UAS Autopilot

Phil Baldwin
Purdue University – AAE
1/11/2019
Outline

• Theory
 • Guidance
 • Navigation
 • Control

• Hardware
 • Setup
 • Testing

• Software
 • Choices
 • Use
 • Testing

• Integration

Northrop Grumman X-47B: Autonomous aerial refueling
Theory

• Goal: Control full non-linear EOMs of your 6 DoF system (aircraft)

• How:
 • Identify behavior of your aircraft: Parameter Identification
 • Provide controller for each dynamic mode that doesn’t behave how you want it to (Dutch roll, phugoid, etc.)
 • Provide controller for guidance/navigation
 • Navigation: Where you are
 • Guidance: Where you’re going
 • Ground station software rolls all this into one package, with most of the work already done for you, though it is not necessarily all-encompassing
Theory – Parameter Identification

• Goal: Find stability derivatives
 • Relates the movement of a control surface, CG position shift, velocity, etc. to the reaction that the aircraft will have
 • Difficult to calculate by hand

• Predicted values – will need to coordinate values from several different sources
 • CFD
 • CAD
 • AVL

• Measured values
 • Flight tests: Accelerometers and airspeed are most common data
 • Wind tunnel: May be able to provide some data
Theory – Controllers

• Goal: Provide controller for each dynamic mode that doesn’t behave how you want it to (Dutch roll, phugoid, etc.)
• Generally use linearized EOMs and successive loop closure to create controllers for each system
 • Define system inputs and outputs (e.g., elevator signal input, AoA output)
 • **PID Control** in Ground Station software
• Can implement additional filters
Theory – Navigation

• Goal: Know where you are
• Sources
 • GNSS (GPS, GLONASS, Galileo, BeiDou)
 • RTK for more precise positioning – requires extra hardware
 • Inertial (Based on accelerometers and/or gyros)
 • Magnetic Compass (Magnetometer)
 • Barometer
 • Sensor fusion – Uses all of the above, with Kalman filtering, to provide a better solution to the problem
 • Not trivial
 • Built in to ground control software/firmware
Theory – Guidance

• Goal: Get where you want to go

• Driven by cross-track error: How far to the left or right (or below/above) are you of your desired track?
 • Generally a controller gain set to define how “aggressively” you want to get to your desired track
 • May be limited by bank angle limit,airspeed, or other factors
 • How close is close enough?
 • Is it the same in all phases of your flight plan?
Hardware

WARNING

None of us are equipped to deal with a severed finger (duct tape can only go so far). Please take steps to ensure that you stay safe when conducting bench, testbed, or production aircraft tests. Ideally, perform all tests *without* a propeller attached. Only attach a propeller once you are read to go fly.
Hardware

• A hardware solution that will allow for easy integration and that will allow you to connect servos, ESCs, radio receiver, etc., is desirable

 • **Pixhawk** is the cheapest

 • **Pixhawk 2** is newer, with better connectors

 • **Pixhawk 4** the newest, with same connector types as Pixhawk 2

• Some projects based on Raspberry Pi

• Additional “nice to have” (might be required, depending on mission design) components

 • External GPS

 • Pitot-static system
Hardware

• Pixhawk
 • Onboard IMU (accelerometers, gyros, barometer, magnetometer)
 • Lots of extra connectivity options
 • I2C
 • UART
 • CAN
 • ADC
 • …

• Telemetry/control radio is nice to have
• Each team already working?
Hardware – Setup

• Not going to describe each individual step here
 • Lots of tutorials available online
 • Not enough time

• **Install Pixhawk unit** as near to the CG as possible (arrow facing forward for all software defaults)
 • Forward-aft adjustment easiest
 • Vertical also important, but less variation
 • Foam or rubber to dampen vibrations

• **Attach all electrical connections**
 • Verify servo connections not reversed anywhere (very common)
 • Don’t stretch wires taut
 • Try to avoid a rat’s nest
Hardware – Setup

• Use MAIN OUT for all connections if possible (this provides hardware failsafes)

• Mapping between servo channels and Mission Planner
 • Main Out 1 = Servo1
 • Main Out 2 = Servo2
 • ...
 • Aux Out 1 = Servo9
 • Aux Out 2 = Servo10
 • ...

• Do not use RCIN for anything other than PPM receiver connection
Hardware – Power

• Three main power consumers on a basic plane
 • Motor (a LOT of power)
 • Servos (some power)
 • Pixhawk (really not very much power)

• Other power consumers
 • Other on-board processors (GPUs, air quality sensor pack?)
 • Transmitters (video and telemetry)

• Power sources
 • Pixhawk power brick
 • Only powers “brains”, NOT the servo rail
 • ESC’s BEC, standalone BEC, or secondary battery
 • Needed to power servo rail
 • Operating voltage of BEC/battery must match servos
Hardware – Servo Wires

- Easiest way to avoid issues is to standardize all servos and wires, but that takes some additional planning
- Custom-length servo wires take longer to integrate but probably will save some weight and space

White/Yellow/Orange: PWM Signal
Red: +VDC
Black/Brown: -VDC

RIGHT

WRONG
Hardware – Testing

• Bench testing highly recommended before installation in airframe
 • Chances are your final aircraft will not be ready for integration before you get all of your autopilot components together
 • Pre-assemble/test as much of the system as possible
 • Include as much of the actual system you will use
 • Servo extensions
 • Cameras
 • Transmitters
 • A couple of pieces of wood or foam will work – it need not be complex
• Allow access to Pixhawk and other components to check connections or current conditions
 • Much harder to dig around inside of a fuselage and trace wires
Hardware – Testing

• Testbed aircraft
 • Use to test/practice...
 • Assembly/start-up steps
 • Ground station practice
 • Flight modes
 • Sensors (airspeed, cameras)
 • Can use to create or refine...
 • Stability models and tuning
 • Methods for data collection
 • Use a known stable design
 • Mitigate risk of using the autopilot the first time in your only aircraft
Software – Choices

• **Lots of options**, especially depending on platform; can use a tablet or desktop (laptop) based system
 • [Mission Planner]*
 • APM Planner 2
 • [QGroundControl](#)
 • [UgCS](#)

• No “right” answer; download one or all of them, they are all free

• Spend some time using each one
 • Steep learning curve for new users
 • Best way to learn it is to use it

I’ll be using links to this software. QGC has analogs to most of the links I provide.
Software – Uses

• Control
 • Mission Planning
 • Waypoints
 • Vertical (profile) planning
 • Point of interest (loiter, circle)
 • Component integration
 • Cameras
 • Sensors
 • Joystick (if you want)

• Telemetry
 • Real-time info on location, speed, ETA, etc.
 • Diagnostic/status info
Software – Uses

- Telemetry channels
 - To prevent interference with other teams

- Steps
 1. Plug both radios in (one to GCS via USB, other to Pixhawk telem port)*
 2. Initial Setup → Optional Hardware → SiK Radio
 3. “Load Settings”
 4. Change Net ID
 5. Copy Req’d to Remote

*Alternate: Connect each to GCS via USB independently, then change Net ID

*Older version of Mission Planner shown
Software – Uses

• Mission Planner Setup
 • Units (make sure they match what you are designing in)
• Telemetry rates
 • Higher rate = finer data, may lose some data over telemetry (depends on aircraft configuration, geography, etc.)
• Log Path
 • To find telemetry logs after flight
• Advanced mode
 • Enables full parameter list and tree
Software – Uses

• **Simulation**
 - Standard “plane” uses default gain values to guess how your airplane will fly – you need to update the defaults to be able to simulate your airplane without it connected
 - With your real plane connected (via USB or telemetry), see how servos react, cameras point
 - Will not be perfect; fidelity is fairly low
 - Use to test out new mission profiles
 - Use to teach additional team members to operate your plane

Tip

Crashing simulated planes is a lot cheaper than crashing real ones!
Software – Uses

• Simulation
 • Click “Simulation”
 • Select Model
 • Click “Plane”
 • Will load SITL items
 • Initializes a simulated plane
 • Can interact just as if it was a real plane
 • Load waypoints
 • In-situ mission (takeoff, loiter, point camera, etc.)
 • Change parameters on-the-fly
 • Disconnect “TCP” to stop
Software – Uses

• A word on waypoint definition
 • Defined as a 3-Dimensional point
 • Latitude, Longitude, Altitude
 • Built-in Lat-Long “tolerance”
 • Radius (NOT diameter)
 • As soon as the aircraft is within radius, the next waypoint is sequenced

• Be careful with altitude definition
 • Absolute = MSL
 • Terrain = AGL
 • Relative = Compared to Home point
Software – Testing

• Same pretense as hardware testing: Know what you’re getting into and practice it

• **Set up Pixhawk** to be able to talk to your ground station

• Test out different modes in testbed
 • Use ground station and **RC transmitter** to change modes

• Understand what the software is doing; don’t just assume it will do what you want it to

• Know how to set the **failsafe** and what to expect if it takes effect

• Always be ready to take control back from the autopilot
 • Know where the “Manual” or “Override” switch is and how to use it
Integration

- Probably the hardest part of all of this (in the build process), but the least material to talk about
 - All of the airplanes are different
 - All of the missions are different
 - Must relate specific performance of each given system to your KPIs and decide what needs done first

- This will take you longer than you think, unless you have specifically designed how to integrate each individual component (down to servo wires) into your airframe
 - Generally there is ample tape used in this process 😞
Integration

• Make sure you can access Pixhawk to plug components in
• Install components individually
 • Servos
 • ESC
 • Camera(s)
 • Pitot-static tube
 • Lidar/other rangefinder
 • GPS Antenna
 • Pixhawk unit (and associated accessories)
 • Radio transceivers
Integration

• Make sure everything works individually before plugging in to Pixhawk
 • Common to think the Pixhawk is malfunctioning, but there is actually a servo extension installed upside down in line
 • Use a servo tester
 • Ensure prop rotation direction is correct (also a common “Oops” moment, but sometimes fixable with ESC programming)

• Plug in all components to Pixhawk
 • Should already have wireless ground control connection made, right?
 • Take care with the tiny connectors (pins are easy to bend, plastic is brittle)

• Go through start-up process
Integration

• Go fly!

 NOTE: It is highly recommended to fly by hand initially, then switch modes to “Stabilize” to check that the system works
 • Arm the system
 • Launch and climb to a safe altitude
 • Engage “Stabilize” or “FBW” mode
 • Always be ready to remove control from the autopilot
 • Mission Planner includes an “Autotune” mode that is supposed to set some of the PID values automatically; trust but verify is a good principle here.
 • For the rest of the controller values, set them individually
 • May be able to get a good first guess from community-submitted values
 • Only use a similarly sized aircraft if its weight and configuration is also similar
Integration

• **Flight Modes**
 • Control specifics of what your aircraft is doing
 • Can pre-plan with “Auto”
 • Set up automated takeoff (even hand launching)
 • Follow waypoints
 • Loiter over a specific point for a specified amount of time
 • Drop a payload?
 • Return to launch
 • Automated landing
 • Can hand-fly with “Stabilize”, “FBW”, or “Cruise” (or “Manual”, obviously)
 • Ad-hoc automated modes, “Loiter” and “Circle”
 • Lots of options available, and lots more you can add and customize
Integration

• Built-in safety
 • Envelope protection
 • Prevents stall, overspeed, or other undesirable conditions
 • “Free insurance”
 • Once again, trust but verify its operation
 • Geo-fencing
 • Keep your airplane IN a specific area (Flight box)
 • Keep your airplane OUT of a specific area (Airports, sporting events, etc.)
 • Terrain following
 • Might be useful in mountains or other adverse terrain
 • Might be less useful on the ocean
Integration

• Debrief
 • Use data collected during flight
 • Prove a parameter is met
 • Altitude during cruise
 • GPS location of payload drop
 • Flight time
 • Battery capacity (mAh) consumed
 • See if there are any improvements to be made
 • Change controller gains
 • Change climb-out angle
 • Change landing approach speed
 • Discuss what went right
 • Discuss anything that went poorly
 • Use data to analyze and correct for next flight
Integration

• Debrief
 • View 3D flightpath
 • Convert dataflash log to GPX
 • Upload GPX to google.com/mymaps
 • Under Untitled Layer → Import
 • Uniform Style → Whatever icon you want → Smallest Line Width
 • Save
 • Go to maps.google.com
 • Click on Your places → Maps
 • Select the map you generated
 • Click 3D View
• This used to be a lot easier with Google Earth...
Integration
Integration

• Use your now fully-autopilot-enabled aircraft to carry out an extensive flight test program
• Then deliver vaccines, or look for lost hikers
Integration – Common Issues

• Can’t connect Mission Planner to Pixhawk over USB
 • Check COM port assignment in Windows Device Manager

• Can’t connect Mission Planner to Pixhawk over Radio
 • Check both radios have the same Net ID

• Servos won’t work
 • Check servo wires, make sure they are receiving power (5-6 VDC)
 • Check orientation of wires at Pixhawk and any connections
 • Check if channels enabled when A/C Unsafe and/or Not Armed

• Aircraft won’t arm
 • Investigate Arm Checks parameter – If you don’t have an airspeed sensor, but require one to arm, you will have issues
Homework for teams

• **Set your telemetry radio** to the following channels

<table>
<thead>
<tr>
<th>Team</th>
<th>Net ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – HALO</td>
<td>10</td>
</tr>
<tr>
<td>2 – Flying Pharma</td>
<td>20</td>
</tr>
<tr>
<td>3 – STORM</td>
<td>30</td>
</tr>
<tr>
<td>4 – SAVIOUR</td>
<td>40</td>
</tr>
<tr>
<td>5 – Caladrius</td>
<td>50</td>
</tr>
<tr>
<td>6 – MARTI</td>
<td>88</td>
</tr>
<tr>
<td>7 – ARMOS</td>
<td>70</td>
</tr>
</tbody>
</table>

• What video frequencies are teams using?
 • Try to avoid interference from identical/adjacent/harmonic frequencies
Related reading

• Aircraft Control and Simulation, Brian Stevens/Frank Lewis/Eric Johnson (3rd Ed.)
 • 2nd Edition*
 • 3rd Edition (has a chapter on sUAS)
• APM: Plane

*I have this if anybody wants to borrow it
Questions?