

Improving the Scalability of our in-house Large Eddy Simulation (LES) code

Sponsored by National Science Foundation

By Chandra S. Martha, Yingchong Situ, Matt Louis, Gregory A. Blaisdell, Anastasios S. Lyrintzis and, Zhiyuan Li

Objectives

- Identify the bottlenecks and hot-spots involved in our in-house LES code
- Evaluate its scalability and peak performance for realistic jet simulations
- Improve the single-core performance by efficient utilization of the memory hierarchy
- Explore and assess alternative parallelization strategies to better make use of current super computers

Introduction

- Jet engine noise has been one of the most active areas of research.
- Computationally intensive LES tool allows accurate prediction of sound levels.
- LES of realistic simulations is within the reach of the stateof-the-art super computer architectures.
- However, scalability of the code to massive number of cores is critical to simulate realistic flows involving billions of grid points.

Testing Platform

Kraken super computer at NICS, University of Tennessee.

Platform	Kraken
Cluster model	Cray XT5
Processor model	AMD "Istanbul"
Architecture	X86-64
Nodes (cores)	8,256 (99,072)
Socket per node	2
Cores per socket	6
Clock frequency	2.6 GHz
Memory	16 GB

Cray-PAT is used for profiling.

Governing Equations – Navier-Stokes

$$\frac{1}{J}\frac{\partial \mathbf{Q}}{\partial t} + \frac{\partial}{\partial \xi} \left(\frac{\mathbf{F} - \mathbf{F_v}}{J} \right) + \frac{\partial}{\partial \eta} \left(\frac{\mathbf{G} - \mathbf{G_v}}{J} \right) + \frac{\partial}{\partial \zeta} \left(\frac{\mathbf{H} - \mathbf{H_v}}{J} \right) = 0$$

- Q vector of conservative flow variables
- F, G and H Inviscid flux; F_v , G_v and H_v Viscous flux vectors
- 4th order, 4-stage Runge-Kutta method for timeadvancement
- The flow is filtered in the three-directions to damp unresolved frequencies
- Compact differencing schemes to compute the derivative and filter resulting in tri-diagonal system of equations

Transposition Scheme:

Partitioning of the Computational Domain.

LAPACK is for the derivative and filtering operations. Pros:

- Easy to implement
- Cons:
- Parallelism is limited to one plane per processor
- *ALL-to-ALL* communication
- MPI message bytes are too high - Poor scalability at large core counts

Basic operations involved

3-D SPIKE algorithm

User developed modules to solve the system of equations **Pros:**

- 3-D decomposition: Better parallelism
- Each processor only needs to communicate with its neighbors
- Gives rise to better efficiency for large processor counts Cons:
- Requires iterative refinement (2-7 iterations)

Performance with 1-D Transposition

Performance with 3-D SPIKE

- The indices of the flow-field data array are switched to improve the cache access.
- SPIKE solver is used to eliminate to reduce the amount communicated data.

768x768x768	Cores	96	Time-steps		5
	Original	Index switch	Index switch+ spike		
			1-plane	1-variable	all variables
USER	287	224	163	168	168
MPI	53	58	52	28	29
LAPACK	100	100	66	67	67
TOTAL	440	382	281	263	264
Peak Perf	1.80%	2.10%	3.30%	3.40%	3.40%
MPI Msgs	105	105	1.7 M	2287	461
MPI Bytes	20 GB	20 GB	13 GB	13 GB	13 GB

Truncated SPIKE with 2 iterations for the derivative and 7 for the filtering.

#cores

#cores

The listed time corresponds to 10 time-steps of the simulation.

