Design of a Pizza Crust Process

Aaron Dillie, James Schlueger, and Carrie Barnum

April 19, 2007

Objective:

- Understand the process of how pizza crust is made in an industrial size plant.
- Create a business plan to produce a successful product which has zero water discharge while keeping the energy usage at a minimum.

Problem Statement:

- About 22% of the world’s water supply is used in industrial settings, and this number is projected to double over the next 2 decades.
- To keep this percentage lower it is important for us as future engineers to help find ways of conserving the water used in the places we are employed.

Summary of Production

- 850 crust/batch
- 1973 batches/year
- Price of pizza crust - $3.00
- Annual Return on Investment 29.37%

Process Flow Diagram
Processing Steps:

Mixing - Make sure all the ingredients are evenly distributed throughout the product. Also, the amount of mixing changes the gluten formation in the dough which will affect the cell structure of the product.

Fermentation - This allows the yeast to be activated and begin growing of the yeast and releasing the CO2 gas and ethanol that gives the pizza dough flavor. During the release of the CO2 and ethanol, the pizza dough begins to rise and creates the desired cell structure of the pizza dough.

Baking - The baking cooks the pizza dough to give it the end desired texture, flavor, and mouth feel. The baking actually dries out the dough and releases water in to the atmosphere that we would want to recover and be able to reuse.

Freezing - The freezing of the pizza dough is to keep the product fresh longer. Also, our product will be used in further steps to create an entire pizza with toppings that could be cooked again.

Conveying - The conveyors are used as resting times for the dough. After the dough has been manipulated it needs some recovery time so that it still has the desired structure.

Experimental Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Low Value (-)</th>
<th>High Value (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>400</td>
<td>425</td>
</tr>
<tr>
<td>Time</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test</th>
<th>Flavor</th>
<th>Texture</th>
<th>Color</th>
<th>Average of all Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7.33</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>8.33</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

Flavor - opinion of how well the crust is liked
Texture - base more on the doneness of the bread and the cell structure quality
Color - the color of the outside of the bread and how close to a real pizza crust it looked

The sensory test was based on a 1-9 hedonic scale
1 - the lowest value
9 - the highest value
Our results are shown as an average of a number of test subjects.
Economic Evaluation

Total Capital Investment

<table>
<thead>
<tr>
<th>Unit Operation</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixer</td>
<td>$150,000.00</td>
</tr>
<tr>
<td>50 ft. Conveyor Belt (1)</td>
<td>$53,000.00</td>
</tr>
<tr>
<td>30 ft. Conveyor Belt (2)</td>
<td>$86,000.00</td>
</tr>
<tr>
<td>Oven (2)</td>
<td>$200,000.00</td>
</tr>
<tr>
<td>Freezer</td>
<td>$50,000.00</td>
</tr>
<tr>
<td>Pump (3)</td>
<td>$22,500.00</td>
</tr>
<tr>
<td>Heat Exchanger (2)</td>
<td>$1,400.00</td>
</tr>
<tr>
<td>Boiler</td>
<td>$120,000.00</td>
</tr>
<tr>
<td>Blower</td>
<td>$50,000.00</td>
</tr>
<tr>
<td>Holding Tanks (3)</td>
<td>$45,000.00</td>
</tr>
<tr>
<td>Total Purchase Cost</td>
<td>$777,900.00</td>
</tr>
</tbody>
</table>

Direct Costs

- Purchased Equipment Cost: $777,900.00
- Installation (50% of purchased equip. cost): $389,950.00
- Controls (25% of purchased equip. cost): $194,475.00
- Piping (25% of purchased equip. cost): $194,475.00
- Electrical (25% of purchased equip. cost): $194,475.00
- Buildings (50% of purchased equip. cost): $389,950.00
- Service Facilities (70% of purchased equip. cost): $544,930.00
- Land (60% of purchased equip. cost): $46,674.00

Total Direct Costs: $2,730,429.00

Indirect Costs

- Engineering and Supervision (15% of direct costs): $409,864.35
- Legal Costs (2% of fixed capital investment): $77,811.00
- Construction Costs (15% of fixed capital investment): $546,086.00
- Contingency (10% of fixed capital investment): $364,057.00

Total Indirect Costs: $1,392,981.35

Fixed Capital Investment: $4,122,947.35

Working Capital (15% of total capital investment): $727,579.00

Total Capital Investment: $4,850,526.35

Total Product Cost

Manufacturing Costs (per year)

- Raw Materials: $1,400,000.00
- Operating Labor (25% of raw materials): $350,000.00
- Supervisory, Clerical Labor (15% of operating labor): $52,500.00
- Utilities (25% of raw materials): $350,000.00
- Maintenance and Repairs (6% of fixed capital investment): $247,376.84
- Operating Supplies (7% of fixed capital investment): $28,660.63
- Laboratory Charges (25% of operating labor): $52,500.00
- Patents and Royalties (5% of raw materials): $70,000.00
- Local Taxes (2% of fixed capital investment): $82,458.95
- Insurance (7% of fixed capital investment): $28,860.63
- Rent (10% of rented building, land): $43,562.40
- Financing (5% of total capital investment): $242,526.32

Total Manufacturing Costs: $3,186,645.77

General Expenses

- Administrative Costs (5% of raw materials): $70,000.00
- Distribution and Marketing Costs (17% of raw materials): $238,000.00
- Research and Development Costs (9% of raw materials): $112,000.00

Total General Expenses: $420,000.00

Total Product Cost: $3,606,645.77

Income

- Selling Price of Pizza Crust: $3.00
- Number of Batches per Year: 1973
- Number of Pizzas per Batch: 850
- Total Sales: $5,031,150.00

Annual Net Profit: $1,424,504.23

Annual Return on Investment: 20.37%

Water Conservation

Our main focus throughout the design of the process has been water conservation. Between water being heated and converted to steam for use in the heat exchanger and the water that will be used as an ingredient in our pizza crust, we are consuming nearly 270 kg of water per batch. There are two ways that we will modify our process in order to conserve water. First, 30 kg of water is used per batch as a heat transfer medium in the heat exchangers to heat the incoming ingredients. This water will then be put through an ultrafiltration step and will be used as an ingredient in the next batch of pizza crusts. The second way that we thought to lessen the environmental impact of our plant is to condense the water that is lost in the baking step. According to our experiments, approximately 40% of the water added to the pizza crust is lost during baking. If 50% of this evaporated water could be condensed, run through the ultrafiltration step and returned to the incoming water stream we would conserve 47 kg of water per batch. Between the two of these modifications we would conserve 77 kg of water per batch which equates to nearly 152,000 kg of water per year. This amounts to a reduction in water use of nearly 30%.

Energy Conservation During Baking

As can be seen in the chart above, the baking step is by far the most energy intensive, so we are looking to reducing the energy lost during baking. In our experiments we determined that approximately 40% of the water added to the pizza crust as an ingredient is lost during baking. We can recover the heat from this water before it is recycled by using it to preheat the incoming water that is being used in the heat exchanger to heat the incoming ingredients. We only want to heat the heating water to 130 F, or 328 K.

Steam exiting the baking oven:

- T1in = 298.15 K
- T1out = 328 K
- Min = 30 kg batch

Wet water entering the plant:

- T2in = 298.15 K
- T2out = 328 K
- Min = 30 kg batch

Cost Analysis

- Electric heater duty:
 - Op = 4.181 kJ kg K
 - Min = 30 kg batch
 - Tin = 298.15 K
 - T1out = 328 K

Energy Saved:

- Duty = (Tin - T1out) x Op

Energy Saved = 7.38 x 10^6 kJ

Cost:

- MWh = 0.10
- kWh = 2.052 x 10^3 kWh
- money saved = 265497 dollars