Reducing Communication Overhead in Large Eddy Simulation of Jet Engine Noise

Yingchong Situ* Lixia Liu*
Zhiyuan Li* Ahmed H. Sameh*

Chandra S. Martha'
Gregory A. Blaisdell’

Matthew E. Louis®
Anastasios S. Lyrintzis

*Department of Computer Science and ' School of Aeronautics and Astronautics
Purdue University
West Lafayette, United States
{ysitu, liulixia, cmartha, louism, zhiyuanli, sameh, blaisdel, lyrintzi} @purdue.edu

Abstract—Computational aeroacoustics (CAA) has emerged
as a tool to complement theoretical and experimental ap-
proaches for robust and accurate prediction of sound levels from
aircraft airframes and engines. CAA, unlike computational
fluid dynamics (CFD), involves the accurate prediction of small-
amplitude acoustic fluctuations and their correct propagation to
the far field. In that respect, CAA poses significant challenges
for researchers because the computational scheme should have
high accuracy, good spectral resolution, and low dispersion
and diffusion errors. A high-order compact finite difference
scheme, which is implicit in space, can be used for such simu-
lations because it fulfills the requirements for CAA. Usually, this
method is parallelized using a transposition scheme; however,
that approach has a high communication overhead. In this
paper, we discuss the use of a parallel tridiagonal linear system
solver based on the truncated SPIKE algorithm for reducing
the communication overhead in our large eddy simulations. We
report experimental results collected on two parallel computing
platforms.

Keywords-finite difference methods; iterative solution tech-
niques; linear systems; numerical algorithms; parallel algo-
rithms

I. INTRODUCTION

Computational aeroacoustics (CAA) has emerged as a
relatively new discipline and a robust and accurate tool
that complements traditional theoretical and experimental
approaches in the prediction of sound levels from aircraft
airframes and engines. CAA, unlike the related discipline of
computational fluid dynamics (CFD), involves the accurate
prediction of small-amplitude acoustic fluctuations and their
correct propagation to the far field. In that respect, CAA
poses significant challenges for researchers because the com-
putational scheme should have high accuracy, good spectral
resolution, and low dispersion and diffusion errors.

The state of the art of CAA prediction of far-field noise
is based on time-dependent simulation of noise-generating
turbulent flows coupled with integral methods for propagating
the noise to the observer location. The highest level of simula-
tion, based on the Navier-Stokes equations, is direct numerical
simulation (DNS), in which time-dependent motions of all
revelant length scales are resolved directly without using
any turbulence model. While theoretically DNS can deliver
the best accuracy in numerical results among mainstream
methodologies for numerical CAA simulation, it suffers from

the major drawback that its computational cost is infeasible for
turbulent flows of Reynolds numbers of practical engineering
interest. At the opposite extreme in simulation philosophy to
DNS, Reynolds-averaged Navier-Stokes (RANS) equations
model the full range of time-dependent motions of all length
scales using turbulence models. In comparison with DNS,
RANS significantly reduces the computational cost, but only at
the expense of the flow physics. Large eddy simulation (LES)
strikes a balance and is a compromise between DNS and
RANS; it directly resolves eddies larger than the grid scale and
captures the effect of small eddies using a subgrid-scale model.
Such a methodology allows LES to use, in comparison with
DNS, a coarser grid that is fine-grained just enough to resolve
large eddies, maintaining the feasibility of simulating turbulent
flows at high Reynolds numbers; meanwhile, the subgrid-scale
model ensures that the influences of small eddies are retained
even though they are not directly simulated.

Lying at the core of numerical methods for three-
dimensional LES are spatial differentiation of flow variables,
and spatial filtering for suppressing numerical artifacts. Both
of these operations involve solving tridiagonal linear sys-
tems along the three axis directions of the computational
space. In our previous efforts in developing code for three-
dimensional LES, we used a transposition scheme [1] where
the computational space is transposed as necessary so that
all data for each individual system are available to a single
processor. This allowed us to utilize the tridiagonal linear
system solver in LAPACK [2] to attain high accuracy as well
as high efficiency and achieve almost perfect scalability in our
previous performance experiments.

Unfortunately, as computing platforms evolve, and the
gap between processor speed and interconnection network
bandwidth further widens, in our most recent experiments, the
high communication overhead inherent to the transposition
scheme exerted significant impact on its parallel performance
and severely limited its efficiency. Also, the transposition
scheme limits the number of processors used to be no more
than the number of planes in a given direction, when a
one-dimensional partitioning is done. This prompted us to
investigate alternatives to the transposition scheme. Among
a multitude of possible choices, we choose to get rid of
transposition of the computational space by employing a

Table 1
MEANINGS OF SYMBOLS IN (1)

Symbol Meaning
t Time
En, ¢ Generalized curvilinear coordinates
in computational space
J Jacobian that maps physical space to
computational space
(] Vector of conservative flow variables
(density, three components of mo-
mentum, and total energy)
F,G,H Inviscid flux vectors
F,,G,,H, Viscid flux vectors

new parallel tridiagonal linear system solver based on the
truncated SPIKE algorithm [3] with the primary design goal
of significantly reducing the communication overhead. The
process and effects of applying the new solver are the subjects
of this study.

To present the performance of our new LES implementation
in comparison with the original implementation, we organize
the rest of this paper as follows. Section II briefly explains the
numerical methods employed in our large eddy simulations
and illustrates the inner workings of our original LES imple-
mentation. Section III presents details of the SPIKE-based
tridiagonal linear system solver. In particular, we elaborate on
specific optimizations aimed at reducing the communication
overhead. Section I'V presents the experimental performance
data of the new LES implementation. Section V concludes the
paper and looks at future work.

II. NUMERICAL METHODS AND EXISTING
IMPLEMENTATION OF 3D LES

A. Physical and Mathematical Foundations

The essense of large eddy simulation is to solve a system
of Favre-filtered unsteady, compressible, nondimensionalized
Navier-Stokes equations formulated in conservative form [1].
The system is succinctly captured as

109 0 (F-F,\ 0 (GG,
Jor T9E\ U o\ J

+aa; (H_JH”> =0.

The meanings of the symbols in (1) are listed in Table 1. To
discretize the problem, we represent physical space using a
three-dimensional curvilinear grid, operate in discrete time
steps and subsequently replace partial differentiation in (1)
with a partial difference. To simplify the numerical scheme,
we map physical space to a computational space represented by
a three-dimensional Cartesian grid. The mapping is captured
by the Jacobian J.
We rewrite (1) as

ey

0 .
o~ RHS(Q:) @

where

{4 ()55

()

and use the classical fourth-order four-step explicit Runge-
Kutta scheme to perform time integration of (2). For each
iteration of time integration, RHS(Q;?) is evaluated multiple
times with different Q and ¢. Details of evaluating RHS(Q;7)
are given in [1].

Evaluation of RHS(Q;¢) involves intensive spatial par-
tial differentiation tasks along the &-, - and {-directions
apart from pointwise computation. To compute the spatial
derivatives at interior grid points away from boundaries, we
follow [4] in employing the following nondissipative sixth-
order compact scheme suggested in [5]:

7
OAE

3)

1 1
it i+ i = g Ui = fio1)
3 3

| “)

+ 36AE (fir2 — fi-2)

where f/ is the approximation of the first derivative of
function f at point i along the £ -direction. For near-boundary
points at i = 1,2, we apply the following third-order one-sided

compact scheme and fourth-order central compact scheme [1]:

fi+2f= ﬁ(*5f1+4f2+f3)7 (5a)

3
4AE

Similar formulations are applied for boundary points at i =
N —1,N, where N is the number of grid points. We use the
same method also for the 11- and {-directions.

To suppress numerical instabilities that can arise from
boundary conditions, unresolved scales, and mesh nonunifor-
mities [6], we perform spatial filtering using the following
tridiagonal filter in [7]:

1 1,
1Tt = e (=1 (5b)

3
opfir+Fit opfii =Y, F(fntfin) O
n=0

where the coefficients a, are given in [7]. The parameter oy
must satisfy the inequality —0.5 < oty < 0.5. The seven-point
stencil for computing the right-hand side is inapplicable for
near-boundary points at i = 1,2,3 and i = N—-2,N—1,N.
For i = 2,3, we use the following alternative formula:

7
(Xff_‘,;1 +f_‘i + affi+l = Z an,ifn (N
n=1

where the coefficients a,, ; are also given in [7]. Similar formu-
lations are applied for near-boundary points ati =N —2,N — 1.
Boundary points at i = 1 and i = N are left unfiltered.

Algorithm 1 Spatial differentiation and filtering via transposi-
tion
1: Organize local data by post-transposition location
2: Use all-to-all communication to perform transposition
3: Set up right-hand sides locally
4: Solve tridiagonal systems locally
5: Organize computation results by pre-transposition loca-
tion
6: Use all-to-all communication to restore original data
layout

Both spatial differentiation and spatial filtering give rise to
tridiagonal linear systems that are diagonally-dominant, except
for the first and last rows in the case of spatial differentiation.

B. Transposition Scheme

We utilized a transposition scheme [1] in our previous
efforts in implementing the above numerical methods.

In the transposition scheme, we partition the computational
space along the {-direction and assign each partition to a
processor. We use four-dimensional arrays to store values of
flow variables in each grid partition, using three dimensions
for curvilinear coordinates and one dimension for variable
selection. This simple data layout enables compact representa-
tion of the flow field and allows for basic data aggregation in
communication. Under this data layout, pointwise computation
and spatial differentiation and filtering along the £- and 7-
directions are straightforward because they are local to each
processor.

Spatial differentiation and filtering along the {-direction
are global operations for they require values at all points on
each grid line along the {-direction, which are scattered across
all processors. To satisfy this requirement, we transpose the
computational space across all processors as Fig. 1 illustrates
so that it becomes partitioned along the 7n-direction. After
that, tridiagonal systems for {-derivatives and filtering be-
come local to the processors and can be solved with perfect
parallelism. Finally, we reverse transpose the computational
space to restore its original configuration. Algorithm 1 offers a
synopsis of the steps of spatial differentiation and filtering.
Within each time step, pointwise computation and spatial
differentiation alternate several times and are followed by a
spatial filtering at the end.

We use LAPACK for solving the tridiagonal systems arising
from spatial differentiation and filtering, which gives the
scheme high accuracy as well as high intranode efficiency.
However, the scheme also has a major drawback that every
spatial differentiation and filtering along the {-direction
involves two all-to-all communications for transposing the
computational space. In each time step, {-derivatives of
as many as 45 flow variables and intermediate values are
computed, and spatial filtering is performed on five flow
variables along the {-direction. The huge amount of network

traffic and network congestion due to the complex internode
communication pattern induced by transposition necessarily
hampers the efficiency of our large eddy simulations. In
a recent code portability test after we moved to Kraken, a
Cray XTS5 cluster available from TeraGrid, as our primary
computing platform, we measured that the communication
cost was three times as high as what we had seen on Big Ben,
a slower Cray XT3 cluster also available from TeraGrid. Such
an effect will become even more prominent when we move
to computing platforms with faster processor speed relative to
interconnection network bandwidth.

III. INCORPORATING A SPIKE-BASED
TRIDIAGONAL LINEAR SYSTEM SOLVER

To reduce the communication overhead, we consider replac-
ing transposition with a new parallel tridiagonal solver based
on the truncated SPIKE algorithm [3]. The SPIKE algorithm
is a parallel hybrid solver for narrow-banded linear systems.
For the purpose of our large eddy simulations, we apply it
with specialization for tridiagonal linear systems. We note that
discussion of the same algorithm had appeared in [8], but we
follow the formulation in [3].

A. Basic Algorithm

For the sake of clarity in presentation, we assume that four
processors are utilized. Generalization is straightforward.

To solve a tridiagonal linear system Ax = f, the SPIKE
algorithm partitions A into four block rows:

Ay
]
(&9)
2] N
A= \Ci ®)
)

Ay

with tridiagonal blocks A1,A7,A3,A4 and off-diagonal el-
ements b1,by,b3 and cy,c3,c4. The block row containing
Ay is assigned to processor k. The algorithm extracts the
diagonal blocks from A to form a block diagonal matrix
D = diag(A;,A;,A3,A,) and computes the factorization

A=DS. €))

Solving Ax = f then becomes equivalent to solving Sx = g
with g = D~!f. Computation of the matrix S = D~'A can be
done with perfect parallelism.

Figure 1. Transposition of the computational space

The matrix S is called the spike matrix for having the form

T . _
. vy

*

1 *

L S

p—

. %

S= (10)

with the “spikes”

110
v =A, L?IJ , (11a)
—1[Ck
Wy =A; {0] (11b)
Observe that in the system Sx = g, or
1 : 17 .7 [
- SR
| |
w1 PN I L
NORERN0 ;s L
w1 || e
1 | — | 5
A O
R
| |
i 1)) o)
L I A R
12)

when written in full, as marked by dashed rectangles, a block
tridiagonal system

1:"1 ‘:/1 i X 8
Wy T Vs |l =% (13)
W3 T3] [%3 83
where
R [1 v(b)
f=| o %] , (14)
Wit 1
V 00 (14b)
k— ([) b
0 Vg
R (b)
W= 8} , (14c)
(b)
a X
= ('E)] , (14d)
| Xk+1
_g(b)
8= (Ii) , (14e)
|8k+1

can be extracted from (12) independently of other rows and
columns as shown in (13). We call this system the reduced
system and denote it by S£ = g. The unknowns in £ found from
solving the reduced system can be backsubstituted into (12) to
obtain the complete solution x in parallel.

Multiple variants are possible for the SPIKE algorithm,
depending on the method of solving the reduced system.
For our large eddy simulations, we choose to implement the
truncated SPIKE algorithm for its superior scalability over the
other variants. The truncated SPIKE algorithm derives from
the fact shown in [9] that for diagonally-dominant systems,
magnitudes of elements on v; and w; decay exponentially as
they lie further away from the diagonal. Hence, it is reasonable
that we ignore the elements v,(: and w,@ at the spike tips,
truncating the spikes v; and wy. This reduces (13) to a

block diagonal system, which can be solved also with perfect
parallelism.

To compensate for inaccuracies introduced by truncation of
the spikes, the truncated SPIKE algorithm is typically wrapped
inside an outer iterative scheme to improve the accuracy of the
solution. For our large eddy simulations, we select iterative
refinement as the outer iterative scheme to accompany the
truncated SPIKE algorithm because alternative methods such
as BiCGSTAB [10] and QMR [11] contain evaluations of
dot products, which require global communication. Iterative
refinement, in constrast, solely computes matrix-vector prod-
ucts, which, for tridiagonal systems, require communication
between neighboring processors only.

To perform iterative refinement on the reduced system
in (13), we start with the initial guess £(*) = 718 where

T = diag(T, T2, T5) (15)
and the corresponding residual #0) = g- 3)2(0), and update
the iterate and residual via

2D = g0y P10, (162)
o) — pln) _ g g (16b)

B. Limiting the Number of Iterations of Iterative Refinement

The primary motivation for replacing transposition with a
SPIKE-based tridiagonal linear system solver is to reduce the
number of bytes transmitted over the interconnection network.
Inside the SPIKE-based solver, the main contributor of com-
munication is solving the block tridiagonal reduced system. In
solving the reduced system, the amount of communication is
determined by the number of iterations of iterative refinement.
We want to run sufficiently many iterations so that numerical
accuracy is not sacrificed, while in the mean time, we also want
to run as few iterations as possible so that communication is
truly reduced.

In classical iterative methods for solving linear systems, the
relative residual is monitored at runtime so that as soon as it
drops below the tolerance level, the iteration can terminate.
However, in the scenario of our large eddy simulations,
keeping track of the relative residual at runtime will defeat
the purpose of reducing communication because computation
of the relative residual involves global communication across
all processors. Therefore, we want to calculate in advance the
minimum number of iterations that will guarantee a relative
residual below the tolerance level in the worst case.

We calculate the minimum number of iterations needed
as follows. Recall that in the SPIKE algorithm, solving the
original system Ax = f, or effectively Sx = g, is accomplished
via solving the reduced system in (13) and performing back-
substitution. Ignoring v,(f and w,({b) in the reduced system is
equivalent to replacing S with S, a copy of S with v,(:) and w,ib)

ignored, in the system Sx = g. The iteration in (16) is equiva-
lent to an alternative process of iterative refinement initialized
with the initial guess x(¥) = §~!g and the corresponding
residual 70 =g —8$x(© = (1 - SS'fl)g. Each iteration of
iterative refinement updates the iterate and the residual via

x1D = () 4 §- 1), (17a)
) —) _ g5 g, (17b)
Hence, the residual after the nth iteration is
7 = (1 - 8§ yrtlg. (18)
The residual with respect to the original system is thus
r =f— Ax™
-l w»
=D(I-S§ y""'p Iy

Therefore, the spectral norm relative residual [[r | JIf1l2
satisfies
Il

£l

where ||-||» denotes the spectral norm of a vector or a matrix.
Given a tolerance level €, we compute the smallest value of n
such that ||D(I — S§Hymip1 ||, < € and take that as the
minimum number of iterations needed. Since A is constant for
any particular grid size, we perform the computation offline

using MATLAB.

<|Ipa-ss'y+'p, (20)

C. Overlapping Communication and Computation

In addition to limiting the number of iterations of iterative re-
finement, we also invest in taking advantage of asynchoronous
communication in as many occasions as possible to enable
overlapping of communication and computation.

In our large eddy simulations, there are two main sources
of opportunities for overlapping communication and com-
putation, namely, setting up the right-hand sides for spatial
differentiation and filtering, and iterative refinement inside the
SPIKE-based tridigonal linear system solver.

In spatial differentiation and filtering, the right-hand sides
are computed using a five-point stencil and a seven-point
stencil, respectively. Between processors handling neighboring
block rows in the SPIKE algorithm, two or three planes of data
have to be exchanged depending on the case. In other words,
each processor that is not assigned the top or bottom row block
has to exchange data with both of its neighboring processors.
We implement computation of the right-hand sides in such
a way that each processor will start computation as soon as
it receives data from the neighbor above it and defer waiting
for data from the neighbor below until computation cannot
proceed due to lack of data. Correspondingly, each processor
will initiate asynchronous send of data to the neighbor below

Algorithm 2 Setting up right-hand sides

Algorithm 3 Iterative refinement on reduced system

1: Let p be the number of processors
Let k be the processor number
Post request to receive from processor k — 1 if k = 1
Post request to receive from processor k+ 1 if k # p
Initiate send to processor k+ 1 if k % p
Initiate send to processor k — 1 if k # 1
Wait for data from processor k — 1 if k # 1
Compute all except the last two or three rows of the right-
hand sides
9: Wait for data from processor k+ 1 if k # p
10: Compute the remaining rows of the right-hand sides

A ol

it before to the one above it so that computation on the
destination processor can start as early as possible. The
algorithmic steps are summarized in Algorithm 2.

Inside the SPIKE-based tridiagonal linear system solver,
iterative refinement also involves exchange of data between
neighboring processors almost identical to that in setting
up the right-hand sides, only differing by the amount of
communication—only one plane of data is exchanged be-
tween neighboring processors. In comparison with setting up
the right-hand sides, asynchoronous communication exhibits
greater necessity in this scenario because such data exchange
occurs repeatedly in each iteration of iterative refinement.

In our implementation, each processor posts all its requests
to receive data up front so that each receive operation can start
as soon as its neighbors have the data to exchange ready; for
sending data, each processor allocates a separate buffer for
data from each iteration so that send operations of different
iterations can execute concurrently. Algorithm 3 provides a
more precise view of where communication primitives appear.

IV. EXPERIMENTAL RESULTS
A. Implementation

Both of our original and new LES implementations are writ-
ten in Fortran 90 and use the Message Passing Interface (MPI)
for internode communication.

In the original implementation, transposition of the com-
putational space is accomplished via the MPI_ATLLTOALL
subroutine. The LAPACK subroutine pair DGTTRF/DGTTRS
is used for solving the tridiagonal linear systems on each
processor.

In the new implementation, we replace the portions of
the program that rely on the MPT_ALLTOALL subroutine
with three new modules that we have created to incorporate
the SPIKE-based tridiagonal linear system solver. Two of
the modules are responsible for setting up the right-hand
sides of the spatial differentiation and filtering; the third
module implements the solver proper. In all three modules, we
implement flexible interfaces that accept three-dimensional

1: Let p be the number of processors

2: Let k be the processor number

3. Perform a downward shift of the reduced system S£ = g by
one row so that each of processors 2 to p holds a complete
two-row block

4: if k # 1 then

5: Let 7 be the offline-decided number of iterations

6 Post 7 requests to receive from processor k+ 1 if k # p

7: Post T requests to receive from processor k — 1 if k £ 2

8 Compute local part of £

9 fori=1,2,...,7do

10: Initiate send of x}@ | to processor k+ 1 if k # p
11: Initiate send of x]@l to processor k — 1 if k # 2
12: Wait for data from processor k+ 1 if k £ p

13: Wait for data from processor k — 1 if k £ 2

14: Compute local part of #~1)

15: Compute local part of £(7

16: end for

17: end if

18: Perform an upward shift of the reduced system by one row
to restore the original data layout

and four-dimensional arrays, whose usage will be clear in
subsection IV-B.

B. Experiment Setup

To compare our new LES implementation against the base-
line of our original implementation based on the transposition
scheme, we use a test problem on a 768 x 768 x 768 grid
totaling 453 million grid points. Although for a full LES the
run typically has to last at least 100 000 time steps of Runge-
Kutta integration, for benchmarking purposes, we limit each
implementation to run ten time steps. We measure the running
time spent on Runge-Kutta integration only, excluding the
costs of startup and shutdown. We run each implementation
three times and calculate the average time.

We test three different flavors of using the SPIKE-based
tridiagonal linear system solver by feeding it with

« values at one plane of grid points perpendicular to the
n-direction at a time, or,

« values at all grid points of one flow variable at a time, or,

« values at all grid points of all flow variables at a time.

They are all implemented using the flexible interfaces provided
by the new modules. Feeding data in small chunks to the
solver achieves better data locality at the expense of higher
communication startup cost; at the opposite end, feeding
data in one large batch saves on communication startup but
risks inferior data locality. For future reference, we name the
three flavors “SPIKE/plane”, “SPIKE/var” and “SPIKE/all”,
respectively.

Table IT
HARDWARE CONFIGURATIONS OF RANGER AND KRAKEN

Ranger Kraken
Cluster model Sun Constellation Cray XT5
Processor model AMD “Barcelona” AMD “Istanbul”
Architecture x86-64 x86-64
Sockets per node 4 2
Cores per socket 4 6
Clock frequency 2.3 GHz 2.6 GHz
Memory per node 32 GB 16 GB

We do five separate sets of test runs using 24, 32, 48, 64
and 96 nodes, respectively, and utilize one processor on each
node. These configurations correspond to block row sizes in
the SPIKE algorithm of 32, 24, 16, 12 and 8 rows, respectively.
We base our estimates for the number of iterations of iterative
refinement in the SPIKE-based tridiagonal linear system solver
on the cases with 16-row blocks, using the unit round-off
of double-precision floating numbers as the tolerance level,
ie, e =222222x 107! Our calculations show that
two iterations of iterative refinement are necessary for spatial
differentiation, and seven iterations for spatial filtering. We
use these two numbers for all block row sizes because they
are sufficient for block sizes of 16 rows or larger and provide
reasonable accuracy for that of 8 rows.

We carry out the performance experiments on Ranger
and Kraken, two clusters available from TeraGrid. Hardware
configurations of Ranger and Kraken are listed in Table II.
Limited by memory capacity, we are unable to test the 24-
node configuration on Kraken.

C. Results

We plot the speedup achieved by the new LES implementa-
tion with respect to the original implementation in Fig. 2, and
the speedup achieved by both implementations with respect to
the platform baselines (the 24-node case on Ranger and the 32-
node case on Kraken) of the original implmentation in Fig. 3.
It is evident from Fig. 2 that the new implementation attains
significantly higher performance than the original implementa-
tion on both Ranger and Kraken. The geometric-mean speedup
across the three different flavors of applying the SPIKE-based
tridiagonal linear system solver is 223 % on Ranger and 155 %
on Kraken. The figure being higher on Ranger than on Kraken,
as also observable in both Fig. 2 and Fig. 3, results from the
fact that the interconnection network of Ranger is slower than
that of Kraken with respect to processor speed. This shows
that the new implementation is more adaptable to limited
interconnection network bandwidth. The differences between
the three flavors of the new implementation are minor. We
notice that as shown in Fig. 2, speedup achieved in the 64- and
96-node cases is slightly lower than in the other cases. We
believe that this is likely due to imperfect physical embedding
of the logical linear processor grid during the experiments,

which induces higher communication overhead than theory.

We plot the scalability of the new implementation as the
speedup with respect to its own platform baseline in Fig. 4.
As Fig. 4 shows, the new implementation achieves almost
perfect scalability on both Ranger and Kraken, especially in
the “SPIKE/all” flavor. The geometric-mean parallel efficiency
of the new implementation across all three flavors is 95 %
on Ranger and 98 % on Kraken, which indicates very good
scalability. (The parallel efficiency is defined as ""%ﬁ’“ where
p and T are the number of nodes and running time, respectively,
and ppase and Thyee are those of the platform baseline.)

We use the Cray Performance Analysis Tools (CrayPat) [12]
available on Kraken to instrument the compiled binaries
to measure the communication overhead. We profile the
two implementations over five time steps instead of ten to
shorten the profiling time. Fig. 5 shows the communication
overhead, which includes time spent in both MPI subroutines
and the necessary user code that arranges data layout for
MPI subroutines, in seconds and as the percentage of total
time. Thanks to the riddance of calls to the MPT_ALLTOALL
subroutine, the new implementation costs significantly less
in communication compared to the original implementation
in terms of both the absolute time and the percentage of
total time except for the “SPIKE/plane” flavor in the 64-node
and 96-node cases. Fig. 6, which shows only the time spent
in MPI subroutines, reveals the reason for such exception.
Despite having the same amount of network traffic as the
other two flavors, the “SPIKE/plane” flavor has very high
communication startup overhead for making exccessively
many calls to MPI subroutines (up to 1.7 million per processor)
due to its plane-by-plane nature.

We are unable to carry out the same experiments on Ranger
because Ranger does not offer a binary instrumentor, and the
source code-based instrumentor does not correctly handle our
Fortran 90 source code.

V. CONCLUSIONS AND FUTURE WORK

In this study, we investigate the feasibility of reducing com-
munication overhead in large eddy simulations by employing
a new parallel tridiagonal linear system solver based on the
truncated SPIKE algorithm to replace the transposition scheme.
Experimental performance data show that application of the
new solver delivers much better performance over the trans-
position scheme and significantly reduces the communication
overhead. These results establish the foundation of our future
work, in which we will extend the idea of applying the new
solver by partitioning the computational space in all three
directions. This will allow us to harness parallelism in three
dimensions and take advantage of the computing power of
a large number of processors to accelerate the simulation
process.

300% 180%
160% +—m— ——
250% +—
140% +— e e -
200% +— - —_— — = 120% +— o o -
5 5 100% o |
° m Original ° ° T 1 7 ~— mOrigina
g 150% 17— 1 1 1 S goy L] L
& SPIKE/plane & SPIKE/plane
100% -+ - - - - 60% +| - -
% SPIKE/var) SPIKE/var
40% +| - -
50% | — — — — - SPIKE/all SPIKE/all
20% +| - - E
0% - ‘ ‘ ‘ ‘) 0% ‘ ‘)
24 32 48 64 96 32 48 64 96
Nodes Nodes
(a) Ranger (b) Kraken
Figure 2. Speedup with respect to the orignal implementation
1000% 500%
900% - 450% -
800% - 400% E
700% - 350% -
2 600% - - B 2 300% - o
3 500% [| u Original 3 250w - I u Original
& 400% - | _— - L SPIKE/plane & 200% - — - SPIKE/plane
300% +——— — M m r SPIKE/var 150% +—— T — ~ SPIKE/var
200% +— — i T M SPIKE/all 100% —] SPIKE/all
100% -+ —I - o — - 50% | — — -
0% ‘ ‘ ‘ ‘) 0% ‘ ‘)
24 32 48 64 9% 32 48 64 96
Nodes Nodes
(a) Ranger (b) Kraken
Figure 3. Speedup with respect to platform baseline of the original implementation
400% 300%
9 |
350% 250% |
300% -
9 L
o 250% - | o 200%
3 3
§ 200% — u SPIKE/plane § 150% - — ~— mSPIKE/plane
a150% — — SPIKE/var ? lo0% _ | L | SPIKE /var
100% — — — — SPIKE/all SPIKE/all
0% | | L L
0% [| [| [| [| | 50%
0% - ‘ ‘ ‘ ‘) 0% ‘ ‘)
24 32 48 64 96 32 48 64 96
Nodes Nodes
(a) Ranger (b) Kraken

Figure 4. Speedup with respect to platform baseline

250 . 25%
= &
-] ©
c -
S 200 £ 20%
9 2
a8 @
@ =N
£ 150 o 15% -+
= m Original £ m Original
s E
£ 100 SPIKE/plane S 10% SPIKE/plane
2 -]
= SPIKE/var S SPIKE/var
£ 1 < o || M L L1
g SPIKE/all 2 % SPIKE/all
] €

(=}
0 - T T T) O 0% -
32 48 64 96 32 48 64 9%
Nodes Nodes
(a) Communication time in seconds (b) Communication time as percentage of total time
Figure 5. Communication overhead on Kraken
160 20%

m Original

SPIKE/plane

MPI time (seconds)

SPIKE/var
SPIKE/all

32 48 64 96

Nodes

MPI time (percentage)

18%
16%

14%

12%

10% =
8% — — — —
6% F T— — i —
4% L1 L L L
2% — 1 i —
0% T T T)

32 48 64 96

Nodes

m Original

SPIKE/plane
SPIKE/var
SPIKE/all

(a) MPI time in seconds

(b) MPI time as percentage of total time

Figure 6. MPI time on Kraken

ACKNOWLEDGMENT

Our thanks go to Ali Uzun, whose LES code base has greatly
reduced our workload in creating the new LES implementation
that is benchmarked in this study.

This research is primarily sponsored by the National Science
Foundation (NSF) via Award OCI-0904675 under its PetaApps
program. This research is further supported by the NSF via
Award CCF-0811587 and through TeraGrid [13] resources pro-
vided by TACC and NICS as allocations TG-ASC090008 and
TG-ASC040044N. TeraGrid systems are hosted by Indiana
University, LONI, NCAR, NCSA, NICS, ORNL, PSC, Purdue
University, SDSC, TACC, and UC/ANL. The second author is
also supported by a Google fellowship.

REFERENCES

>

[1] A. Uzun, “3-D large eddy simulation for jet aeroacoustics,
Ph.D. dissertation, School of Aeronautics and Astronautics,
Purdue University, 2003.

[2] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney,
J. Du Croz, S. Hammerling, J. Demmel, C. Bischof, and
D. Sorensen, “LAPACK: a portable linear algebra library for

(3]

(4]

(51

[6]

[7]

high-performance computers,” in Supercomputing *90: Pro-
ceedings of the 1990 ACM/IEEE conference on supercomputing.
Los Alamitos, CA, USA: IEEE Computer Society Press, 1990,
pp- 2-11.

E. Polizzi and A. H. Sameh, “A parallel hybrid banded system
solver: the SPIKE algorithm,” Parallel Computing, vol. 32,
no. 2, pp. 177-194, 2006, Parallel Matrix Algorithms and
Applications (PMAA’04).

A. Uzun, G. A. Blaisdell, and A. S. Lyrintzis, “Application of
compact schemes to large eddy simulation of turbulent jets,”
Journal of Scientific Computing, vol. 21, no. 3, pp. 283-319,
2004.

S. K. Lele, “Compact finite difference schemes with spectral-
like resolution,” Journal of Computational Physics, vol. 103,
no. 1, pp. 1642, 1992.

E. K. Koutsavdis, G. A. Blaisdell, and A. S. Lyrintzis, “Compact
schemes with spatial filtering in computational aeroacoustics,”
AIAA Journal, vol. 38, pp. 713-715, 2000.

M. R. Visbal and D. V. Gaitonde, “Very high-order spatially
implicit schemes for computational acoustics on curvilinear
meshes.” Journal of Computational Acoustics, vol. 9, no. 4, pp.
1259-1286, 2001.

(8]

(91

(10]

(11]

J. J. Dongarra and A. H. Sameh, “On some parallel banded
system solvers,” Parallel Computing, vol. 1, no. 3—4, pp. 223—
235, 1984.

C. C. K. Mikkelsen and M. Manguoglu, “Analysis of the
truncated SPIKE algorithm,” STAM Journal on Matrix Analysis
and Applications, vol. 30, no. 4, pp. 1500-1519, 2008.

H. A. van der Vorst, “Bi-CGSTAB: A fast and smoothly
converging variant of Bi-CG for the solution of nonsymmetric
linear systems,” SIAM Journal on Scientific and Statistical
Computing, vol. 13, no. 2, pp. 631-644, 1992.

R. W. Freund and N. M. Nachtigal, “QMR: a quasi-minimal

[12]

[13]

residual method for non-Hermitian linear systems,” Numerische
Mathematik, vol. 60, no. 1, pp. 315-339, 1991.

Cray Inc., Using Cray Performance Analysis Tools.
2009, S-2376-50.

Cray Inc.,

C. Catlett et al., “TeraGrid: Analysis of organization, system ar-
chitecture, and middleware enabling new types of applications,”
in High Performance Computing and Grids in Action, ser. Ad-
vances in Paralle] Computing, L. Grandinetti, Ed. Amsterdam:
I0S Press, 2007.

