RAISBECK GIFT HELPS TACKLE INDUSTRY ISSUES

James Raisbeck, BS ’61, says his education from Purdue has been invaluable in helping him analyze and deal with technical problems in the field of aeronautical engineering. Now, Raisbeck, who is the chief executive officer and owner of Seattle-based Raisbeck Engineering Inc. and its subsidiary, Raisbeck Commercial Air Group, is turning his solutions-oriented focus toward reinforcing Purdue’s reputation as a world-class engineering school. Raisbeck and his wife, Sherry, have donated $2 million toward the Raisbeck Engineering Distinguished Professorship for Engineering and Technology Integration, a faculty position that will help bring together students from the School of Technology and the School of Aeronautical and Astronautical Engineering. Such cooperation will allow the students to work together to formulate, build, and test actual products and solutions, giving them practical experience in addition to theoretical understanding. As of December, the Purdue University Board of Trustees ratified Professor Alten F. Grandt’s appointment to the position.

“James Raisbeck is an outstanding example of a person who has built his success on a Purdue education,” says President Martin C. Jischke. “Like so many of the University’s alumni, he has made tremendous professional contributions during his career, and now he and Sherry are turning back to Purdue in order to plant the seeds of success for the students of today and tomorrow. We are very grateful for this important and generous gift.”

Though a native of Wisconsin, Raisbeck chose to attend Purdue because of the University’s excellent reputation. He started at Purdue in 1954, but decided to join the Air Force later that year. After serving for four years, Raisbeck returned to Purdue in the fall of
1958 and plunged into his education with determination. “I hit the ground running,” he says. “I graduated in 1961, before I even made it to be a senior.”

He credits Purdue for his excellent analytical skills. “In this industry, you’re all alone at night, working out hard problems that require a lot of thought, and you’re not writing anything down,” he explains. “When you can look at problems in pieces and solve each small piece, you can solve the whole problem. I didn’t have that capability before I went to Purdue.”

Raisbeck doesn’t always solve a problem because he’s asked to as an engineer; he simply likes the challenge. When he heard that a particular company’s jets had a design flaw that created terrible stall characteristics, he started thinking. Not only did the planes stall at higher speeds than most, but they also had the even more dangerous tendency to roll on their backs when they stalled. “To protect passengers, the planes needed extremely high takeoff and landing speeds and long runways.” Raisbeck says. “The only ones who enjoyed flying them were fighter pilots.”

Raisbeck decided on his own to design a new leading edge for the wing. “I built it, borrowed a guy’s jet, flew it, and it worked,” Raisbeck says. Never without an end product in mind, Raisbeck turned his solution into a business opportunity. “We approached the company and they bought it. We went into the retrofit business and modified the planes one at a time,” he says. “I couldn’t have done all that if I hadn’t gone to Purdue.”

In gratitude for the excellent education he received, Raisbeck wants to do something for students today. “It’s payback time,” he says. The distinguished professorship is one of the Raisbecks’ many gifts to Purdue, which include seven scholarships in the Department of Aviation Technology, a research grant in the School of Aeronautics and Astronautics, and a donation to equip Purdue’s Beechcraft King Air planes with Raisbeck Engineering’s Performance Improvement Systems (visit www.raisbeck.com for more information). In addition, Raisbeck has contributed his time as a guest lecturer on several occasions to impart his practical experience to students in aeronautical and Astronautical engineering.

Raisbeck says he believes students need to be able not only to come up with theories, but also to build their solutions and test them. Computers, therefore, should serve as tools but can’t substitute for concrete applications. “My company doesn’t work on any kind of engineering problem without an end product in mind,” he explains. “The professorship is designed to allow the students to do the same kind of thing. That’s where the rubber meets the road. They need to have something to hold in their hands and say, ‘I built this.’”