Low Clump Reconstitution of Powdered Infant Formula

Shane Foley

April 15 th , 2004

Why is low clump reconstitution important in the production of powdered infant formula?

Powdered formula is difficult to mix at the correct temperature and get the right amount of powder into the bottle while an infant is crying for food. The last thing a parent wants to deal with is formula that will not come out of the bottle because it hasn't dissolved properly.

Objective:

The purpose of this project is to design a highly efficient process to produce a powdered infant formula with excellent reconstitution properties.

Production:

Operating time - $8000 \mathrm{hr} / \mathrm{yr}$
320 g/can
6hr cycle time
453,000 cans/yr
\$7.17/can

Processing Steps:

Mixing: Distribute product uniformly.
Pasteurization: Destroy pathogens and enzymes.
Homogenization: Reduce diameter and size distribution of fat globules.

Evaporation: Decrease energy demand.
Spray Drying: Remove moisture.
Agglomeration: Improve rehydration properties.

Process Flow Diagram:

Double Effect Evaporator
Steam T (first effect) $=140^{\circ} \mathrm{C}$
Solution T (last effect) $=35^{\circ} \mathrm{C}$
Steam Rate $=8054.7 \mathrm{kcal} / \mathrm{h}$
Evaporator Economy
$1.035 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg} \mathrm{Steam}$
Evaporator Capacity
$13.932 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{h}$

Shear Mix Agglomerator

Initial Moisture $\%=6.2$
Final Moisture $\%=3.3$
Final Solids $T=70^{\circ} \mathrm{C}$
Evaporation Rate $=100 \mathrm{~kg}$ evap. $/ \mathrm{m}^{\wedge} 3 \mathrm{~h}$

Homogenizer
Exit $\mathrm{T}=62^{\circ} \mathrm{C}$
 Homogenization

Pressure Drop $=206.8$ bar

Spray Dryer

Initial Moisture $\%=50.5$
Final Moisture $\%=3.3$
Final Solids $\mathrm{T}=70^{\circ} \mathrm{C}$
Steam Rate $=31.84 \mathrm{kcal} / \mathrm{h}$
Price $=\$ 100,000$

Energy Balance Information:
$\mathrm{Cp}=1.71 \mathrm{~kJ} / \mathrm{kg}$ oC
Tout $=70 \mathrm{oC}$
Tin $=35 \mathrm{oC}$

Feed Stream: $\mathrm{h}=59.92 \mathrm{~kJ} / \mathrm{kg}$

	Concentration Composition During Processing Initial Ingredients	Concentration after (Mass Percent)	Concentration after Spaporator	Concentration Final, after Agglomeration
Calcium Phosphate	0.17	0.24	0.45	0.45
Chorine Chloride	0.02	0.02	0.04	0.04
Fat	10.73	15.17	28.76	29.68
Potassium Chloride	0.05	0.07	0.13	0.13
L-carnitine	0.00	0.01	0.01	0.01
Lactose	11.28	15.95	30.23	31.20
Magnesium Phosphate	0.03	0.04	0.08	0.08
NFDM	6.25	8.83	16.73	17.27
Potassium Citrate	0.04	0.06	0.11	0.11
Potassium Hydroxide	0.00	0.01	0.01	0.01
Water	65.00	50.53	6.23	3.21
Whey	6.43	9.08	17.22	17.77
Total	100.01	100.01	100.00	99.96

> Cost Analysis

Manufacturing Costs: $\quad \$ 3,311,900$
Direct Production Costs
Raw Materials (30% of Total Product Cost)
Raw Materials (30\% of Total Product Cost)
Operating Labor (10\% of Total Production Cost)
Operating Labor (10\% of Total Production Cost)
Direct Supervision \& Clerical Labor (10\% of Labor)
Direct Supervision \& Clerical Labor (10\%
Utilities (10% of Total Product Costs)
Maintenance \& Repairs (3% of FCI)
Operating supplies (10% of Maintenance)
Laboratory Charges (8% of Labor)
Patents \& Royalties (2% of Total Product Cost Fixed Charges:
Local Taxes (2% of Fixed Capitol Investment) Insurance (3\% of Fixed Capitol Investment) Rent (8% of Land and Buildings)
Financing (interest) (2% of Total Capitol)
Plant Overhead (50\% of Labor, Main., \& Super.)
General Expenses:
Administrative (15\% of Labor, Main., \& Super.) Distribution \& Marketing Costs (8\% of TPC) Research \& Development (5\% of TPC)

TOTAL PRODUCT COSTS:
\$3,900,000

Selling Price $=\$ 18 /$ can
Total Sales $=\$ 6,795,000$
ROI = 41\%
Gross Profit $=\$ 5,656,888$

Marketing Data

27 billion ounces/yr in United States

$\$ 2.9$ billion in sales
Powdered Formula $=62 \%$ of marke \dagger
Powdered: \$7.00-\$20.00 / 340g
Reconstituted: \$ 1.40 - \$ 3.15
67% less then Ready-to-Feed
82% less then Liquid Concentrate

Microbial Issues

Because of its low water activity, powdered infant formula has traditionally been a microbially safe product. It has been only recently that infections and even baby deaths have been linked to powdered infant formula and Enterobacter sakazakii. E. sakazakii is a problem in wet-processing environments where the bacteria can grow in standing water. The organism usually contaminates the formula after it has been made into powder, whether through exposure in the spray dryer or during agglomeration. There is no heat or sterilizing step once the liquid has been dried. It remains dormant through storage, but begins growth again when the powdered formula is reconstituted.

Within the last few years E. sakazakii can be blamed for millions of dollars in powdered infant formula recalls. E. sakazakii is a cause of neonatal meningitis, sepsis and necrotizing enterocolitis and can lead to death.

Other important organisms include: Salmonella anatum caused an infection in the UK in 1996. S. bredeney has been the source of two infections. One occurred in Australia in 1977 and the other in France in 1988. Another infection occurred in the UK in 1985 that was linked to S. ealing. S. tennessee and S. virchow were also sources of infections in 1993 and 1994. It was shown that none of these outbreaks occurred due to contamination during reconstitution, only from contaminated formula.

Wisconsin Center for Dairy Research Recipe:

According to the Wisconsin Center for Dairy Research in Madison, Wisconsin, basic powdered infant formula consists of 38.3% Lactose, 34% Nonfat Dry Milk, 27% Fat Blend, 0.5% Lecithin, and 0.2% Vitamins and minerals. Their recipe is as follows:

1) Calculate how much of each ingredient is necessary based on batch size.
2) Add the dry milk and lactose to water. The quantity of water should be enough to allow for a free flowing easily processed liquid.
3) Heat the solution to $140^{\circ} \mathrm{F}$ and mix in the remaining ingredients.
4) Heat the liquid to pasteurization temperature and homogenize in a two-stage process first at 2000 psi and secondly at 500 psi
5) Spray dry, agglomerate, and package

Particle Size (micro meters)
PURDUE
Plackett - Burman Experimental Design
$N=4$ Model
2 batch sizes

Runs	A	B	C	(D)
1	+	-	-	+
2	+	+	-	+
3	+	+	+	-
4	-	+	+	-

Impeller Speed (rpm)		Agglomeration Time (sec)	
$(+)$	$(-)$	$(+)$	$(-)$
250	100	15	5
Mix Time $($ min $)$		Dummy	
$(+)$	$(-)$	$(+)$	$(-)$
3	1	---	---

Where:
A - Impeller Speed (rpm)
B - Agglomeration time (sec)
C - Mix Time (min)
(D) - Dummy Variable

Significant Variable were found to be:
Agglomeration Time
and
Batch Size

Experimental Data

Batch $1=100$ gram samples
Batch $2=200$ gram samples

Runs	Sensory Test Rating $1=$ no clumps $9=$ extremely clumpy
1	7.4
2	6.9
3	6.2
4	6.1

Runs	Sensory Test Rating $1=$ no clumps $9=$ extremely clumpy
1	5.6
2	3.4
3	1.8
4	4.0

Batch 2 had less clumping than Batch 1

Particle Size (micro meters)	Sensory Test Rating $1=$ no clumps $9=$ extremely clumpy
Range: $\mathbf{4 5 0}$ to $<\mathbf{1 5 0}$	1.8
420 to 300	1.1
300 to 150	1.7
<150	2.3

Optimal Particle Size for Reconstitution: 420 to $300 \mu \mathrm{~m}$

Sample ID	Moisture Content
Batch 1 - Run 1	5.98
Batch 1 - Run 2	6.42
Batch 1 - Run 3	5.36
Batch 1 - Run 4	3.99
Batch 2 - Run 1	3.18
Batch 2 - Run 2	2.99
Batch 2 - Run 3	2.76
Batch 2 - Run 4	2.09

Verification that binder was added in the correct concentrations

Future Work

Optimization -

- Run agglomeration trials using 200 g and 300 g batch sizes.
- Keeping variables constant during all future trial.
- Variable settings: Impeller Speed $=250 \mathrm{rpm}$, Mix Time $=3$ minutes, and Agglomeration time $=15$ seconds.
- Sieve all trials to obtain 420-150 um particle sizes.
- Reconstitute trials using the set procedure.
- Run both qualitative and quantitative analysis for all trials.

Alternative Design Optimization -

- Run Plackett-Burman experimental design for the alternative design agglomerators.
- Determine the significant variable for each trial using both qualitative and quantitative analysis.

