Computerized Tillage System Calculator

Jake Walker, Aaron Weinhold, Adam Duff

Spring, 2004

Objectives:

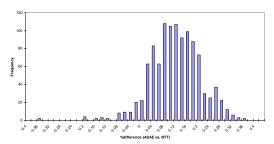
•Determine if the ASAE fuel consumption equation is outdated or variable across a range of tractors.

•Create a program to determine fuel consumption from required horsepower for tractors '95 and newer and over 100 horsepower using the Nebraska Tractor Tests.

•Perform a sensitivity analysis to determine optimum operating speeds for specific labor and fuel prices in an operation.

•Assist the user in sizing tillage implements to a specific tractor in different soil conditions.

•Make this user-friendly program accessible and deliverable to educators, farmers, and dealers.



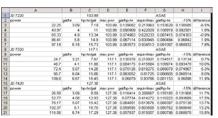
Procedures

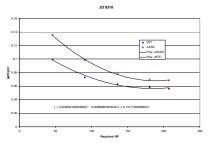
- •Obtain and compile Nebraska Tractor Tests for 214 tractors.
- •Compare fuel consumption data to the ASAE equation.
- ·Use Excel to create a fuel consumption regression equation for each tractor.
- •Create a program to predict fuel consumption, fuel costs, and horsepower and labor requirements for various tillage operations.
- •Include a sensitivity analysis to determine the optimum operating speed for the specific operation.

ASAE Fuel Consumption Equation vs. Nebraska Tractor Test Data

Histogram showing the difference between the ASAE fuel consumption equation and the regression equations created from the Nebraska Tractor Test data.

Running the program


Macros run within Excel make it easy for the user to input their information.


The user is asked for information such as the tractor and implement they are using, tillage depth, field conditions, operating speeds, soil textures, and their fuel and labor costs.

The program then uses the ASAE standards and the fuel use regression equations to calculate the outputs.

The generated outputs are then shown to the user in a printable format.

ASAE vs. Nebraska Tractor Test data

Calculations

The following information from the ASAE standards is used to make the calculations within the program:

- Draft equation
- •Machine and soil parameters
- •Power relations/conversions
- Field capacity equation
- Typical field efficiencies

Sample Input Boxes

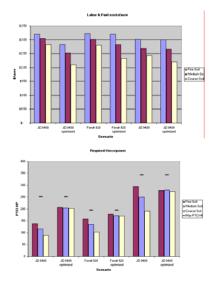
PURDUE Computerized Tillage System Calculator Jake Walker, Aaron Weinlicht, Adam Duff

Example Summary Table

	A		6	0	
4	Scenarie Name	30 8400	JD 6430 optimized	Fandt 900	Fendt 920 refirmated
6	Tractor Brand	John Deere	John Deere	Fend	Fend
6	Tractor	JD 8400	JD 5400	Fandt 900	Fendt 920
7	Drive Type	MFWD	MFWD	MFWD	MFWD
8	implement	chisel plaw, 7.5 cm	chisal plow, 7.5 cm	chusal plow 10 cm	chisel plow 10 cm
ŝ.	Field Efficiency				
ñ	Tool Spacing	1.26	125	126	1.25
	Intell width/# of tools	11	11		
8	Tillage Depth	1			
	Fuel Price	\$ 1.50	\$ 1.50	\$ 160	\$ 1.60
ü	Labor Price	\$ 1.50 \$ 10.00	\$ 10.00	1 10.00	1 10.00
2	Tractive Conditions	Fim	Fim	Fam	Fim
	Soil 1				
	Speed	120	6.75		55
	Soil Texture	fee	fine	fea	fria
	Field size	100			
	Sell 2	104		100	104
	Speed	4	75	5	
	Sol Testure	median	medium	medum	medium
	Field size	100	100		
	Soll 3	100	100	100	100
	Speed				7.2
	Soi Texture	C20/14	coarse	CONTR	COMIN
	Field size	coarse 100			
		100		100	104
	Fine Soil	-			
	Field capacity (acity)	7.0	9.6		
	Total time in field (hr)	14.12	10.46		
	PTO HP required	137	206		
	Max PTO HP	253	253		
	fuel use rate (gai/tv)	8.43	11.32		
	Total fuel use (gal)	115	519		
	Fuel cost per acre	\$ 1.78 \$ 178.30	\$ 1.78		\$ 1.91
	Total fuel cest	\$ 178.30	\$ 170.37	\$ 181.69	\$ 191.30
	Labor cost per acre	\$ 1.41	\$ 1.05	\$ 1.41	\$ 1.28
	Total labor cost	\$ 141.10	\$ 104.58	\$ 141.10	\$ 120.34
	Labor & Fuel costs/ac	\$ 3.19	\$ 2.83	\$ 3.23	\$ 3.20
	Total L & F cost	\$ 319.47	\$ 202.94	1 322.06	\$ 319.64
	Optimum Speed	6.75	6.75		
	Labor & Fuel savings	\$ 36.63	 	\$ 3.22	1
	Savings per acre	\$ 0.37	\$	\$ 0.03	 iii
	Modium Soil				
	Field capacity (ac/lv)	7.08	10.63		
	Total time in field (hr)	14.12	9.41		
	PTO HP required	117	203		
	Max PTO HP	253	253		
	fuel une rate (gal/tr)	7.73	11.15		
ø	Total fuel use (pal)	100	105	107	110
	Fuel cost per acre	\$ 1.64	\$ 1.50	\$ 1.60	\$ 1.66
				2 100 M	

Advantages of using the program

- Instant results
- Operation specific
- ·No calculations performed by the user
- ·Easy comparisons of different operations
- ·Ability to refine inputs and get immediate results
- •"What if?" scenarios
- ·Sizing tractors to specific implements
- •User can determine time requirements for an operation
- Sensitivity analysis to determine optimum operating speed


Once the user accepts their inputs, the program does the calculations and shows the outputs in a summary table.

Six scenarios can be evaluated side by side.

Minor changes can be made or a complete new operation can be entered.

An optimum speed is calculated by minimizing total fuel and labor costs in each soil.

Four charts are prepared by the program showing the user fuel and labor costs, horsepower requirements, and the effects of different soil textures on an operation.

Conclusions

The ASAE fuel consumption equation was determined to be inaccurate over a range of today's tractors.

A program was created to quickly predict fuel and labor requirements that until now took tedious calculations that gave inaccurate results.

This program should be helpful to educators, farmers, and dealers.

Tillage System Calculator can be accessed at: www.angelfire.com/mech/tillagecalculator

Special Thanks to: Dr. Miles, ABE department Dr. Strickland, ABE department Leonard Bashford, Nebraska Tractor Testing Facility

PURDUE UNIVERSITY ASMI Spring 2004