:
- In 2001, Americans consumed around 30 pounds of cheese per capita
- In 2015, the projected cheese consumption is 34 lbs per capita

Plant Size:
Production line:
- 1,640,000 kg of Mozzarella/year
- 1,529,224 kg of Ricotta/year
- Operating hours:
 - Pasteurization line: 24 hours for 5 days/week
 - Cheese processing line: 24 hours for 360 days/year

Process Diagram:

![Process Diagram Image]
Experimental Design

Mozzarella Cheese

Materials:
1. Pasteurized whole milk, bacterial starter cultures, Chymosin, Salt

Methods:
1. Heat the whole milk to 38°C.
2. Heat the milk with frozen starter cultures (thermococcus and thermonor), 0.50 mL mixture / kg milk. Leave the mixture to ripen for 60 min, keep at 38°C.
3. Add chymosin, 0.10 mL / kg milk. Let coagulate for 30 min. Cut the coagulum with 1.2 cm wire knives. And allow the coagulum to heal for 5 min.
4. Stir the curd at 38°C for 10 min then drain the whey. After the draining, add salt in 3 equal applications with 5 min intervals between applications. Allow the curd to mellow for 5 min after the last salt application. Stir continuously during salt application and mellowing process. Maintain at 38°C all times.
5. Mold/stretch the salted cheese in hot circulating water (57°C) contains 6% salt. (w/wt).
6. Place cheese into stainless steel container and cool it in cold water for 60 min or until the internal temperature reaches 10°C.
7. Package the cheese in vacuum container.

Whey Ricotta Cheese

Materials:
1. 2 gal of fresh whey (no more than 3 hrs old) from mozzarella cheese
 1/4 cup cider vinegar
 (performed on lab scale using less whey and vinegar)

Methods:
1. Pour the whey into a large pot, heat to 200 F.
2. While stirring, turn off the heat and add the vinegar.
3. Carefully ladle the curds into a colander lined with cheese cloth.
4. Allow to drain
5. Cover and refrigerate for up to 1 week

Challenges with Experiments:
- pH remained too high after whey separation for mozzarella production
- Formation crumbly mozzarella curd occurred instead of curd with smooth texture
- Temperature control during experimental process

Plackett-Burman Design for Five Variables and Two Estimates of Error

<table>
<thead>
<tr>
<th>Run</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
</tr>
</tbody>
</table>

Code | Variable |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Amount of bacterial cultures (+ 0.7 mL/kg, -0.5 mL/kg)</td>
</tr>
<tr>
<td>B</td>
<td>Amount of fat in milk (+ whole, - skin)</td>
</tr>
<tr>
<td>C</td>
<td>Agitation time (+ 20 min, -10 min)</td>
</tr>
<tr>
<td>D</td>
<td>Temperature of Stretching (+ 57°C, - 50°C)</td>
</tr>
<tr>
<td>E</td>
<td>Dummy</td>
</tr>
<tr>
<td>F</td>
<td>Amount of rennet (+0.15 mL/kg, -0.1 mL/kg)</td>
</tr>
<tr>
<td>G</td>
<td>Dummy</td>
</tr>
</tbody>
</table>

Composition (% weight) of Mozzarella and Whey Ricotta Cheese

<table>
<thead>
<tr>
<th>Component</th>
<th>Mozzarella Cheese</th>
<th>Whey Ricotta Cheese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>54.1</td>
<td>82.5</td>
</tr>
<tr>
<td>Protein</td>
<td>19.4</td>
<td>11.3</td>
</tr>
<tr>
<td>Fat</td>
<td>21.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Ash</td>
<td>2.6</td>
<td>-</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>2.2</td>
<td>1.5</td>
</tr>
<tr>
<td>pH</td>
<td>5.3</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Rheology:
- Depends on cheese composition and maturity
- One of the properties: firmness
 - Protein content (the stress carrying component)
 - Linear correlation: as protein content increases, firmer.
- Moisture content (m.c.)
 - Increase in Moisture Content
 - Resistance of cheese deform
 - Stress of fracture decreases
 - Fracture increases
 - Low protein content
 - Good lubricant due to space occupation between fat and protein
 - Less resistance to deformation due to swollen protein particles
- Fat content
 - Affects microstructure
 - Less fat globules mean more protein matrix and firmer texture
 - Low fat cheese are firmer and more rubbery in texture
Zero Discharge and Minimum Energy Design:
- Use whey from Mozzarella production to produce Ricotta cheese
- Removal of nutrients from Ricotta cheese discharge and purification of remaining water to use in cleaning and as recycle water for heat exchanger
- Regeneration section in pasteurization process reduces energy required to heat milk
- Countercurrent flow in pasteurization process reduces energy required to heat and cool milk
- Heating and Cooling sections of heat exchanger recycle water

Scheduling:
- Pasteurization – continuous process (milk goes to cold storage until needed)
- Cheese Vat – 245 minutes/batch
- Mixer – 20 minutes/batch
- Cooling – 60 minutes/batch
- Packaging – 15 minutes/batch

Future Work:
- Recycling more process streams to make completely zero discharge
- Reduction of energy used to make ricotta cheese
- Alternative uses for drainage from ricotta cheese
- Reduction of energy lost through steam using cheese vat
- Possibilities for use of continuous process instead of batch
- Lactose utilization from ricotta drainage: possibility for crystallization and sale

Mass and Energy Balance:
- Cheese Vat (Mozzarella)
 - Whey produced: 24,700,000 kg/year
 - Curd produced: 1,640,000 kg/year
 - Hot water needed: 11,800,000 kg/year
 - Heat loss: 1,590,000 kJ/year
- Cheese Vat (Whey Ricotta)
 - Whey produced: 22,561,107 kg/year
 - Curd produced: 1,529,224 kg/year
 - Energy: 6,081,000,000 kJ/year
- Mixer/Stretchener/Kneader
 - Salt Water: 88,200 kg/year
 - Energy: 153,000 kJ/year
- Cooling of product
 - Energy: 55,100,000 kJ/year

Heat Exchanger Sizing:
- Total Area: 57.5 m²
- Hold tube: 12.4 m
- Heat exchanger sections:
 - Heating/Pasteurization: 20 plates, 0.15 m x 0.43 m
 - Regeneration: 40 plates, 0.76 m x 1.2 m
 - Cooling: 10 plates, 0.76 m x 1.2 m

Cost Analysis

Direct Costs:
- Purchased Equipment Cost (EC): $282,712
- Installation (20% of EC): $56,542
- Instrumentation and Controls (10% of EC): $84,814
- Piping System (45% of EC): $113,685
- Electrical System (30% of EC): $84,814
- Building (30% of EC): $141,356
- Service Facilities (5% of EC): $15,492
- Land (5% of EC): $16,963
- Total Direct Cost (TDC): $922,319

Indirect Costs:
- Engineering and Supervision (30% of EC): $56,542
- Legal Expenses (5% of EC): $8,461
- Construction Expenses (6% of EC): $84,814
- Contingency (15% of EC): $99,949
- Total Indirect Cost (TIC): $248,787

Fixed Capital Investment (FCI):
- Total Fixed Capital Investment (CIC): $1,241,106

Working Capital (WC):
- Total Working Capital (WC): $212,034

Total Capital Investment (TCI):
- Total Capital Investment (TCI): $1,453,140

Equipment Cost and Sizing:
- Pasteurizer (60 m³): $25,000
- Holding tube (12.4 m): $3,712
- Pump (for Pasteurizer): $15,000
- Additional Pumps: $20,000
- Cheese vats (Mozzarella): $40,000
- Cheese vats (Ricotta): $30,000
- Mixer/Stretchener/Kneader: $50,000
- Packaging Equipment: $30,000
- Cooler: $20,000
- Storage tank (Pasteurized milk): $30,000
- Water purifier (waste water): $16,000
- Total Equipment Cost: $282,712

Manufacturing Costs:
- Direct Production Costs (40% TDC): $119,276,400
- Raw Materials (10% TDC): $99,397,000
- Operating Labor, OIL (10% TDC): $19,879,400
- Supervisory and clerical labor, SO (3% TDC): $1,987,940
- Utilities (5% TDC): $29,819,100
- Maintenance and Repairs, M.R. (5% KCI): $62,055
- Operating Supplies (5% KCI): $12,411
- Laboratory Charges (1% OL): $1,987,940
- Patents and Royalties (5% KCI): $3,975,880
- Fixed Charges (15% TDC): $29,819,100

Selling Price:
- Selling Price: $620/kg
- Total Sales: $5,661,112
- ROI (50%): 50%
- Gross Profit: $5,661,112
- ANNUAL NET PROFIT: $784,736.36
- Total Product Cost: $199,794,000

Purdue University of Food Process Engineering Department of Food Science 1131 North University Avenue West Lafayette, Indiana 47907-2055
April 2007