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TKE Turbulent kinetic energy.
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ABSTRACT

ABSTRACT Qin, Jim Hongxin Ph.D_, Purdue University, December 1998. Numerical
Simulations of a Turbulent Axial Vortex. Major Professor: Gregory A. Blaisdell.

Although the vortex is present in most flows of engineering interest, the turbulent
structure of the vortex is not well understood. Current prediction capabilities are
especially weak for the vortex as well as other strongly rotating flows. The objective
of this work is to aid the development of turbulence models for the vortex as well as
strongly rotating flows in general by using direct numerical simulations of the vortex.
The present study focuses on the turbulent axial vortex with and without an external
strain field.

The numerical simulations of a turbulent axial vortex without strain, i.e. an iso-
lated vortex, have been performed by using a pseudo spectral method for compressible
flow. The results qualitatively match well with the experimental data.

The isolated vortex is stable unless the mean axial wake flow has sufficient magni-
tude. During the period of decay of disturbances, the mean tangential velocity profile
exhibits anti-diffusion because a negative eddy viscosity develops near the center of
the vortex. With the disturbance growth, the isolated vortex develops large-scale
helical vortex structures , but they eventually disappear during the period of relami-
narization.

The details of turbulent statistics have been examined. The turbulent structure is
related to the in stability of the isolated vortex. The budgets for the Reynolds stresses
reveal that the production term is the primary source term, but the pressure strain,
pressure transport, and turbulent transport terms also make a large contribution to

the budgets for the Reynolds stresses.
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xxi

The numerical simulations of a turbulent axial vortex with strain, i.e. a strained
vortex, have been performed using the B-spline method for incompressible flow. The
results from the strained vortex show that, with the effect of an external strain field,
the vortex is unstable for all time because of the presence of the Widnall instability.
The turbulent structure within the vortex is altered by the presence of the external

strain.
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1. INTRODUCTION

1.1 Motivation

The vortex is one of the most fundamental structures in fluid mechanics, yet it
is poorly understood. It contains structure that is almost purely potential in nature
and structure in which viscosity plays a large role as shown in Figure 1.1 (Takahashi
& McAlister 1987). The turbulent axial vortex is a complex turbulent flow, but it
is simple enough to be studied in detail and generic enough to have a wide range
of applications. The turbulent axial vortex is present in most flows of engineering
interest. Turbulent axial vortices occur in the wakes of wings, propellers, control
surfaces and other lifting surfaces, in turbomachinery, and in combustion systems.

One outstanding application is the wake-hazard problem. The trailing vortices
shed from the wings of aircraft have been studied extensively and are important
because of their slow rate of decay; the vortex shed from a large commercial transport
aircraft can cause a small aircraft following miles behind to lose control. The vortices
dramatically alter the flow over the trailing aircraft. Similarly, the vortex shed from
a canard wing can alter the flow over a trailing main wing and the vortex shed from
one rotor of helicopter can alter the flow over the trailing rotor. This last example,
an interaction called blade slap, is largely responsible for the high noise production
of helicopters.

In turbomachinery, turbulent vortices are found in very complex combinations on
the turbine endwall and at the base of the turbine and compressor blades. They collect
and sweep away the protective boundary layer allowing high rates of heat transfer be-
tween the hot stream and surface, damaging the underlying structure. Current design

methods for turbine passages are mostly based on two-dimensional calculations which
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Figure 1.1 Structure of a typical axial vortex from Takahashi & McAlister (1987).

do not accurately predict these effects. Three-dimensional techniques are currently
under development but require a detailed understanding of the vortex structure.

Turbulent axial vortices are also important in the area of underwater acoustics.
They are the primary location for cavitation and, therefore, are a source of acoustic
noise.

If vortices are so prevalent and so important, then why have they not been un-
derstood long ago; or, alternatively, why can we seemingly do just fine without really
understanding them? The answer is simple. We could do better with better under-
standing, but we have become very clever in combining empirical correlations of their
effects into our design methods. Workers have argued simple models using empirical
corrections, but solid understanding of turbulent axial vortices offers two major ben-
efits. First, with an improved understanding we can design flow systems which take

advantage of the properties and structure of the turbulent axial vortex. Secondly,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



improved understanding can be incorporated into analytical methods for engineering
design.

Sometime in the future, engineering design methods will be based on solution of
the full equation of motions without any turbulence models and the effects of vortices
will be captured along with the solution for the entire flow field. Solution of the
full equations without any turbulence models in complex passages at high Reynolds
number will require immense computer resources. The purposes of this work is to
aid the development of turbulence models for the vortex as well as strongly rotating

flows in general by using direct numerical simulations of the vortex.
1.2 Literature Review

A large body of literature exists describing studies of axial vortices in their many
forms. In order to review the literature effectively, the scope of this review will be
limited to studies of the structure and development of axial vortices. The topics of
these papers can be broken into three major categories: experimental measurement

of vortices, theoretical analysis of vortices, and numerical simulation of axial vortices.

1.2.1 Experimental Measurement

There have been several experimental studies of a wingtip vortex in the roll up
region or near field. Chigier & Corsiglia (1972) studied the trailing vortices off of a
rectangular wing and a model of a Convair 990 in the NASA Ames 7 by 10 foot wind
tunnel. They found that increasing the drag on the wing increases the magnitude
of axial velocity defects in the core of the vortices, reduces the maximum tangential
velocity, and increases the vortex core radius. Baker, Bofah & Saffman (1974) mea-
sured the mean and turbulent quantities in trailing vortices generated by two different
platforms. They varied the free-stream velocity and angle of attack and made mea-
surements in planes from five chord lengths to sixty chord lengths downstream of the
wings. They point out that the vortex position is not fixed and that this wandering

broadens the profiles and reduces the magnitude of gradients in the vicinity of the
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vortex. The measurements of trailing vortices reveal a very high turbulence level in
the core region of the vortex. Sampson (1977) made detailed measurements of the
velocity, vorticity, and pressure distributions over a plane five chords downstream of
a lifting wing. At that location he found a distinct vortex and a vortex sheet. The
vortex sheet still contained from 10 to 30 percent of the vorticity depending on the
generator angle of attack. He also found that the turbulent vortex model of Hoff-
mann & Joubert (1963) accurately described his results. Recently, Chow & Zilliac
(1994) and Devenport, Rife, Liapis & Follin (1996) made turbulence measurements of
a wingtip vortex. Experiments of Chow & Zilliac (1994) were carried out at less than
one chord length downstream. They found that the peak turbulence levels in data
planes measured over the wing were near the edge of the viscous core of the vortex
and the turbulence decayed quickly with streamwise distance. They also pointed out
that the Reynolds shear stresses (in Cartesian coordinates) were not aligned with
the mean strain rate, indicating that an isotropic-eddy-viscosity based prediction
method can not accurately model the turbulence in the vortex. Devenport et al.
(1996) completed turbulence measurements of a wing-tip vortex from 5 to 30 chord
lengths downstream. Their studies showed that outside the core the flow structure
is dominated by the remainder of the wing wake which winds into an ever-increasing
spiral and that turbulence stress levels vary along the wake spiral in response to the
varying rates of strain imposed by the vortex. There is no large region of axisym-
metric turbulence surrounding the core and little sign of turbulence generated by the
rotational motion of the vortex.

While there have been very few reliable turbulence measurements in a tip vor-
tex beyond the tip region, such measurements have been made on trailing vortices
generated by split wings. Split-wing vortices appear less susceptible to wandering
and are thus more easily measured (Devenport et al. 1996). Turbulence stress mea-

surements have been made in split-wing vortices by Phillips & Graham (1984) and
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Bandyopadhyay, Stead & Ash (1991), among others. Phillips & Graham (1984) pre-
sented detailed turbulence measurements for several types of manipulated line vor-
tices. Their experiments were carried out at 45 or more chord lengths downstream of
a double-branch generator. Their results are interesting in that the fluctuating veloc-
ity components in the core were high while Reynolds shear stresses generally tend to
be low or zero near the center of the core. The Reynolds shear stresses peak at the
point of maximum tangential velocity and then decay with increasing radial distance.
At the same time, Philips and Graham’s data show almost no discernable diffusion
of the core (unless a strong axial jet or wake is superimposed). The study of Bandy-
opadhyay et al. (1991) also shows velocity fluctuations to be maximum in the vortex
core. They concluded that for their range of test conditions, the Rossby number (axial
velocity defect/maximum tangential velocity) was the controlling parameter for the
turbulence structure, not the vortex Reynolds number (circulation/viscosity). They
also concluded that the inner core is not a regional in solid-body rotation that does
not interact with the outer vortex region, rather it is a relaminarizing region.

While these results are interesting, it should be borne in mind that tip and split-
wing vortices can have a quite different turbulence structure. However, it is not
surprising because spilt-wing vortices are formed by the merger of two vortices, the
merging process producing a large region of roughly axisymmetric turbulence around

the core that is absent from a tip vortex (Smith & Kummer 1985).

1.2.2 Theoretical Analysis of Vortices

Analyses of a tip vortex have been more successful in the far-field than in the
near-field. Assumptions that are often made in simplifying the far-field analysis may
not hold in the near-field. The main assumption that has been made in all previous
analytic studies is that of axisymmetric flow. This approximation has had some
success in predicting the far-field behavior of the tip vortex. In particular, similarity

solutions have given estimates of the decay rate of a tip vortex far downstream of the
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trailing edge of a wing. These types of analyses are most useful in analyzing the wake
vortex encounter problem.

A few authors have analytically investigated the structure of laminar trailing vor-
tices. The simplest model of an axial vortex is a Rankine vortex consisting of a core

in solid body rotation surrounded by an irrotational field:

‘/6 = QT‘a s r Z o (11)
I
Vo =Qr, r <o (1.2)

where Q is the angular velocity of the solid body rotation and rq is the radius of the
viscous core region, also defined here as the point of maximum tangential velocity.
Another simple mode is Burnham’s model(Reimer 1997)

v = -2% [rgrﬁ] : (1.3)
Both models are simple approximations to the well known solution for the growth
of a laminar 2D line vortex which can be found in Panton (1984). The velocity

distribution of a laminar 2D line vortex is given as follows:

r r?

However both models do not include an axial flow. Batchelor (1964) did an analysis on
axial flow in a trailing vortex starting with the steady axisymmetric incompressible
momentum equations. Using boundary-layer type approximations, he derived the

axial velocity as follows:

V:=U, r2To (1.5)

V.=[U% +202(2—r)]?, r<n (1.6)

Moore & Saffman (1972) sought to improve upon Batchelor’s analysis and stud-
ied the influence of viscosity on the axial flow in a laminar trailing vortex. They
generalized Batchelor’s expression for arbitrary and internal structure.

All past analytical studies done on a turbulent tip vortex have assumed an isotropic

eddy viscosity to represent the behavior of the turbulence. We shall see that this sort
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of approximation fails badly, because for a vortex flow-field the shear stresses are
not aligned with the mean strain rate. The analysis by Hoffmann & Joubert (1963)
on a turbulent line vortex predicted a constant eddy viscosity and a logarithmic
radial variation of circulation. Their circulation profile, I'(r), which is independent
of viscosity is reported here:

(1) An “eye” of solid body rotation given by

= 1.83(—’"—)2; (L.7)

(ii) A transition between the solid body rotation and the logarithmic circulation:
(iii) A region in which circulation varies logarithmically with radius and is given by

L(r)
F(ro)

= 2.14log (L) +1. (1.8)
o

Govindaraju & Saffman (1971) predicted an overshoot of circulation for a fully-
rolled-up turbulent vortex under light loading conditions. Their model allows for
['(ro)/Te = 1.2, whereas most investigators have found values ranging from 0.37 to
0.6. However, convincing experimental evidence of the existence of an overshoot of
circulation is lacking.

Iversen (1976) and Uberoi (1979) studied the trailing vortex decay. Both of them
pointed out that an isolated vortex decays very slowly by diffusion of vorticity. Uberoi
explained the mechanism of decay of laminar and turbulent trailing vortices with in-
creasing distance. For a turbulent vortex(Uberoi 1979), the change in the axial veloc-
ity difference between the core and the surrounding region causes radial convection
and some associated axial convection of angular momentum. He also concluded that
the axial velocity difference between the core and surrounding region is necessary for
the sustenance of turbulence in the vortex core.

The bulk of the analytic work on axial vortices is in the area of stability analysis.
Rayleigh (1916) was first to study the stability of planar shear flows with system

rotation. He presented a necessary and sufficient condition for the stability of shearing
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and rotating flows to axisymmetric disturbances without viscosity as follows:

dr?
- 1.9
ar 0, (1.9)
where I' is the circulation. Lessen, Singh & Paillet (1974) proposed the g-vortex

model, which is a simplified version of the Batchelor vortex with the velocity field

2

Va(r) = g (1-e) and Vir)=Vo—e". (1.10)

The g-vortex is characterized by a swirl parameter q which is proportional to the
ratio of the maximum tangential velocity to the axial velocity deficit or excess. Most
of the studies on the stability of vortices in the past two decades used the g-vortex as
a model. Lessen et al. (1974) and Lessen & Paillet (1974) presented inviscid and vis-
cous calculations of the stability characteristics for the g vortex. They found that the
axial vortex is most unstable to helical waves with negative azimuthal wavenumber
(winding opposite to the rotation of the mean flow) and that increasing the swirl pa-
rameter q above 1.5 stabilizes all the modes regardless of their orientations. Leibovich
& Stewartson (1983) used asymptotic methods to study the stability characteristics

of g-vortex model. They presented a sufficient condition for the instability of an axial

_dQ [dQ dT dV.
Grm [zm + (7)] <0 (1Y)

where 2 = V;/r is the angular velocity of the basic flow. They also found instabilities

vortex as follows:

at g = 1.58. The corresponding growth rates were very small and indicated that the
vortex shows strong instabilities with ¢ < V2.

More recently, Khorrami (1991) obtained highly accurate results for a q-vortex
that include the viscous effects also. He pointed out that there exist two unstable
modes, azimuthal wavenumbersm = 0 and m = 1, for the trailing vortex and provided
the first direct evidence that viscosity can have a destabilizing effect on swirling flow
because the growth rates of the viscous modes are reported to be orders of magnitude
smaller than those of the inviscid modes. Both of these viscous modes appear as

fairly long-wave length instabilities with an axial wavelength that is of the same
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order of magnitude as the vortex core radius. The experiments of Sarpkaya & Daly
(1987) and Singh & Uberoi (1976) show results similar to the analysis of Khorrami.
Duck & Khorrami (1991) extended this work focusing on these modes. Mayer &
Powell (1992), using a spectral collocation and matrix eigenvalue method, mapped
the entire unstable region in the swirl/axial-wavenumber space for various azimuthal
wavenumbers.

The above instabilities are dependent on a sufficiently large axial velocity deficit,
the presence of a circulation overshoot, or some combination following equation 1.11.
As the axial low decays downstream these instabilities can be diminished or elimi-
nated. However, there are additional instability mechanisms which exist in airplane
vortices.

A distinct behavior of trailing vortices is that each tip vortex induces a strain field
on the other. The strain field can effect the stability of these vortices and thereby
their turbulent structure downstream. The first quantitative analysis of the three-
dimensional instability of trailing vortices in an ideal homogeneous fluid was given by
Crow (1970). The results of his analysis are in good agreement with observations of
the general features of long wave length aircraft wake instabilities and measurements
of amplification rates. Strain also causes a small wave length instability, which was
first studied in a vortex ring by Widnall & Sullivan (1973). Widnall, Bliss & Tsai
(1974) extended this work focusing on a simple model for the vortex-ring instability.
This instability indicated a vortex which is strained in the plane perpendicular to its
axis is also unstable to small wave length disturbances. This instability mechanism
could cause turbulence in a wake vortex to grow rather decay downstream.

An idealized homogeneous turbulent flow which is similar to the flow in the core of
a strained vortex is the elliptic streamline flow. The elliptic streamline flow contains

the effects of both rotation and strain. The elliptical flow can be described by

0 0 —vy—c¢
U: = Ui jz;, Ui = 0 0 0 . (1.12)
vy—e 0 0
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The case € = 0 corresponds to pure rotation, while 0 < |¢] < |y| gives rotation

dominated flows with geometrically similar elliptic streamlines with aspect ratio

E = \/ (v + €)/(v —€). The linear stability of the elliptic streamline flow was stud-
ied in the context of rapid distortion theory (RDT) by Cambon et al. (1985, 1994).
Bayly (1986), Peierrehumbert (1986), and Waleffe (1990) performed inviscid stabil-
ity analyses. Bayly applied a Floquet-type stability analysis to show that the class
of two-dimensional basic flows with closed elliptical streamlines can sustain certain
planewave modes, owing to their periodic distortion. Bayly’s study was prompted by
the work of Peierrehumbert (1986), who found a short-wave instability in a numerical
stability calculation for the Euler equations linearized about a locally elliptical flow.
They found that for elliptical streamlines there exists a band of unstable modes in
which the growth rate depends on the polar angle of the wavenumber vector. The
band of unstable angles increases in width for increasing ellipticity of the streamlines.
Also, the growth rate of the unstable models is independent of the magnitude of
wavenumber vector. Therefore, arbitrarily small three-dimensional fluctuations can
be created by an instability of a basic two-dimensional flow. The effects of viscosity
were studied by Landman & Saffman (1987) and were included in the analysis of
Cambon et al. (1985). The growth rate of the instabilities is modified by viscosity
so that the grow rate is no longer independent of the magnitude of the wavenumber
vector. They also found a high wavenumber cut-off of the instability. However, there
is no low wavenumber cut-off, and arbitrarily large scales are unstable. This fact has
important implications for doing numerical simulations of this flow, as pointed out by
Blaisdell & Shariff (1994, 1996) . Waleffe (1990) also performed a weakly nonlinear
stability analysis of the elliptic streamline flow.

The current study will include the effects of an applied strain field on the devel-
opment of the turbulence within an axial vortex.

Another additional mechanism which can affect the stability of wake vortices is
the generation of secondary vorticity in a stratified atmosphere can be generated

through the baroclinic torque. The effects of stratification on wake vortices have
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been considered by Spalart (1996); however, the current study does not conmsider

stratification. Inclusion of this complication in turbulence simulation is left for future

research.

1.2.3 Numerical simulation of axial vortices

Although there have been many computational studies of the roll-up of a vortex
generated by a delta wing or of the process of vortex breakdown, few Navier-Stokes
computational studies of the turbulent axial vortex exist.

Donaldson (1972) studied the decay of an isolated turbulent vortex in an infinite
medium to evaluate his Reynolds stress transport turbulence model. Zheng & Ash
(1993) evaluated algebraic, £ — &, and Reynolds stress models using an isolated vortex
problem. The results showed that neither algebraic nor & — & models are capable of
handling the curvature effects and turbulent-non-turbulent interfaces associated with
vortex cores, but the Reynolds stress model results were in good agreement with the
prediction of Donaldson (1972) and the related experimental results of Hoffmann &
Joubert (1963). Zheng and Ash also predicted the turbulent wake vortex motion near
the ground using a Reynolds stress model. Their prediction demonstrated that the
turbulent kinetic energy has a maximum in the interface sheath between the core and
the outer potential-vortex flow. Zeman (1995) used a full Reynolds stress model to
study the far-field nature of turbulence in an isolated vortex. He did not include an
axial flow and predicted a rapid decay of the initial turbulence in the vortex core. Also
his contours of v/vj were qualitatively similar to those found in experiments(Chow
1994) and simulated in the present study.

Sreedhar and Ragab (1994, 1995a, 1995b) did a series of numerical simulations
of a turbulent axial vortex using direct numerical simulation (DNS) and large eddy
simulation (LES). Using LES, they (Sreedhar & Ragab 1994) first studied the effect of
random disturbances on the stability of the Lamb-Oseen vortex and the Taylor vortex.
The Taylor vortex has a region of decreasing circulation and is therefore unstable by

the Rayleigh criterion; however, it is not representative of a realistic wing-tip vortex,
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except possibly in the case of a stratified medium in which the generation of secondary
vorticity may create a region of decreasing circulation. They found that the Taylor
vortex went through a transition process while the Oseen vortex simply quenched the
initial disturbances. These two simulations were for vortices with no axial velocity.
Later, they investigated the effects of an axial velocity deficit on the structure of
the g-vortex. They found that the axial velocity deficit is weakened faster than the
tangential velocity. The combination of a weaker axial velocity deficit and swirling
flow then quenches the turbulent motion and the core relaminarizes.

The study of an isolated vortex in the current work is similar to theirs. The
main difference is the numerical method employed and the quality of the turbulent
statistics. In contrast to the fourth order finite difference method with a finite domain
used by Ragab & Sreedhar (1995a), a spectral method with an infinite domain is
employed in the current work. Therefore, the image flows are moved infinitely far

away. Also, the current results include more detailed turbulent statistics.
1.3 Objectives and Summary

The primary objectives of this work are to improve our understanding of how
turbulence within the axial vortex behaves and how the turbulence affects the distri-
bution of vorticity. Also, current turbulence models do not perform well for strongly
rotating flows and the current study is able to provide necessary information to di-
rectly evaluate the turbulence closure models for such flows. The more specific ob-

Jjectives are the following:

e To determine whether axial vortices remain turbulent far down stream or the

turbulence decays within a short distance.

e To characterize the turbulent structure of the vortex, whether the turbulence is
concentrated in an annular region around a quasi-laminar core or whether the

turbulent kinetic energy has a peak in the core.
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e To complete an analysis of the Reynolds stress budgets and to understand the

turbulent transport in the axial vortex.

e To understand how strain affects the turbulence development and the structure

of the axial vortex.

The thesis is divided into two phases. First, a pseudo-spectral Fourier collocation
method with a dual Cain’s mapping is employed in a direct numerical simulation
of a temporally developing isolated vortex. The methodology is briefly described in
Chapter 2. The simulations of an isolated vortex and the results are described in
Chapter 3. In the second phase, a B-spline spectral method is employed to consider
the effects of strain on the vortex. The methodology is presented in Chapter 4. The
numerical simulations of a strained vortex and the results are described in Chapter 5.
Finally, the conclusions are summarized in chapter 6, together with recommendations
for future work. Additional information regarding the transport equations for the
Reynolds stress and the numerical method are given in the appendices. Appendix A
gives the transport equation of Reynolds stress in cylindrical coordinates. Appendix
B outlines the construction of B-splines and the properties of B-splines, and gives
an introduction to the Galerkin method based on B-splines. Appendix C gives the

definition of the mass, viscous and nonlinear term matrices in detail.
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2. A PSEUDO-SPECTRAL METHOD WITH A DUAL CAIN’S
MAPPING

2.1 Introduction

The direct numerical simulations (DNS) of an axial vortex without strain are im-
plemented using the compressible DNS code of Blaisdell, Mansour & Reynolds (1991).
This program was originally intended to simulate homogeneous turbulence. It uses
a pseudo-spectral Fourier collocation method with a third-order Runge-Kutta time
advancement scheme, and it has been ported to the Intel Paragon parallel computer.
Modifications have been made for simulating an isolated vortex. A periodic array of
vortices are imposed in the cross section to satisfy the periodic boundary conditions
for the pseudo-spectral Fourier collocation method. In order to avoid the influence
of the image flow, a dual Cain’s mapping scheme is developed. The pseudo-spectral
method is well documented in Blaisdell et al. (1991). In this chapter, the equations
of motion governing compressible flow are presented in nondimensional form, and the

definitions of averaging and the numerical method are briefly described.
2.2 Governing Equations

The staring point for the simulations of an axial vortex without strain is the

compressible Navier-Stokes equations in Cartesian coordinates

dp 0
—a—[ + a.l:,

a9, a hv_ o0 (o p (Ou  Ouj 20ux. 50
3t(pu1) + ax,-(p“’"‘) T 9z (pé] " Re (8z]— * Oz; 38:z:k6”>) (22)

(pu;) =0 (2.1)
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TH= szepr gf] (2-3)

p=pT/vy (2.4)

T =~y —1)e (2.5)
per = pe + %Puiuh (2.6)

where p is the mass density; u;, the velocity in the z; direction; er, the total en-
ergy per unit mass; e, the internal energy per unit mass; p, the pressure; T, the
temperature; and v is the ratio of specific heats. Equations (2.1) to (2.6) have been

nondimensionalized based on the following:

ufzu_E" t=t‘—caa xizi:’ T:Z:’
c3 L L3 T3
(2.7)
_/ __F _ M
P P FTme

where ¢, T3, pg and pg are the speed of sound, temperature, density and molecular
viscosity, respectively, at the initial location of the maximum tangential velocity, and
Lg, is the length scale which will be related to the computational box size. The

computational Reynolds number and the Prandtl number in Equations (2.2) and

(2.3) are defined as

5oLy Ty
Re = Po# and Pr="E -, (2.8)
Ho k
where k™ is the thermal conductivity, and c; is the specific heat at constant pressure.

2.3 The Definitions of Averaging

In order to examine turbulence models, the turbulent fields are decomposed into

mean and fluctuating components. For example, for an arbitrary variable f

f=Ff+f. (2.9)
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The definition of averaging which will be used in the rest of this work is described in
this section.

In general, if a random variable is not statistically homogeneous in time or any
space dimension, one has to use an ensemble average such as averaging over a large

set of similar experiments:

N
(S0 0) = Jim 55 fulx,) (2.10)

where angled brackets denote an assemble average.

If the field is statistically stationary, one can use a time average,
F lim — ’ d )
f(x)_T‘_?éo?/o f(x,t)dt, (2.11)

to replace the ensemble average. For a field which is statistically developing in time,
the time average can not replace the ensemble average. But if the field is statistically

homogeneous in all three spatial directions, one can use a spatial average,
- 1 ;L (L L y
= i —_— 219
7= g [ s o

to replace the ensemble average.

If the field is neither homogeneous in time nor in space, but is homogeneous
on planes or along lines, an average on the planes or lines can be used to replace
the ensemble average (Reynolds 1987). In the current work, the vortex is assumed
to change slowly along its length, and so we assume the flow as homogeneous in
the z direction (streamwise direction). Therefore, we preclude the case of vortex

breakdown. In this case an average over the z direction,

— . 1 L.
(f(e,y,2,8) = Flayt) = Jlim 7= [ " fle.v,20dz, (2.13)

can be used to replace the ensemble average. Moreover, an axisymmetric flow is natu-
rally homogeneous in the azimuthal direction, and the ensemble average is equivalent

to an average over a @ - z cylindrical surface,

—_ L. b e
(f(r,0,z,t)) = f(r,t) = 1 /0 /(2) f(r,8,z,t)dzdb. (2.14)

lim
Lz—roc0 Q'ITLZ
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2.4 Numerical Method

A description of the numerical method is given in this section. The method
chosen is a modified Fourier pseudo-spectral method with a compact storage third
order Runge-Kutta time advancement scheme. Time advancement is performed in
physical space rather than Fourier wave space for reasons of computational efficiency.
The convective terms in the governing equations are modified to improve the accuracy
and stability of the numerical method.

With the pseudo-spectral Fourier collocation method, periodic boundary condi-
tions have to be applied in all three directions. The periodic boundary condition in
the streamwise direction is obtained by an assumption of homogeneous flow. The
periodic boundary conditions also can be satisfied in the cross section (x and y plane)
by imposing an array of vortices around the domain as shown Figure 2.1. However, if
the periodic boundary conditions are applied at finite boundaries of the cross section,
the image flows will distort the original vortex circulation profile. As shown in the
figure 2.2, the circulation profile of a Taylor vortex rather than the desired isolated
vortex is generated with the influence of the image flows. A modification has been
made to avoid the influence of the image flows. By mapping the finite computational
domain to the infinite physical domain, the array of vortices is moved infinitely far
away so that the influence of the image flows is automatically eliminated. A special
mapping, Cain’s mapping (Cain, Ferziger & Reynolds 1984), is used in this work.
The reason for choosing Cain’s mapping is that it has the advantage of retaining the
efficiency of the FFT algorithm and, therefore, is ideally suited to the isolated vortex

problem.
2.4.1 Spatial derivatives in the streamwise direction

Since the axial vortex flow is assumed to be homogeneous in the streamwise (z)

direction, periodic boundary conditions are applied in the z direction. Therefore,
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Figure 2.2 The circulation profile in a finite domain.
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the partial derivatives in the z direction are evaluated spectrally using the standard
Fourier scheme which is illustrated below.

Consider a function that is to be differentiated. The function is expressed as a
discrete Fourier series, on a uniform grid in the domain z € [0, L.],

N:/2 )
fi=flz)= 3  Fue*m  j=1,.,N.. (2.15)

n=~N:/2+1

In the above, the nodal coordinate values and grid spacing are defined as
z; = — 1Az, z=L/N. , (2.16)

the wavenumbers are given by

the number of grid points is V., and ¢ = /—1. The Fourier coefficients,

N:

1 i
F o= — . thnz; 2.
n= 2 i ’ (2.18)

T j=1
are computed for efficiency using Fast Fourier Transform (FFT) routines.
From Equation (2.15), it is obvious that spatial derivatives can be obtained from
Nz/2 )
f=FE)= 3% ikFae® (2.19)

n=—N_:/2+1

The Fourier coefficients of the derivative of f(z) are given by
(F)n =ikaFn . (2.20)

Thus spatial derivatives in the streamwise direction can be easily evaluated by mul-

tiplying the Fourier coefficients of a function by ik,.

2.4.2 Spatial derivates in the cross section

As mentioned at the beginning of this section, the influence of image flows in-
troduced by the periodic boundary conditions has to be removed in the numerical
method. By using the dual Cain’s mapping, spatial derivatives in the z and y di-

rections are evaluated in a finite computational domain using Cain’s scheme instead
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of the standard Fourier scheme. For simplicity, Cain’s scheme is briefly illustrated
below in one-dimension, since extension to two-dimensions is straightforward.
Suppose x is the physical coordinate and we introduce the computational coordi-

nate ¢ by means of the mapping
1
x:h(g’):-—acot(;g‘); 0< (< 2m, —o0 Lz < oo, (2.21)

where a is an arbitrary constant which can be taken as a parameter for adjusting the
grid density near the origin.

The derivatives in the two coordinate systems are related vis the chain rule:

df _dfd¢ _ 1df

= 5F =~ 17, (2'22)
dz dCdz K d¢
where
1 1 e + e~ 5 ¢
r;[l‘—z ] (2.23)

Using the mapping in Equation (2.23) and recalling Equation (2.22) and (2.19), we

have
N¢/2 . .
1 < . thn, - ik, ;
f]’ = f,(a:j) = - Z l}kn':fn( - "_—;‘l‘-Fn(—-l - ;+1 f.n,:-HJ e k"‘-'z", (2.24)
a ne=—-N¢/2+1 = <
where
9 t
kg = —“:[’C’C and N, = N,. (2.25)
The Fourier coefficients of the derivative of f(z) are given by
1 . ikn -1 ik-n +1
(‘7:,)"( = ; I:I'kn<~7:-n¢ - +fn(—l - _;_Fnc+]_ . (2.26)

Thus spatial derivatives can be easily evaluated by the Fourier coefficients of a func-

tion.

2.4.3 Modified convective term

Since the numerical method is a pseudo-spectral method, the nonlinear terms are
evaluated in physical space. In general, the nonlinear terms can be either evaluated in

wave space from convolution sums or formed directly in physical space. However, one
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usually chooses to evaluate the nonlinear terms in physical space, because convolution
sums are too expensive to be taken in numerical calculations. On other hand, the
nonlinear terms for compressible flow, which involve divisions and exponentiation,
can not be calculated exactly in wave space. Aliasing errors generated during the
calculation of the convective terms have to be removed. The most popular dealiasing
method is the “3/2” rule (Orszag 1971) which requires having the flow field in wave
space. However, in the current method, the flow fields are never fully transformed into
wave space (more detail is given in section 2.4.4) so that dealiasing is impossible in
practice. In the current work, aliasing errors are controlled by making modifications to
the convective terms. The convective terms in Equations.(2.2) and (2.3) are modified

to the skew-symmetric form,
d 19 1 df 1. 0u;
= (fu; 2 (fuy) + w4 —fod 2.2
in the simulations. This modification reduces the effect of aliasing errors (Blaisdell,

Spyropoulos & Qin 1996, Zang 1991).

2.4.4 Time advance

There are two key issues regarding the time advancement scheme. The first issue
is where time advancement is performed. In other words, should time advancement
be done in physical space or wave space. Since the FFTs are the most expensive
calculation in the current work, the decision for this issue is heavily dependent on the
number of FFTs required. If the time advancement is done in wave space, the evalua-
tion of each nonlinear term requires one extra backward FFT beside transforming the
dependent variables to physical space, since the nonlinear terms evaluated in physical
space. If the time advancement is implemented in physical space, the calculation of
each derivative requires one extra forward FFT beside transforming the dependent
variables to wave space. The number of derivatives that need to be calculated are
fewer than the number of nonlinear terms in the governing equation, therefore, it is

easy to choose advancement in physical space.
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The second issue is which numerical time advancement scheme should be chosen.
The basic requirements are high accuracy, stability and low memory requirements.
One may not consider memory requirements now as seriously as before in other nu-
merical simulations, but it still is a key factor in DNS, since DNS requires a huge
memory. For example, even though the Reynolds number in the current simulations
is three orders of magnitude lower than for practical cases, it still required about 1.5
GB of memory space which only can be done on supercomputers. A special third-
order Runge-Kutta scheme developed by Wray (1986) is used. It only requires two
memory locations per dependent variable including storage for the time derivative.
Blaisdell et al. (1991) gave a detailed description about the accuracy and stability
analysis for this method.

The formulation of this method is outlined in Table 2.4.4, for the ordinary differ-

ential equation

du
— = t). 2.2
The constants in Table 2.4.4 are
oo? o3 3
1 — 3 ] 2 = 12 ] 3 — 5 )
(2.29)
1 3 3
IBI-Z-: ﬂz—%, ﬁa—g-
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3. ISOLATED AXTAL VORTEX

3.1 Introduction

The numerical simulations of an isolated axial vortex (without strain) are imple-
mented using the method described Chapter 2. In order to study the effects of initial
conditions, several cases with different initial turbulent kinetic energy distributions
are examined. An ensemble of simulations are completed to improve the quality of sta-
tistical quantities. Based on the ensemble of simulations, various statistical quantities
of importance in turbulence modeling, like the mean velocity and turbulent stresses,
are presented in this chapter. In addition, a detailed analysis of the Reynolds stress

budgets based on the ensemble of simulations is also completed.
3.2 Initial Conditions

3.2.1 Mean velocity profiles

Since the linear stability characteristics of the g-vortex as a model of aircraft
trailing vortices are well documented, the g-vortex is also used as a model in this

study. The tangential velocity of the g-vortex is given by
2

Vs do —F
L T 3.1
7 =F—eT) (3.1)

and the axial component of the velocity is given by
Z=(1—-e"). (3.2)

Since the velocities are nondimensionalized by the speed of sound, the initial axial

velocity deficit Vg is related to the initial mean tangential low Mach number M, at

Mpy
Vo= ——21 3.3
°T p(l—e) (3:3)
where # = 4r/rq is the dimensionless coordinate, v = 1.12090642 is the root of

1 +29% = . The initial swirl number Qo is the relative strength of the tangential
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component to the axial velocity deficit. It is noted by Lessen et al. (1974) that the
temporal stability characteristics of the g-vortex are unaffected by the addition or
subtraction of a constant V; to the axial velocity profile or by the inversion of the
wake-like profile to a jet-like profile. Simulations presented in this study are for the
wake profile given by Equation (3.2). The parameter ¢q is chosen to be 1 so that the

flow is initially unstable. Figure 3.1 shows the profiles of initial mean velocities.
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A /v
08 f
V. A
Vo osf
n vo
os b /
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00 1 2 4 5
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Figure 3.1 The initial mean velocity profiles.

3.2.2 Initial fluctuating velocity components.

The initial flow fields are generated by modifying an isotropic flow field. This is
specified as random fields by assigning random phases to the Fourier coefficients of the
dependent variables which are defined by a spectrum of desired form (see Blaisdell et
al. (1991) for details). A three-dimensional inverse transform is performed to obtain
the variables in physical space. The fluctuating velocity field is then multiplied by a
specified function to obtain the desired profile of the initial turbulent kinetic energy

as shown in Figure 3.2.
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Figure 3.2 Profiles of the initial turbulence kinetic energy.

The Reynolds normal stresses, taken from Donaldson (1972), are given by

__ Ch(#) (1—e)

’U"_2 = 72f‘2 3 (3'4)
o2 = Ch(F)e ", (3.5)

and .
= [Z4+07] (3.6)

where C = (2/9)M2e®”, M, is the initial maximum fluctuating Mach number, and
h(7) is a function of the dimensionless coordinate # and must be specified. Donaldson

(1972) assumed h(7) was in the form
h(F) =", (3.7)

which causes the initial maximum kinetic energy to occur along the vortex axis as
shown in Figure 3.2 (solid line). Zheng & Ash (1993) modified Equation (3.7) and
chose a slightly different form :

h(F) = F2e™ "7 (3.8)
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which causes the initial maximum kinetic energy to occur near r/rg = 0.7 (see Figure
3.2). In order to investigate the effects of initial conditions, the two different functions
(3.7) and (3.8) are used to generate two different profiles of the initial turbulent kinetic

-energy in this work.

3.2.3 Summary of cases

In this work, a total of nine simulations are completed. One case is to examine
the wake in the axial direction on the vortex. Five cases are conducted to examine
the effect of initial conditions and the resolution of the numerical simulations. An
additional three cases based on the baseline case are designed to complete an ensemble
of simulations for providing high qualitative statistical quantities.

The initial peak mean tangential flow Mach number M, is chosen to be 0.15 for
all cases so that compressibility effects are negligible. The assumption is verified
by the simulations which show less than 3% variation in the mean density. For all

simulations of the isolated vortex, the Reynolds number

Rer = 1= (3.9)

14

is chosen to be 16500 so that the simulations are numerically well resolved. This is
verified by considering several issues. First, the grid size is less than five times of the
minimum Kolmogorov length scale for all simulations. Secondly, the one-dimensional
spectra in Section 3.4 fall off at high wavenumber without a significant pile-up of
energy. In addition, the grid resolution study (comparing Case A and B) verifies the
numerical resolution is adequate (see Section 3.3.2).

The length of the computational domain in the streamwise direction is a multiple

of the streamwise wave length of the most unstable mode from linear stability theory,

Ry

L.=m (3.10)

where m is the multiplier and the streamwise wave number « is 0.6 for all cases.
Table 3.1 lists the summary of the cases. Case A is the baseline case that has a
low level of initial turbulence which peaks on the center. The grid for Case 4 has
128 x 128 x 256 points. The computational domain is twice as long as the streamwise
wave length (m=2).
The purpose of Case B is to check the numerical resolution of Case A in the cross

section. Therefore, the grid for Case B is doubled to 256 x 256 in the cross section.
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Table 3.1 Case parameters for the isolated axial vortex.

Case | Re | M, | M, | m | N. | N, | N, h(#)
A | 16500 | 0.15 [ 0.009 | 2 | 128 | 128 | 256 | Eq. (3.7)
A, | 16500 | 0.15 [ 0.009 | 2 | 128 | 128 | 256 | Eq. (3.7)
A, | 16500 | 0.15 | 0.009 | 2 | 128 | 128 | 256 | Eq. (3.7)
As | 16500 | 0.15 | 0.009 | 2 | 128 | 128 | 256 | Eq. (3.7)
B | 16500 | 0.15 | 0.009 | 1 | 256 | 256 | 128 | Eq. (3.7)
c | 16500 | 0.15 | 0.043 | 2 | 128 | 128 | 256 | Eq. (3.7)
D | 16500 | 0.15 | 0.043 | 2 | 128 | 128 | 256 | Eq. (3.8)
E | 16500 | 0.15 | 0.009 | 2 | 128 | 128 | 256 | Eq. (3.8)
F | 16500 | 0.15 | 0.009 | 2 | 128 | 128 | 256 | Eq. (3.7)

However, due to the limitation of the available computer resources, the grid points
are reduced to 128 in the streamwise direction and the length of the computational
domain is shortened to one half of Case A.

The purpose of Case C is to study the effect of the initial turbulence level. The
level of initial turbulence of Case C is chosen to be five times as large as that of Case
A.

The purpose of Cases D and E is to study the effects of the initial perturbation
distributions. In contrast to cases A and C respectively, Cases D and E have the same
parameters except for the initial turbulence distribution, which peaks at r/ro = 0.7
instead of on the centerline.

The purpose of Case F' is to examine the effect of the axial wake. Case F' which is
the Oseen vortex has the same parameters as Case A except without the axial wake.

Cases Ay, A2, and Aj; are designed to complete an ensemble of simulations based
on the baseline Case A for improving the quality of statistical quantities. They have
the exact same initial parameters as Case A, but the initial random phases for the

fluctuating flow are different by setting different random seed numbers for each case.
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3.3 Turbulence Statistics

The investigation of turbulent statistical quantities for the isolated vortex is de-
scribed in this section. Because of the axisymmetric nature of the axial vortex, we
would like to investigate the statistical quantities in terms of cylindrical coordinates.
As mentioned in Section 2.3, the ensemble average is equivalent to an average over a
0 — =z cylindrical surface for an axisymmetric low. The definition of averaging for

statistical quantities in this section is given by Equation (2.14).

3.3.1 Transformation equation

Since the direct numerical simulations are completed in Cartesian coordinates, all
statistical quantities first have to be transformed into cylindrical coordinates. The

transformation equations for each quantity are given by

V. = Tcosf + vsind, (3.11)
Vo = —usind + Tcosh, (3.12)
V. = w, (3.13)
v2 = cos’0u”? + 2cosfsinfu’v’ + sin?6v72, (3.14)
v = sin®0u? — 2cosfsinfu’v’ + cos?v”? (3.15)
V2 = w? (3.16)
viv) = (cos’d —sin?0)u'v’ — cosfsinf(u? — v'2) (3.17)
vivl = cosfu'w’ + sinfo'w’, (3.18)
vhul = cosfv'w’ — sinfu'w’, (3.19)
ko= %(@+5?+@)=§(Iﬁ+v_ﬂ+ﬁ), (3.20)

where 0 is the angle measured counterclockwise from the z axis; r, the radial co-
ordinate; u, v, and w, the components of velocity in the z, y, and z directions
respectively; v,, vg, and v., the components of velocity in the r, , andz directions;

v2, v, v, vivj, vivl, and vjvl, the components of Reynolds stresses in cylindrical

in Cartesian coordinates, and & is the turbulent kinetic energy (hereafter TKE). It
should be pointed out that without axisymmetry, the definition of averaging for quan-

tities in Cartesian coordinates is given by Equation (2.13).
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3.3.2 Global turbulent kinetic energy

One can get a global sense of the stability of the flow by considering the global
TKE. The definition of the global TKE is given by

K=—t [ [ krdrdod 3.21
—WRZL:/O/O 0 raravez (3.21)
where R = 5rg and L, is the length of computational domain in the streamwise

direction.
The evolution of the global TKE for cases A and F is compared in Figure 3.3.

Time is scaled with the initial mean flow time scale given by

27To

T=—"C°_,
Va(r)

r=rp

(3.22)

where 7o is the initial location of (Vg)mar. Case F, the Oseen vortex, as expected
by linear stability theory, shows decay of the global TKE because without the wake
flow in the axial direction, the monotonically increasing initial circulation makes the
vortex centrifugally neutrally stable. On the other hand, tLe global TKE in case A

shows a rapid growth after a short transition time. The transition period is due to

107 &
10
2 10°
v :
E ——sa—— CaseF
) —e—— Case A
10° e
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t/T

Figure 3.3 Evolution of the global TKE for Case A And Case F'.
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the unphysical nature of the initial random disturbance and the reorganization of the
vortex flow field. Once the vortex adjusts itself, various modes start to grow (more
details in Section 5.2.2) since the initial mean flow is unstable (go = 1). As expected
by linear stability theory, the global TKE shows an exponential growth rate after a
short time. Then, the global TKE keeps growing until it is near saturation, but the
growth rate decrease gradually in the time. Eventually the TKE decays as the mean
flow stabilizes. Since case F', the Oseen vortex, simply shows a decay of the global
TKE, this work will mainly focus on the isolated vortex with an axial wake.

The evolution of the TKE for five cases A, B, C, D, and E is shown in Figure 3.4.
For Case A, B, and E, since the imposed initial disturbance is weak, the disturbances
need to be amplified enough so that they start to interact nonlinearly with themselves
and with the mean flow. A similar behavior of the global TKE has been obtained
by Sreedhar and Ragab (1994, 1995a, 1995b). The interesting feature is that the five
cases match during the growing stage, if Cases C, D and E are shifted in time by ¢
as shown in Figure 3.5. To see the exponential growth of the global TKE at early
times, the evolution of the global TKE is also plotted on semilog axes in Figure 3.6.
Especially, Cases A and B are almost identical when ¢ < 27. This indicates that

Case A has a reasonable numerical resolution in the cross section. Also, it should
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Figure 3.4 Evolution of the global TKE K for five cases.
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Figure 3.6 The evolution of the global TKE shifted by time ¢,.
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be noted that there are some difference after the TKE is near saturation, but the
general behavior is the same. The difference may be caused by a low statistical
sample in computing the TKE. Therefore, the development of the turbulent kinetic
energy seems to be independent of the imposed initial disturbances. Actually it is

controlled by the mean flow.
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Figure 3.7 Global TKE KX as function of swirl number gq.

Figure 3.7 shows the relationship between the global turbulent kinetic energy and

the swirl number, which is defined as

(‘/O)max 3.93
~ Vi(r) (329

r=oo

R

r=0

All five cases almost collapse on one curve. It is clear that the swirl number almost
does not change until (K/V2) > 2 x 107, because the disturbance is too weak to
interact with the mean flow. Also it is seen that the global TKE begins to decay for g
greater than 1.5. It is noted that a small sample size in evaluating the velocity deficit

causes the jagged behavior of the swirl number.
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A global swirl number Q is defined as

R
/ Vodr
Q= 0 (3.24)

— .
[ Wiloo) = Vi)l dr

where, R = 5.0r¢. Figure 3.8 shows that the relationship between the global TKE and
Q is similar to that seen in Figure 3.7 but that the jagged behavior almost disappears.

This indicates that there is a low statistical sample difficulty in computing the desired

statistics.
10°
N o
100 £ vvvzm
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Figure 3.8 Global TKE K as function of global swirl number Q.

Figure 3.9 shows the global TKE for cases A, A4;, A2 and Aj. It is shown again
that there are some difference after the global TKE is near saturation even though
the simulations are started from the same initial conditions, except for the seed in the
random number generator. Thus, it is clear that the differences result from the small
statistical sample size. The global TKE based on the ensemble of simulations is shown
in Figure 3.10, where the error bar indicates one standard deviation. The maximum
relative error is about 9%. Figures 3.11 and 3.12 shows the relationship between the

global TKE and swirl numbers for the ensemble of simulations. The jagged behavior
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Figure 3.9 Time history of the global TKE K for the ensemble simulations.
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Figure 3.10 Mean and standard deviation of K for the ensemble simulations.
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in Figures 3.7 and 3.8 disappears. Note that K/V2 is plotted on a linear axis rather
than a logarithmic axis. It is clear that the global TKE begins to decay at ¢ &~ 1.5 and
Q = 3.0. This agrees well with linear stability theory results (Leibovich & Stewartson
1983, Lessen et al. 1974).
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Figure 3.13 The evolution of the global TKE K for the ensemble simulations.

To clearly examine growth rate of the global TKE, the evolution of the global TKE
based on the ensemble of simulations (Figure 3.10) is replotted on semilog axes as
shown in Figure 3.13. The development of the isolated vortex can be roughly divided
into five periods by the behavior of global TKE (Figure 3.13). The first period, from
0.0T to 0.57, is the transition period which shows a very small growth rate because
the vortex need adjust itself from the unphysical nature of initial perturbations. The
second period, from 0.5T to 1.47, is a linear unstable period when the global TKE
has an exponent growth rate. The third period, from 1.47 to 2.6T, can be called
the growing period. During this period, the growth rate of the global TKE gradually
decreases with the decay of the axial velocity deficit (more in Section 3.3.3). From
2.6T to 3.8T, the fourth period when the TKE appears to saturate, can be called
the saturating period. After 3.87, the fifth period can be called the relaminarizing
period. The decay of the axial velocity deficit results in the centrifugally stabilizing
motion of the vortex core taking over the destabilizing effect of the axial velocity.
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The global TKE shows a slow decay. The vortex returns eventually toward a laminar
state.
Since the simulation results are mostly independent of the type of initial distur-

bance, subsequent discussions will focus mainly on the ensemble of simulations.

3.3.3 Mean quantities

The mean flow quantities presented in the following section are obtained by taking
the average in the axial direction(see Section2.3). The radial profiles result from a
bin-averaging procedure in the ¢ direction after averaging in the = direction. All
results presented in this section are based on the ensemble of simulations from cases
A, Ay, Az, and Aj.

The history of the mean velocity profiles are shown in Figures 3.14 and 3.15. The
magnitude of the wake decays in time due to both viscous and turbulent diffusion
as one would expect. As mentioned in Section 3.3.2, in the transition period, the
disturbance is too weak to interact with mean flow so that the wake shows a very slow
decay. The mean tangential velocity also shows the vortex diffusing for the first three
periods. However, an interesting feature of the development of tangential velocity
is that the peak in the tangential velocity moves inward rather than continuing to
diffuse outward at the last two periods when the vortex is stabilized. During this
time the tangential velocity near the center of the vortex is seen to increase rather
than decrease. This indicates that the vortex core is undergoing negative diffusion.

Consistent with Figure 3.15, the mean axial vorticity as shown in Figure 3.16
decreases and then increases in the core. As shown later in Section 3.3.5 this anti-
diffusion is associated with a negative eddy viscosity. One usually thinks of turbulent
flows as being diffusive; however, here we see a case where at later times the turbulence
does work on the mean flow field causing the vortex to wind tighter. This may in
part help explain the persistence of aircraft wake vortices, although there are certainly
many physical processes occurring in aircraft wakes that are not include here.

The evolution of the circulation profiles are presented in Figure 3.17. The tur-
bulent vortex develops a visible overshoot of about 3% of [ in circulation at later
times. As shown later in Section 3.3.4, corresponding to this overshoot, the peak of

the Reynolds stress v/v; moves to the location of the overshoot rather than staying

at the edge of vortex core as the other shear stresses v/v] and vjv!.
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Figure 3.14 Evolution of the mean axial velocity V. profiles for Case A.
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Figure 3.15 Evolution of the mean tangential velocity V; profiles.
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Figure 3.16 Evolution of the mean axial vorticity 2. profiles.
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Figure 3.17 Evolution of the circulation ' profiles.
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The evolution of angular momentum per unit length defined as
I(r) = 2x / " Vdr (3.25)
0

is shown in Figure 3.18. The angular momentum grows quadraticly for large r.
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Figure 3.18 Evolution of the angular momentum.

From the mean momentum equation
Vo _ 10 (7, v9];0 W’) 5
o =~ ) g P ()] (3.26)
Multiplying by r? and integrating Equation (3.26), we obtain

A s 39 (Ve
—a—t = —r v,.vaL “+vur 5; (T)

Since for large r, the viscous torque,

z/r32 (Vb) ~~ ursi( Lo ) = %

or\r/lr or \27r? 47 Rer ’

(3.27)

r

is negligible for a large Reynolds number Rer, if v/v)} — 0 for large r, then

dZ

@ =
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and the angular momentum at large r is conserved. In order to check the conservation
of angular momentum, the difference between the angular momentum of a potential
vortex and the isolated vortex,

dT = 2 / "2 (L“) dr —2r / " Vydr (3.28)
0 0

27r
is calculated and shown in Figure 3.19. The difference approaches a constant that
changes slowly in time. The change in value at large r is a small percentage of the
value of the angular momentum and may be attributed to the Reynolds stress v’v} is

not being zero which will be given at the next section.

dZ

1 1 1 L) | B T 1 L) ] U ¥ 1 Ll l U L T T ]

r[ro

Figure 3.19 Evolution of the angular momentum difference between a potential
vortex and isolated vortex.

Figure 3.20 shows the time variation of the peak tangential velocity. Note that
Figure 3.20 is plotted on logarithm axes rather than linear axes, but it is difficult
to tell for the small ranges. Phillips (1981) found two modes for the decay of peak
tangential velocity for the trailing vortex using a similarity solution. One is that
Va(7)maz decays like 72" in the near field of a trailing vortex; and the other is that
Va(7)maz decays like t2(®=2) in the downstream region of trailing vortex; 0 < n < 1,
for elliptic wing loading n = . In this work, there are three modes for the decay of

peak tangential velocity. At the early time, Vj(r)mar decays like t7%23 which is very

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

close the Phillips’ first mode ¢~92° for elliptic wing. When the vortex is stabilized,
Va(T)maz decays like £~ which is close to the Phillips’ downstream mode ¢~0-75.
In the linearly unstable period, the peak tangential velocity (V)mar decays as ¢2-18
which was not discovered by Phillips (1981) since the similarity solution does not

exist during this period of the vortex development.
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Figure 3.20 Evolution of the peak of the mean tangential velocity.

3.3.4 Turbulent kinetic energy and Reynolds stress

The TKE and Reynolds stress profiles are studied in this section. Also, all results
presented in this section are based on the ensemble of simulations from case A, Ay,
Ay, and Aj.

The profiles of the TKE are shown in Figure 3.21. The initial amplitude is small.
During the transition period, the TKE grows slowly and a peak appears in an annular
region inside of the vortex core. Once the vortex adjusts itself from the unphysical
nature of the initial random disturbances and the disturbances are amplified enough,
the TKE grows significantly, since the disturbances start to interact with the mean
flow, while the peak of TKE moves towards the edge of the vortex core. At later times
the flow is stabilized and the TKE decays. When this happens the peak of TKE moves
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to the center of the vortex. Chow & Zilliac (1994) observed similar behavior for TKE
in their experiment in the near field of a wingtip vortex. They found that the peak
TKE is original located near the edge of the core of the vortex. However, a short
distance downstream, the peak TKE moves to a location at r & 0.3ro. Finally, the
peak decrease downstream of trailing edge. However, they did not see the peak move

to the centerline because their measurement was taken in the near field of a wingtip

vortex.
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k
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5.0E-03
0.0E+00 ==
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Figure 3.21 Evolution of the TKE £ profiles.

Figures 3.22 to 3.24 show the profiles of the three normal Reynolds stresses.
Features similar to those seen in the development of the TKE are also found in all
three normal stresses. Phillips & Graham (1984) observed that the peak of the normal
Reynolds stresses is located at the center of the vortex core at their far downstream
measurement station. The normal Reynolds stress profiles at later times in this work
qualitatively match the results of Phillips experiment very well. It is also noted that
at early times the radial normal stress v72 is larger than the tangential normal stress
v2. As shown later in Section 3.5, the different sign of the production term for the
v2 and @ transport equations is the key to explaining the anisotropy in the normal

stress levels.
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Figure 3.23 Evolution of the Reynolds stress vj? profiles.
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Figure 3.24 Evolution of the Reynolds stress v2 profiles.

The evolution of shear stress v/vj is shown in Figure 3.25. The peak in v’v} also
occurs in an annular region near the edge of the core at early times, but it continues
to move outward as the flow is stabilized rather than moving to the center of the
vortex, which is what happens for the normal stresses. The peak of v/vj at later
times is located at r = 2ry which matches with Phillips’ results. As mentioned in
Section 3.3.3 the location of the peak coincides with the overshoot in circulation. The
important feature as shown in this picture is that the stress v/}, shows a different sign
near the center of the vortex at later times. This is the key explaining the negative
eddy viscosity that causes the anti-diffusion for the mean tangential velocity. Phillips

& Graham (1984) also observed a negative v/v} in the region near the core of the

vortex. Figures 3.26 and 3.27 present the profiles of shear stresses vZv’ and vjv!. The

stresses v/v] and vgv’, show features similar to each other except for the different sign.

In contrast to v/vg, the peaks of v/v’ and vjv! stay near the edge of the vortex. Also,
both stresses develop a different sign near the center of the vortex at later times,

resulting in a negative eddy viscosity as shown in the next section.
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Figure 3.26 Evolution of the Reynolds stress v.v] profiles.
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Figure 3.27 Evolution of Reynolds stress vjv’ profiles.

3.3.5 Eddy viscosity

The production of TKE can be simplified as

P= —'U;U{gsra - U:.’Ui.S z (3'?‘9)
where, with axisymmetry,
,
=12 (ﬁ) and S, = 2% (3.30)
ar \r ar

From the Boussinesq approximation the Reynolds stresses can be modeled as
—vlvg = vrSre and —vlvl = vrS,-, (3.31)

where v is the eddy viscosity. Substituting Equation (3.31) into equation (3.29), one
can define the eddy viscosity as

v/vySre + vIVLS,,
vr = ———=

(3.32)

Figure 3.28 shows that the ratio of vr /v is large except at the initial time. It indi-

cates that turbulent transport of momentum is much more important than molecular
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Figure 3.28 Evolution of the eddy vr/v profiles.

transport. The interesting feature is that for later time, when the vortex becomes
stable, a negative eddy viscosity develops in the vortex core since the sign of the shear
stresses v/vj and v[v’ in the vortex core is changed. It is believed that this negative
eddy viscosity is responsible for the anti-diffusion of the tangential velocity seen in
Figure 3.15.

In order to investigate the contribution of each of the shear stress, the eddy vis-

cosity is then split into two parts
vr = vt +vr2, (3.33)

where

_ vIvgSre _ vivlSrg
2(S5% + SZ.) 2(8% + S2)

The two parts give the contribution to v7 from each of the Reynolds stresses. From

and vre, = (3.34)

vry =

Figures 3.29 and 3.30, it is noted that both v, and vr, show negative values in the
vortex core at later time and that v7, is a dominant factor in the total eddy viscosity.

Also, it is noted that vr; extends to large r/r¢ at later time while vr, is localized to

r/ro < 2, similar to the behavior of the shear stresses v/v} and v.v’ respectively.
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3.4 One-Dimensional Energy Spectra

The one-dimensional spectrum, E.(r, k:), is defined by
27 —
Edrik) = 5= [ Wie,y, ko)ul(a,y, k)do), (3.35)

where, * = rcos(8), y = rsin(f), and ;Z(:L‘,y, k.) is the Fourier coefficients of the
fluctuating velocity. As shown in Figures 3.31 to 3.36, the turbulence has developed
to be broad band. The spectra fall off at high wavenumber without a significant
pile-up of energy, which indicates that the flow field is well resolved. The scatter in
the spectra show the effect of a small statistical sample size. Once the isolated vortex
adjusts itself from the initial isotropic flow field, the spectra show a region where
E.(k.) varies approximately as k7°. However, the exponent ¢ is not constant, but

varies with time of 2.
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Figure 3.31 One-dimensional spectra E. at time ¢ = 0.007".
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Figure 3.32 One-dimensional spectra E, at time ¢ = 1.057.
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Figure 3.33 One-dimensional spectra E. at time ¢ = 1.627.
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Figure 3.34 One-dimensional spectra E. at time ¢ = 2.78T.
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Figure 3.36 One-dimensional spectra E. at time ¢ = 6.46T.

3.5 Budgets of the Turbulent Transport Equations

The objective of this section is to present the budget analyses for the Reynolds
stresses and the TKE. Because high quality turbulence measurements are difficult to
take due to the issue of vortex meandering, it is impossible to make a direct compar-
ison of the turbulence closure models with experimental data. However, the budget
analysis provides necessary information to directly evaluate turbulence closure mod-
els. Thus, the budget analysis will provide valuable guidelines for studying turbulence
modeling of the vortex or other rotating flows. In addition, the budget analysis will
also be very helpful to increase our understanding of turbulence in the vortex. A
detailed analysis of the Reynolds stress and the TKE budgets, corresponding to the
five instances in time given in Section 3.3.2, is presented in this section.

The transport equations for the Reynolds stresses in tensor form are given by

7]

En (TU;) = Ciy + Pij + Oy + i + Ttij + Py + Dij — €5, (3.36)
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where the terms on the right hand side of Eq. 3.36 are given by

Ci; = —Ur(uful) x

Pfj: 2(“ uL(UkJ+U.L)+U llL(UL:+U;L))
Oy = % (Wf(Ur,j — Usg) + Wul(Uri — Us))
IL; = p'(ui; +uj:)/p

Ttij = —(m),k

Poi; = —(Puidu + Puidin)
uluf)

€j = 2uu§'ku3-'k

Convection,
Production ,
Rotation,

Pressure strain,
Turbulent transport,
Pressure transport,
Viscous diffusion,

Dissipation,

and Uy is the mean velocity. The transport equation for each individual Reynolds

stress in cylindrical coordinates is presented in Appendix A.

3.5.1 Budgets of TKE

Figures 3.27 to 3.41 gives the budgets of TKE at different periods in time. Since

the flow is axisymmetric with low Mach number, the rotation term, convective term,

and pressure strain term are nearly zero. value.
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Figure 3.37 Budget for the transport equation of TKE at ¢ =

0.637T.
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During the transition period, as shown in Figure 3.37, the budget for the TKE is
dominated by the production term. The right hand side term (hereafter RHS) has
a peak near the edge of the vortex core (r = 0.6rg) resulting in the peak in TKE
occurring in an annular region at the corresponding location. The other terms show
very small contributions. After the flow develops for a while, the disturbance is large
enough to interact with the mean flow.

As shown in Figure 3.38, the production is still a dominant term, but the magni-
tude of the rest of the terms shows significant growth. The pressure transport term
and turbulent transport term show a very complicated behavior, but the interesting
feature is that they have different signs and almost cancel each other except near the
center of vortex core (r < 0.4rg). The dissipation term is also developed and shows a
slight peak corresponding the location of the peak of the production term. The RHS
shows a nearly constant value in the vortex core region and suddenly drops to zero
at the edge of vortex core.

Figure 3.39 shows the budget of the TKE during the growing period. Even though
the production term has the largest contribution to RHS, the peak of the production
has shown a decay and moved towards the edge of vortex core. However, the dissi-
pation term still keeps growing. Although the pressure transport term and turbulent
transport term still have different signs, the turbulent transport term shows a large
peak at the region near vortex center, which results in the TKE at the center of the
vortex having a large growth rate as shown in Figure 3.21.

Figure 3.40 shows the budget of TKE at 3.74T when the global TKE has a peak
value. Negative production appears in the center of the vortex due to the Reynolds
stresses having a different sign in the center of the vortex, as mentioned in Section
3.3.4. Except in the center of the vortex, the RHS has a negative value resulting in a
decay of TKE. However, the peak of the turbulent transport term in the region near
the vortex center causes the growth rate of the TKE in the region near the vortex
center to be much larger than in the location of the peak of the TKE as shown in
Figure 3.21. In other words, the peak of the TKE is flattened. The dissipation term
has a nearly constant value in the region of vortex core.

During the period of TKE decaying as shown in Figure 3.41, with the flow stabi-
lizes, the magnitude of all the terms shows a decay. The production term is the same
order of magnitude as the dissipation term except inside the vortex core, where the

production term shows a negative value. The RHS outside the vortex core is mainly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.0E-03 —O—— Production Term

—-—a———  Rotation Term
——w—— Convective Term

4.0E-03 —6——  Pressure Strain Term
——<&——  Pressure Transportation Term
——0——  Disspation Term

3.0E-03 —4a&——  Turbulent Transport Term

—o—— Diffusion Term
R.H.S.

2.0E-03
1.0E-03
0.0E+00
-1.0E-03
I |
0 1 2 3 4
r/ro

Figure 3.38 Budget for the transport equation of TKE at ¢ = 1.1867.
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Figure 3.39 Budget for the transport equation of TKE at ¢ = 2.3807.
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Figure 3.41 Budget for the transport equation of TKE at ¢t = 7.027T.
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contributed from the turbulent transport term. It is noted that the viscous diffusion
is negligible during the entire period of the isolated vortex development.

Figure 3.42 shows a ratio of the production term to the dissipation term for Case A.
It is noted that the production term is dominant at the early time, ¢ = 1.11T; then at
t = 2.02T the production term is of the same order of the magnitude as the dissipation
term but the production term is still larger than the dissipation term except near the
center of the vortex (r < 0.4ry); finally at the later time, the production term is nearly
equal to the dissipation term except inside the vortex core where the production term

shows a negative

10

©

m |9
n ® N ®

H

Nnow

Figure 3.42 The ratio of the production term to the dissipation term.

3.5.2 Budgets of v

The budget of stress component v*2 is shown in Figures 3.43 to 3.47. For the
isolated vortex with axisymmetry and low Mach number, the rotation term is nearly
zero and the convective term is identical to the production term. During the starting
period as shown in Figure 3.43, the production term, turbulent transport term, pres-
sure transport term, and dissipation term have the same behaviors as in the budget
of TKE shown in Figure 3.37, but the production term is not the dominant term.

The pressure strain term makes the largest contribution to RHS. The pressure strain
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term is trace free and exchanges energy among the velocity components. The positive
pressure strain term means to taking the energy from other component. As shown in
later, the energy going into vZ comes from v2. RHS also peaks at r = 0.6r¢ which

result in the peak in v occurring in the corresponding location.
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Figure 3.43 Budget for the transport equation of v’2 at ¢t = 0.6377.

For the budget of v2 during the linearly unstable period as shown in the Fig-
ure 3.44, the magnitude of all of the terms show a significant increase. The pressure
transport term and turbulent transport term show similar features as in the TKE
budget which is that the two term have different signs and almost cancel each other.
The peak in the production term as well as the convective term is weakened since the
production term is growing faster in the region close to the edge of vortex than in the
region near the vortex center. An interesting feature is shown in the pressure strain
term. The peak of pressure strain moves towards the edge of the vortex core while
there are two negative regions appearing at r = 0.2r, and r = 1.4r¢. The negative
pressure strain in the region near the vortex center causes the growth rate of v in
the region near the vortex center to be much slower than in the location of the peak.

Figure 3.45 shows the budget of v during the growing period. Negative production
appears in the center of the vortex and the peak of the production moves towards the

edge of the vortex. The regions of negative pressure strain are enlarged and the peak
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Figure 3.44 Budget for the transport equation of v’ at ¢t = 1.1867.
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Figure 3.45 Budget for the transport equation of v7 at t = 2.3807".
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of pressure strain is weakened. The turbulent transport term shows a different sign
compared with the pressure transport term, but the turbulent transport term has a
large positive value which results in the RHS term having a peak at the center of the
vortex. Therefore, it is the turbulent transport term that causes v’ to have a much

larger growth in the region near vortex center than in the location of the peak.
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——a&——  Pressure Strain Term
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——o——  Disspation Term
~——#——  Turbulent Transport Term
Diffusion Term

Figure 3.46 Budget for the transport equation of v2 at t = 3.7547".

During the saturating period shown in the Figure 3.46, the magnitude of all of the
terms show decay. The dissipation shows a constant value inside the vortex core. The
production decays to the same order of magnitude as the dissipation. The pressure
strain term becomes negative at most of regions. We will see later, the energy is
transfered to v2. The pressure term equalizes the normal Reynolds stresses and
makes the turbulence to be more nearly isotropic (Bradshaw 1988). The RHS term
shows a negative value except in the region of the vortex center. Therefore v*2 starts
to decay.

As shown in Figure 3.47, comparing with the previous time during the saturating
period, the budget of v/ during relaminarizing period only shows some quantitative
changes rather than any qualitative change. Again, it is noted that the viscous

diffusion is negligible during the entire period of the isolated vortex development.
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Figure 3.47 Budget for the transport equation of vZ at t = 7.027T.

3.5.3 Budgets of v}

Figures 3.48 to 3.52 present the budgets of @ during the different periods. For
the budget of the azimuthal component 1_)_3'5 at the transition period, as shown in
Figure 3.48, the pressure strain term is the primary source of production. As shown
in Section 3.3.4, at early time, since 1—195 has the lowest level of energy, the pressure
strain term takes energy from v2 and tends to equalize normal Reynolds stresses. In
contrast to the budget of v2, the production term and convective term are negative,
resulting in the magnitude of v} having a much lower growth rate than that of v
during the starting period, as mentioned in Section 3.3.4. Comparing to the other
terms, the pressure transport term and turbulent transport term have a much smaller
magnitude.

During the linearly unstable period, as shown in Figure 3.49, the magnitude of
all of the terms increases significantly. Similar to the budget of v/2, the pressure
transport term and turbulent transport term cancel each other in most of the vortex
core. The dissipation term is much smaller than the production term. The significant

growth of pressure strain is the driving force to cause v} to grow quickly.
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Figure 3.48 Budget for the transport equation of W at t = 0.6377.
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Figure 3.49 Budget for the transport equation of @ at t = 1.1387.
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Figure 3.50 shows the budget of vZ during the growing period. A negative pressure
strain appears in the region near the vortex center, but not in the outer region as
with v (see Figure 3.45). Both the pressure strain term and production term show
decay, but the pressure transport term, turbulent transport term, and dissipation term
keep growing. The magnitude of the convective term remains almost unchanged,
but a positive peak in the convective term appears in the location at r = 0.5r;.
The production term not only displays a positive peak at the same location where
convective term has a positive peak, but also the production term develops a positive
value outside the vortex core. Similar to the feature in the budget of v2, the turbulent
transport term forms a positive peak near the center of the vortex, which causes the
peak of ;{? to moves towards the vortex center. RHS remains a positive value at most

locations but its magnitude is small.
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Figure 3.50 Budget for the transport equation of v{ at ¢ = 2.3807.

During the saturating period shown in Figure 3.51, the magnitude of all of the
terms decays and the pressure strain drops quickly. The production term and the
convective term are close to zero inside the vortex and almost cancel each other
outside of vortex. As in the budget of v/2, the dissipation term shows a constant

value inside the vortex. Overall, RHS has a negative value corresponding the decay
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of @ except in the region near the vortex center where the turbulent transport term

maintains a positive peak.
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Figure 3.51 Budget for the transport equation of v at t = 3.7547T.

During the relaminarizing period shown in Figure 3.52, like the features in the
budget of v/Z, the budget of v only show some quantitative changes rather than any
qualitative change. Corresponding to a slow decay of vZ, RHS has a small negative

value.

3.5.4 Budgets of v?2

The budgets of v2 during different periods are shown in Figures 3.53 to 3.57. With
the axisymmetry of an isolated vortex and by neglecting the compressible effect with
a low Mach number, the rotation term, convective term, and pressure transport term
are zero. The viscous diffusion term also is negligible as shown later. Figure 3.53
shows the budget of v2 during the transition period. Production and pressure strain
are the two dominant terms. In contrast to the budget of v and v, the pressure
strain term is negative. As mentioned before, this indicates that energy is transfered
from v? to the other components. RHS has a peak at r = 0.6r9 which results in the

peak of v2 moving from the center of the vortex to the corresponding location.
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Figure 3.52 Budget for the transport equation of ﬁ at t = 7.0277.
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Figure 3.53 Budget for the transport equation of v at ¢ = 0.6377.
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During the linearly unstable period shown in Figure 3.54, the turbulent transport
term has two peaks at the locations of the vortex center and the vortex edge and
has a negligible value throughout the rest of the vortex core. The dissipation term
maintains a small value. An interesting feature is that the profiles of pressure strain
and production have the same shape except opposite sign and diffident magnitudes.
Therefore, RHS has a constant value except at the center and the edge of the vortex

where the contribution from the turbulent transport term is significant.
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Figure 3.54 Budget for the transport equation of v2 at ¢ = 1.1387.

During the growing period as shown in Figure 3.55, the magnitude of the pressure
strain term and production term shows decay. As shown in the budget of v of
Figure 3.45, the pressure strain displays two small peaks but with positive values
at the locations of r = 0.2ry and r = 1.6ro. The dissipation term keeps growing
to a notable value. RHS remains positive value over most of the vortex core which
corresponds to the continue growth of v”2 during the growing period.

For the budget of v at the saturating period as shown in Figure 3.56, the pro-
duction and pressure strain keeps decaying while the dissipation term remains almost
unchanged. RHS has a negative value inside the vortex core which corresponds to

the decay of v’2.
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Figure 3.55 Budget for the transport equation of v at t = 2.3807.
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Figure 3.56 Budget for the transport equation of v’ at t = 3.7547.
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Figure 3.57 Budget for the transport equation of v”2 at t = 7.0277.

Figure 3.57 shows the budget of v2 during the relaminarizing period. The magni-
tude of all of the terms decay at this time, but pressure strain and turbulent transport
peak at the vortex center resulting in RHS having a positive peak at the vortex cen-
ter. The positive pressure strain term takes energy from the component v’2. This is
why at ¢t = 7.0277T, Reynolds stress component v’Z display growth rather than decay

at the location of the vortex center.

3.5.5 Budgets of v’v)

The budgets of the Reynolds stress v’v}, during the different periods are shown
in Figures 3.58 to 3.62. During the transition period shown in Figure 3.58, the
production term is positive but not a dominant term. The convective term and
rotation term have a negative peak at the location r = 0.6r¢ and the pressure strain
has a positive peak at the same location. On other hand, the pressure transport term
has a negative value in the regions near the center and the edge of vortex core and
a positive value occurring in an annular region at r = ro. Overall, RHS has a slight
peak at r = 0.6rg, but a small positive value which results in m having a smaller

magnitude than v/v’.
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Figure 3.58 Budget for the transport equation of v.vj at t = 0.6387.

Figure 3.59 shows the budget of v’v} during the linearly unstable period. Like
the other component, the magnitude of all of the terms shows a significant growth.
The peaks of production, pressure strain, convective, and rotation terms slowly move
towards the edge of the vortex core. The negative pressure transport near the region
of the center of the vortex core disappears. Also, the turbulent transport term grows
to a notable value. Overall, RHS has a negative value inside the vortex core and
changes to a positive value outside the vortex core. Therefore, the Reynolds stress
component v/v} in Figure 3.25 decays inside the vortex core and grows outside the
vortex core from the linearly unstable period to growing period.

During the growing period shown in Figure 3.60, the pressure strain, convective
term, and rotation term drop dramatically. The magnitude of the production term
remains almost unchanged, but its peak moves to the region near the edge of the
vortex core. The production term and pressure strain term also have a negative
region near the center of the vortex core. The negative peak of RHS moves to the
region near the edge of the vortex core and the positive peak moves to the location

at r = 2.0rg.
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Figure 3.59 Budget for the transport equation of v’vj at ¢t = 1.138T.
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Figure 3.60 Budget for the transport equation of v/v} at ¢ = 2.3807.
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Figure 3.61 shows the budget of v’v} during the saturating period. Like the budget
of other components, the magnitude of all of the terms decays. The pressure strain
and pressure transport term show an oscillating behavior and they have the opposite

signs.
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Figure 3.61 Budget for the transport equation of v’vj at ¢t = 3.7547T.

For the budget of v’v} during the relaminarizing period shown in Figure 3.62,
the peak of the production term moves back inside the vortex core. Unlike the
budget of other periods, both the production term and convective term decay very
slowly outside the vortex core. The pressure strain term and pressure transport term
maintain the opposite peaks respectively inside the vortex core, but they quickly die
outside of the vortex core. The slow decay of the production term causes the peak of
the Reynolds stress component v7vj to move towards the outside rather than showing
a simple decay as the other components. In contrast to the budgets of the normal
Reynolds stress components, the contribution of the turbulent transport term to RHS

is minor. In addition, like the budget of v’v’, the dissipation term and the viscous

r-z

term is negligible during the entire period of the vortex development.
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Figure 3.62 Budget for the transport equation of v/vj at ¢ = 7.027T.

3.5.6 Budgets of vv.

The budgets of shear stress component v/v’ are shown in Figures 3.63 to 3.67.
During the transition period shown in Figure 3.63, the production term is the domi-
nant term. The pressure strain term and pressure transport term show a complicated
behavior. The pressure strain shows an alternating sign from the center region of the
vortex to the region near the edge of the vortex core, so does the pressure transport
term but with opposite sign. The rotation term and convective term make minor
contribution to RHS. The dissipation term is negligible at this point.

Figure 3.64 shows the budget of v v. during the linearly unstable period. The
magnitude of all of the terms except the dissipation term and the viscous diffusion
term increases significantly. The region with negative pressure strain disappears,
but the pressure transport term remains the feature unchanged. The rotation term,
convective term, and turbulent transport term show a notable growth. RHS is nearly
a constant due to the behavior of the pressure transport term.

During the growing period shown in Figure 3.65, the production, rotation, and
convective terms remain slowly growing, but the magnitude of the pressure strain and

pressure transport terms show a slow decay. The interesting feature is that both the
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Figure 3.63 Budget for the transport equation of v’v’ at t = 0.6377.
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Figure 3.64 Budget for the transport equation of v/v/ at ¢t = 1.1387.
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pressure strain and pressure transport terms form a peak near r = 0.5ry, but with
opposite sign. In addition, unlike the phenomena in the budget of all the normal
Reynolds stresses, the contributions of the turbulent transport and dissipation terms
are negligible. Overall, RHS has a positive value inside the vortex core and changes to
a negative value outside the vortex core. Therefore, the Reynolds stress v/v” during
the growing period, as shown in Figure 3.26, shows decay inside the vortex core and

a grow outside the vortex core.
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Figure 3.65 Budget for the transport equation of v’v’ at ¢t = 3.754T.

When the flow reaches the saturating period, the magnitude of all of the terms ex-
cept the turbulent transport term decays as shown in Figure 3.66. Unlike the budgets
of all the normal Reynolds stresses, the production term remains the dominant term
over most of the region. The peaks of pressure strain and pressure transport move
towards the vortex center, but the peaks cancel each other. However, the turbulent
transport term forms a small peak near the vortex center (r = 0.2rg), which makes
RHS have a positive peak at the corresponding location. It is this fact that causes
the Reynolds stress component v/v’ to change sign near the vortex center at the later
time shown in Figure 3.26.

During the relaminarizing period, the magnitude of all of the terms shows a sig-

nificant decay as shown in Figure 3.67. It is surprising that the pressure strain and
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Figure 3.66 Budget for the transport equation of v’v’ at ¢t = 4.999T.
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Figure 3.67 Budget for the transport equation of v/v’ at t = 7.0277.
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pressure transport terms maintain a peak at the same location, but the signs have
changed to relative what they were previous. In addition, they quickly die out out-
side the vortex core. It is also notable that the viscous term is not the only negligible
term as was the case with the budget of all the normal Reynolds stresses, but also

the dissipation term is negligible during the entire development period.

3.5.7 Budgets of vyv!

Figures 3.68 to 3.72 show the budgets of vjv’ during the different periods. With
the axisymmetry of the isolated vortex and neglecting the effect of compressibility at
low Mach number, the pressure transport term is identically zero. As with the other
Reynolds shere stress components, W and vjv’, the pressure strain term plays an
important role in the budget of vjv’, but it appears with opposite sign. During the
transition period shown in Figure 3.68, the production term also has a negative value.
The convective term and the rotation term make major contributions to RHS. RHS

shows a peak at r = 0.5ry which results in vjv. developing a peak at the location at

early times.
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Figure 3.68 Budget for the transport equation of vyv. at ¢ = 0.6377.
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Like the budgets of the other components during the linearly unstable period
shown in Figure 3.69, the magnitude of all of the terms shows a significant growth,
especially the turbulent transport term which grows to a notable level. The surprising
feature is that RHS is negative in the region near the center of vortex core which
results in the Reynolds stress vjv’ having a different sign at the corresponding location

during this period.
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Figure 3.69 Budget for the transport equation of vyv’! at t = 1.1867.

During the growing period shown in Figure 3.70, the pressure strain term, con-
vective term, and rotation term show a decay, but the production term and turbulent
transport term remains at the same level. The interesting feature is that at this time
the source terms, the convective term and rotation term, are balanced by the pressure
strain term and the production term. RHS is very close to the turbulent transport
term. The decay of vjv’ in the region near center at t = 2.387T is consistent with the
negative RHS occurring in the same region.

During the saturating period shown in 3.71, the magnitudes of all the terms show
a decay, the peaks of the convective term and rotation term almost disappear. Pro-

duction has a positive region near the vortex center. The balance among the pressure
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Figure 3.70 Budget for the transport equation of vjv’ at ¢ = 2.3807.
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Figure 3.71 Budget for the transport equation of vjv’ at t = 3.7547.
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term, the production term, convective term and rotation term remains. The turbu-
lent transport term changes to be negative so that the magnitude of vjv’ starts to
decay from the growing period to the saturating period.

As shown in Figure 3.72, the budget of v/v} only shows some quantitative changes
rather than any qualitative change. Corresponding to a slow decay of m, RHS has

a small negative value.

——O—— Production Term

——a—— Roution Term

——v—— Convective Term
——&——  Pressure Strain Term
———<&——  Pressure Transportation Term
-——o—— Disspation Term

———a&———  Turbulent Transport Term
——o—— Diffusion Term

—— R.H.S.

5.0E-04

r/ro

Figure 3.72 Budget for the transport equation of vjv/ at t = 7.0277T.

3.6 Large-scale structures

From Eqgs (3.1) and (3.2), we note that, in the absence of any disturbance, the
isovorticity surfaces are concentric cylindrical shells, and the maximum vorticity oc-
curs at 7 = 0. Figure 3.73 shows the isovorticity surface and vorticity contours in
an x-y cross plane at t = 1.05T. The mean axial flow is from the lower left corner
to the upper right corner of the figure. Looking downstream, one would see counter-
clockwise swirling helical vortices, similar to the instability waves from linear stability
analysis. Vortex sheets appear to be branching out of the core. In the 2-D contour
plot, we observe that most of the disturbances are concentrated outside the core in the

form of spiral filaments of high vorticity. Also seen are high-order azimuthal modes.
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This large scale structure is quenched when the flow is stabilized with the decay of the
axial velocity deficit as shown in Figure 3.74. In the 2-D contour plot of Figure 3.74,
we observe that the core tends to regain its laminar structure. The relaminarizing
tendency of the g-vortex has been observed experimentally by Bandyopadhyay et al.
(1991) and numerically by Ragab & Sreedhar (1994).

An isosurface of Reynolds stress v/v’ is shown in Figure 3.75. The isosurface
of Reynolds stress consists of two patterns. One is with v/ > 0 and the other is
with v/ < 0. An interesting feature is the isovorticity surface, as shown in Figure
3.76, is just in the middle of the two patterns. So outside fluid with low turbulent
kinetic energy is swept inward by helical vortices (v. < 0) and inner fluid is ejected
outward(v. < 0). In Figure 3.77, again the isosurface of vorticity is sandwiched by
the isosurface of the production of TKE. Therefore, the helical vortex structures are

responsible for the generation of the Reynolds stress.

3.7 Summary of the Isolated Vortex

Direct numerical simulations of an isolated turbulent axial vortex have been per-
formed including an ensemble of simulations for improving the quality of turbulent
statistical quantities. The q vortex with a wake-type axial velocity profile is used as
a model for an isolated axial vortex . The monotonically increasing initial circulation
makes the vortex centrifugally neutrally stable. The presence of the axial velocity
deficit causes the instability of an isolated axial vortex. The results show that a
linearly unstable axial vortex amplifies the perturbations, resulting in the formation
of large-scale helical vortex structures, as seen in the previous simulation of Ragab
& Sreedhar (1994). Flow visualization shows that these vortical structures are re-
sponsible for the generation of the Reynolds stresses. The decay of the axial velocity
deficit results in the centrifugally stabilizing motion of the vortex core taking over
the destabilizing effect of the axial velocity. The vortex returns eventually toward a
laminar state, but with a weakened axial velocity deficit.

The development of the isolated vortex can be divided into five periods by the
behavior of the global TKE. After a short transition period, the global TKE grows
exponentially. The growth rate decreases gradually during the growing period with
the decay of the axial velocity deficit. Then, it tends to a saturated state when the

swirl number g falls the range of 1.45 ~ 1.55 which agrees well with linear stability
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Figure 3.75 Isosurface of Reynolds stress for Case A (vv!/VZ = ~2.0 x 1073).
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Figure 3.76 Isosurfaces of vorticity and Reynolds stress for Case A.
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Figure 3.77 Isosurfaces of vorticity and production of TKE for Case A.
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theory (Leibovich & Stewartson 1983, Lessen et al. 1974). Eventually, a period of
slow decay prevails and the vortex tends to regains its laminar structure.

During the period of amplification and decay of disturbances, the mean axial ve-
locity profile shows a decrease in the velocity deficit. However, the mean tangential
velocity profile exhibits anti-diffusion in the region in the vortex core. This is asso-
ciated with a negative eddy viscosity coefficient that develops near the center of the
vortex. Also, the circulation profile shows a slight overshoot during the period of
decay.

During the unstable periods, the normal Reynolds stresses develop a peak in an
annular region, which moves to the edge of the vortex core, but then eventually moves
back to the center of the vortex core when the vortex stabilizing motion becomes
dominant. These behaviors also have been observed in experiments by Phillips &
Graham (1984) and Chow & Zilliac (1994). The production from v'v} causes the
anisotropy of the normal stresses, v2 > ﬁ. However, when the vortex reaches the
relaminarizing period, shear stress components show quite different behaviors. The
peaks do not move back to the center of the vortex core. Instead, the peaks of vlv’
and vjv! stay near the edge of the vortex and the peak in v/} moves to the location
of circulation overshoot which also has been observed by Phillips & Graham (1984).
With the decay of v/vj, the normal stresses tends to be isotropic.

From the analysis of the Reynolds stress budgets, it is clear that not only the
production term plays an important role in the complicated behavior of the Reynolds
stresses, but also the pressure strain term, the pressure transport term, and the tur-
bulent transport term make a large contribution to the profiles of Reynolds stress.
The interesting feature is that although the pressure transport term and turbulence
transport term in the normal Reynolds stress components show an oscillating be-
havior, they always have opposite sign. Particularly, those two terms in the TKE
equation almost cancel each other. This is valuable information for studying turbu-
lence modeling of the vortex or other rotating flows because it is almost impossible
to model those two term individually. The pressure strain term is the key factor that
makes the peaks of the Reynolds stress components occurring in an annual region
near the edge of the vortex during the unstable periods and cause them to move back

to the center of the vortex core when the vortex is stabilized.
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4. A B - SPLINE SPECTRAL METHOD

4.1 Introduction

As mentioned in Chapter 3, the direct numerical simulations (DNS) of an isolated
vortex are implemented using a pseudo-spectral Fourier collocation method. The
computer code was originally developed for compressible homogeneous turbulence.
Even though the dual Cain’s mapping scheme eliminates the influence of image flows,
so that the simulations of an isolated vortex can be completed, for the vortex problem
there are still several disadvantages of the code. For most of the simulations using
128 grid points in the z and y directions (see Table 3.1), only 30% of the points lie
within the turbulent region that is within three core radii of the vortex center, as
was shown in Chapter 3. Thus, the majority of the grid points are wasted. Also,
the infinite physical domain is not suited to the strained vortex problem since there
are stagnation points occurring in the computational domain and the compressible
formulation does not allow a steady strain field to be imposed. Therefore, a numerical
method that allows for the simulation of a finite physical domain is desirable.

A new numerical method which is used to solve the incompressible Navier-Stokes
equations in cylindrical coordinates has been developed by Loulou (1996). A Fourier
spectral method is used in the homogeneous streamwise and azimuthal directions,
while in the radial direction a new method based on B-splines is employed. This
method is much better suited to simulating an axial vortex with strain because a
vortex in an infinite flow can be simulated in a finite domain size.

The original sequential code was run on a Cray C90 and was used to simulate
turbulent flow in a pipe. Appropriate boundary conditions have been developed for
simulating the vortex problem. Also, in order to run the code on parallel computers
that provide larger memory and higher speed, the original B-spline code has been
parallelized in this work. The MPI message passing library was used so that the
program is portable to any parallel machine. The new parallel B-spline code will be a

powerful tool for simulating other turbulent flows such as a jet or a wake. The work
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to develop the parallel B-spline code was completed on an IBM SP2 at the Purdue

University Computer Center.
The B-spline method has been well documented in Loulou (1996). A brief de-

scription of the methodology is described below.

4.2 Governing Equations

The incompressible Navier-Stokes equations can be written as

aa—l;—-uxwz—v}’-{-—]%;Au (4.1)
V-u= 0 ’ (4'2)
where u is the velocity vector and w is the vorticity. The modified pressure P is given
by
P=£+-1-u-u, (4.3)
p 2

where p is the pressure and p is the density. All quantities have been normalized
using the radius of the domain R as the length scale, and the initial axial velocity
deficit

Vo = Va(r)l,moo — Va(r)| _, - (4.4)

r=odo
as the velocity scale, where V,(r) is mean axial velocity. So, the Reynolds number in
Equation (4.1) is given by
WR
Re = 22—, (4.5)

v
where R is the radius of the computational domain as shown in Figure 4.1.

4.3 Numerical Method

4.3.1 Weak form

Let v be our numerical approximation to u. With the continuity constraint,
there are only two independent components of the velocity vector so that v can be
represented in terms of two distinct classes of divergence free vectors. In this work,
since the streamwise direction is assumed to be homogeneous and the azimuthal

direction is naturally periodic, the representation of v is given by

v(r,8,z,t) = Z Z Z [a;-"m,(t)qf'(r, 0,25 ke, k=) + oG (t)a; (1,0, z; ke, k;)] , (4.6)
3 m
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Figure 4.1 The coordinate systems and the computational domain.

where af are the expansion coefficients, the streamwise wavenumber k. and the az-

imuthal wavenumber kg are defined as

k. = Z_ZL”. —N.J2<m<NJ2-1,

z

and
ks =3, —Np/2<ks<Ng/2~-1.

The method of divergence-free expansions was developed by Leonard & Wray
(1982). The expansion vectors q¥(r, 8, z; kg, k-) belong to the function space V defined

as
V={q:q=MHYD))? v - q=0},

where D is an open set in R3 with boundary 9T, and (H!(D))3 is the Hilbert space

(Loulou 1996).
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(4.7)

(4.8)

(4.9)

Furthermore, let two distinct classes of vector weight functions ££(r,, 8, z; kg, k)

belong to the space W defined as

W={€: =HY(D)P, v -£=0,6=00n08l},
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where JI" represents the surface r = R as shown in Figure 4.1.
Substituting v for u in Equation (4.1) and following the standard weighted residual

technique, we can obtain a weak form of the Navier-Stokes Equations,

(5*, %%) + (65, vP) = (%, (v xw)) + ;21; (&5.(v - vv) (4.11)

where w = 7 X v and the inner product is defined as
a,b) = a-bdV . 4.12
(a,b) /D ( )

The pressure term can be eliminated from Equation (4.11) by a further simplification.

First, the pressure term can be rewritten as

+ — ) + — . £E :
/Dg dev_/Dv (PEt) dV /DPv ££dV . (4.13)

Then, applying the divergence theorem and using the property of the weight functions,
v - €& =0o0n 8D, we have

. £E — B
/DPV ¢ dV_/aFPg ndA, (4.14)

where n is the unit normal vector. From the assumption of homogeneous flow in
the streamwise direction at the beginning of this section, any surface integral on
Ol U OT'L, vanishes with the periodicity of all variables in the streamwise direction.

Therefore, only the integral on JT' remains

+ — -
[ & vpdv=[ Pceda. (4.15)

Since weight vectors £* are homogeneous, (¥ = I' on 9D, we can eliminate the

pressure term from the weak formulation in Equation (4.11) to obtain

(5*, %—j) = (65 (v x ) + = (4. - vv) - (4.16)

This form has the advantage of automatically satisfying the continuity Equation (4.2)

and eliminating the pressure term.

4.3.2 Expansion and weight functions

The expansion and weight functions are chosen as follows :

qli(r, 0, z; kg, kz) = uf:(r’ ke, k:)ei(ka¢9+kzz) (4.17)
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and
EE(r, 0, 2; ko, k) = WiE(r, kg, k) e~ (Fef+hs?) (4.18)

where ui® are the basis expansion vectors and wi are the basis weight vectors.

Within the divergence-free restriction, the choice of the basis expansion vectors
uf is arbitrary, but in this work there is a certain constraint. The basis expansion
vectors must have the proper regularity (Loulou 1996) at the origin so that any
quantity evaluated at the origin be bounded and smooth. The problem of how to
construct the uf has been well documented by Loulou (1996) and Moser, Moin &
Leonard (1983) and is not repeated here. The definitions of the basis expansion
vectors are listed in Table 4.3.1, where g;(r) is the B-spline function as described
by de Boor (1978) and gj(r) is the derivative of g;(r). Detailed information on the
construction of B-splines and their properties is given in Appendix B.

The set of basis weight vectors wi is chosen to be the complex conjugate of the
set of expansion vectors uf as shown in Table 4.3.1, except that in order to satisfy an
additional restriction on the weight functions, & = 0 on dD. Those vectors having

support on the boundaries are eliminated from the set (also see section 4.4).

4.3.3 Velocity and vorticity representation

Substituting Equation (4.17) and the basis vectors in Table 4.3.1 into Equation
Ny

(4.6) and using the summation convection for repeated indices (a;b; = Za;bl), the
=1

velocity and vorticity components can be represented as

ve(r,0,z,t) = Kig(r) (4.19)
ve(r,0,z,t) = Jig(r) + Ligi(r) (4.20)
vo(r,0,z,t) = —Gig(r)— F[@ (4.21)
we(r,0,2,t) = Awg(r)+ Birgl(r) + c,g’g ) 4 D,gli’") (4.22)
4
wo(r0,2,t) = Eg(r) + F (g’(—’") _ &2’")) + Gugl!(r) (4.23)
. _ g((T') 9 ’ " 9
wy(r,0,2z,1) = H " + (L1 +201)gi(r) + Jirg/ (r) (4.24)

where v,, vy and v, are the velocity components, w,,ws and w, are the vorticity com-
ponents, and the coefficients A; to K; are defined as

Alr,0,z,8) = 33 —ik2(of + op)eilkodth=?) (4.25)
ko k=
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By(r,0,z,t)

C((T‘, 0, z,t)
Di(r,0,z,t)
E[(T, 9, z, t)

Fi(r,0,z,t)

Gl(r’ 67 <, t)

Hi(r,0,z,1)

Ii(r,0,z,1)

J[(T, 0, z, t)

Ki(r,0,2,t)

95

ks k: (4-26)
0 , ke=0
SN ~ikg(ke — 1)af eitkefth=?) (4.27)
ko k-

D ikgoy e kefth=2) (4.28)

ke k-

IS Tk (ksof + o )eitket+E) (4.29)
ke ks

YD (ks — D)oy eiRadths?) (4.30)

ke k=

{ 35N —apeietth) kL Qork, £0

{ Z Z _ikzza?-ei(k90+kzz) , k‘a # 0

kG k: (4.31)
0 , kg=k:=0

DD k(L —ko)((L +ko)af + oy )ellte?*hd) k. 540

ke ke .
za: S (1 — ko? Yo eilkodths?) k=0 (4.32)
ke ks

{ oS k(of +ap)efFetthal T E £

e

ke ks (4.33)
a;!-ez(kgﬁ-{-k:z) , kz =0

( Z Z kzaf'ei(k"”k‘:) , k: #0and ks #0

f: f: af e'tkedtk2) k= 0and ks # 0 (4.34)
\ Okg k= | ka .,

[ Y5 —ko(ksait + i )e'®ef+h=) k£ 0and kg # 0

4 i i —ikgarf , k- =0 and kg # 0 (4.35)
Oka - v hk:=ks =0

\

4.3.4 System equations

Substituting Equations (4.6), (4.17), and (4.18) into Equation (4.16) and eval-

uating the integrals, the following system of ordinary differential Equations can be

obtained for each Fourier mode (k. , kp):

At+-

A++ A+
A——

D) (5 2 ) () (2) wm
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where a¥ is the time derivative of o,
R R
Att = / wi -ufrdr At~ = / wr -ufrdr (4.37)
0 0
R R
At = / wi-urrdr A= / Wi -uirdr (4.38)
() ()
are the mass matrices,
R o~ R —~ o~
Bt = / wi-(v-wvuf)rdr Bt = / wi - (V- wvuf)rdr (4.39)
0 0
R o~ o~ R o~ o~
Bt = / wi - (V- vu;)rdr B = / w - (V-wvy; )rdr (4.40)
0 0

are the viscous matrices, and

1 L: p27 rR . )
F = — [ “ [ [ Wi (v x w)em k2 dr g d (4.41)
2nL.J 0o Jo

are the nonlinear terms. The volume integrals for the mass matrices and the viscous
matrices in Equation (4.16) are reduced to single integrals in r by the orthogonality
property

2T _ike il

/ e=H0el0dn — 278, . (4.42)

0
In the mass and viscous matrices, the row index corresponds to the weight vectors
wi, and the column index corresponds to the expansion vector uf. The complete
expression for mass and viscous matrices and components of the nonlinear terms are

given in Appendix C.

4.3.5 Nonlinear terms

Since the integral

1
27 L.

2r pL: .
[ 7wt (v x w)emtueeia g g (4.43)
0 0

in the right hand side of Equation (4.41) is the definition of the inverse Fourier
transform for the product wi - (v x w), the nonlinear term can be computed by
the pseudo spectral method to avoid the high computational cost associated with
evaluation of convolution sums in Fourier space. Thus, the B-spline coefficients A,
to K; in the velocity and vorticity expansions are transformed from Fourier wave
space to physical space using the “3/2 rule” (Orszag 1971) for de-aliasing reasons.
The production wi - (v X w) is evaluated in physical space and the nonlinear term is
finally obtained by the inverse Fourier transform. By using FFTs, the pseudo spectral
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method only needs O(Nlog, N) operations rather than O(/N?) operations required for
a full spectral approach. The complete expressions and the details on how to evaluate

the nonlinear term are given in Appendix C.

4.3.6 Time advancement

The system of ordinary differential Equations (4.36) can be solved for the B-spline
expansion coefficients a* with a standard time-stepping algorithm. In this work, the
time advancement is performed by using a mixed explicit-implicit method of Spalart,
Moser & Rogers (1991). The linear viscous term is time-marched implicitly using
a Crank-Nicholson scheme and the nonlinear terms are computed explicitly using a
third order Runge-Kutta scheme.

For the system of equations

of
5 = L() + N(f), (4.44)

where L(f) is the linear viscous term and N(f) is the nonlinear convective term, the

formulation of the scheme to advance from f,, at time ¢, to f,4;, at time ¢ + At, is

given by
' = fo + At{L(aufn + 5if’) + 11 N(£,)] (4.45)
" = ', + At[L(eaof’ + Bof”) + v N(f') + (1 N(£,)] (4.46)
forr = % + At[L(ast” + Bafnsr) + 1N (£") + G N(f')] (4.47)
where
29 3 1
al—%y Qy = ?4—0'7 Q3 _6—7 (4‘48)
37 5 1
31—m, ﬁz—ﬂ, '83—6’ (4.49)
8 5 3
7L—E= ’Yz—ﬁ’ "/3—1, (4.50)
17 . 5
Cl_@’ Qz—ﬁ- (4.51)
Applying this method to Equation (4.36) and rearranging the formulations, we
can obtain
Ao = Bio, + AtviF(am) (4.52)
Aye” = Bio + At[yF(¢) + GF(an)] (4.53)
Azany = Bia” + At[yF(e) + GF(Q)] (4.54)
(4.55)
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where the vectors of the nonlinear terms F and « are defined as

Fz(ii) a=(°‘f), (4.56)

A; and B; are, respectively, the effective mass and viscous matrices defined as

—_ A+t AT B+t B-+
Ai: h {At P 4'57
(2B ).
and
- ++ —+ ++ PB-+
B, (A A Y : (4.58)
At— A Bt~ B

Although the scheme requires three storage locations, it can be made to need only

two storage locations. The outline of the algorithm is given in Table 4.2.

Table 4.2 The algorithm using two storage location for the SMR method.

Time Location 1 Location 2
tn ol = a, o? = a,
tn o' = F(al) o?® = B;a?
ol = a? + 11 Atat a? = (o — al)/(mAt)
ol =o' = ATla! o? = Bia! + (Ata?
tn a! = a? + R AtF(a!) | a? = (a® —al)/(mAt)
ol = o = Azla! o? = Baa! + (Ata?
tn a! = a? + 3 AtF(at) o? =a?
ol = o = A3l a? =a!
byl = tn + At Qngpy = Qe = '

The Ki_ ! in Table 4.2 indicates that a linear system is solved. There is a separate
linear system to be solved for each set of wave numbers (kg, kz) which facilitates the

parallel implementation of the algorithm.
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4.4 Boundary Conditions

As mentioned in section 4.3.2, the basis weight vectors in Table 4.3.1 which do
not satisfy the additional restriction on the weight function, £(R) = 0, have to be
eliminated from the set of basis weight vectors. Thus, the equations related to those
basis weight vectors are lost from the system of Equations (4.36) and we have to
develop boundary conditions to make up for those equations. Based on potential flow
boundary conditions, appropriate boundary conditions for the vortex problem have
been developed in this work. The details for each Fourier mode are described in this
section.

For modes k5 = 0 and k. = 0, there are two basis weight vectors w},. and wy,

with non-zero value at the boundary dI'. Two equations related to wj, and wy,
have to be eliminated from the system of Equations (4.36), but we can replace them

by using potential flow boundary conditions,

Nr o
Za (R,0,0)q:(R) = V;'(R,0,0), (4.59)
Zal (20,025 _ 7°(R,0,0), (4.60)

R
where f/;p( R,0,0) and Vz (R, 0,0) are the velocity components of the potential flow
in Fourier wave space at mode kg = 0 and k. =
For modes kg # 0 and k. = 0, there are four basis weight vectors wi._,, wj,,
Wix,—1, and Wy, having non-zero components at the boundary. After eliminating

those four equations from the system of equations, we can make up three equations

from potential flow boundary conditions,

Ny .
> —ikeaif (R, ko, 0)gi(R) = V."(R, ke, 0) (4.61)
=1
Ng o
Y- af (R, ks, 0)(a(R) + Rgj(R)) = Vi' (R, ke, 0) (4.62)
=1
Nz kg 0
>_cq (R, ke,0) (gl(R) 5 91(7‘)) =V: (R, ks,0) . (4.63)
L
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The last constrain will come from a new weight vector which satisfies the restriction,
£(r) = 0. A new basis weight vector can be formed from a linear combination of the

eliminated basis vectors
w:uw(r) = Cle\.rr—L(r) + CzWI'*\}r(T') + C3W1:fr—1(r) + C4W1Tfr(r) . (4'64)

If unconstrained, we could form four linearly independent weight vectors by choosing
four sets of coefficients (c;,co,c3,c4) arbitrarily. However we have the constraint
Wi, () = 0 so that we are allowed to assign only one value arbitrarily. By choosing

new

cz = 1 and applying the constraint, we can obtain the set of coefficients

gll\fr—l(R) =
0,0,1, c , 4.6
0L Gor(B) + g, (469

and the new basis weight vector,

Inr-1(R)
gxl\fr(R) + 1;[-21\.@'g1\77‘

wi. (7). (4.66)

W;ew(r) = w;fr—-l(r) -

Thus, the last cquation is implemented from the linear combination of the four elim-
inated equations by using the set of coefficients in Equation (4.65).

For modes ks = 0 and . # 0, there are three basis weight vectors wj, ,wx,_,, and
Wy, having non-zero components at the boundary. We can make up three equations
from potential flow boundary conditions,

Ny

3" —ik.ap (R,0,k:)qi(R) = V. (R,0,k.) (4.67)
=1
Ng .
> kgi(R)(ef (R,0,k:) + of (R,0,k.)) = V5 (R,0,k.) (4.68)
=1
N , 1 — ko —p
> o (R,0,k.) [ gi(R) + a(r)) =V."(R,0,k.) , (4.69)
=1

where ff:p(R, 0,k.), f/;p(R, 0,%:), and VZP(R, 0, k.) are the velocity components of the
potential flow in Fourier wave space at modes ky = 0 and k. # 0. Therefore, no linear

combination of basis weight vectors is needed for these modes.
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For mode kg # 0 and k. # 0, there are four basis weight vectors wj, _;, W .. wxr,_1,
and wpy, having non-zero components at the boundary. Like the modes ks # 0 and
k. =0, we can make up three equations from potential flow boundary conditions,

Ny -
z —tk.gi(R)(ksaf (R, ko, k) + o (R, ke, k2)) = V,p(R, ke, k) (4.70)

=1

IV9

S of (R, ks, k:)(qi(R) + Rgj(R)) + o (R, kt, k. )gi(R) = Vi (R, ke, k=) (4.71)
=1

& , 1—k —
> o (ko) (d(R) + 15 80()) = W (Rb0k) . (47

=1

We have to use a linear combination of basis weight vectors to obtain the last equation.

Following the same approach at modes &y # 0 and k. = 0, we can obtain the set of

coefficients
Rgy.(R) —ks Ry, (R)
17 - s —Hg, = ] 4.73
and the new basis weight vector,
: Rgy, (R)
U — + Nr + _
wnew(r) WNr—l(r) + Rgfv,(R) + 1 — k@ WﬁVr(r)
—koRg'y. (R
ki, () + i) o) (4.74)

Rgfvr(R) + 1-— kg
Thus, the last equation is implemented from linear combination of the four eliminated

equations by using the set of coefficients (4.73).
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5. TURBULENT AXIAL VORTEX WITH STRAIN

5.1 Introduction

As shown in Chapter 3, an isolated axial vortex with a wake-like mean axial
flow is stable unless the mean axial wake flow has sufficient magnitude. A similar
behavior has been already observed by Bandyopadhyay et al. (1991) and Chow (1994),
and simulated by Zeman (1995) and Ragab & Sreedhar (1994). However, a distinct
behavior of trailing vortices is that each tip vortex induces a strain field on the other.
This external strain causes an instability as described in Section 1.2.2. This instability
may cause the trailing vortices to remain turbulent instead of relaminarizing. Results
of the linear stability analysis indicate that the pair of trailing vortices are unstable to
short wave length disturbances (Widnall et al. 1974) in addition to long wave length
modes of the Crow instability (Crow 1970). Therefore, the turbulent structure within
the vortex may be altered by the presence of external strain.

In this chapter, the new numerical method described in the previous chapter and
the parallelization of the computer code is first validated by repeating the simulation
of an isolated vortex (Case A in Chapter 3). The numerical simulation of a turbulent
axial vortex with strain is then completed. Various statistical quantities are presented

in this chapter.

5.2 Isolated vortex simulation

The simulation of Case A in Chapter 3 is repeated by using the B-spline method
in order to validate the code. Comparisons between the two methods are presented

in this section.
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5.2.1 Initial conditions
The simulation of an isolated vortex is started with mean velocity profiles, for the
mode (ks = 0 and k. = 0),

Yo _
=

R V. .
La-e™), and Z=(1-¢"), (5.1)
T Vo

where V4 is the initial axial velocity deficit and 7 is the dimensionless coordinate as
defined in Equation (3.1). The rest of the modes are given by random perturbations
with a specified power spectrum. It should be noticed that the velocity profiles given
in Equation (5.1) have to be converted to expansion coefficients by using the method
given in Appendix B.3, since the time advancement is developed in Fourier wave
space. The grid size N, = 96 and Ny = 96 is used in the cross section to have the
same resolution as in Case A in Chapter 3 and N, = 192 is chosen in the streamwise

direction.

5.2.2 Results

The comparison of global TKE between the pseudo spectral method in Chapter 2
(hereafter spectral method) and the B-spline method in Chapter 4 (hereafter B-spline
method) is shown in Figure 5.1. The B-spline method needs a longer transition time
than the spectral method to adjust the flow from the unphysical nature of the initial
random disturbances. As in the other cases shown in Figure 3.4, the global TKE of
the two methods matches well during the linearly unstable period if time is shifted
backward by fo = 1.155T for the B-spline method. The difference appears again
after the linearly unstable period because of a low sample size in the streamwise
direction. Given the differences in the initial disturbances, the two methods show
good agreement. The mean axial velocity profiles are shown in Figure 5.2. The
numbers in the parentheses are the time shifted by ¢o = 1.155T for comparison with
Case A. Comparing with Figure 3.14, the wake shows a very slow decay during

the transition period. Then the decay rate of the axial deficit increases significantly
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Figure 5.1 The evolution of the global TKE.

until the vortex approaches the saturating period. Finally the decay rate of the wake
decreases gradually when the vortex is stabilized.

Figure 5.3 shows the mean tangential velocity profiles. The results qualitatively
match well with those in Figure 3.15. The peak in the tangential velocity shows a
decay during the vortex unstable periods and moves inward at later periods. The anti-
diffusion phenomena at the region near vortex core also occurs at the later periods.
The profiles of TKE shown in Figure 5.4 are similar to those in Figure 3.21. The TKE
has a peak in an annular region inside the vortex core during the unstable periods of
the vortex. Eventually, the peak moves to the center of the vortex core and shows a
decay. Overall, the results of the B-spline method qualitatively match well with those
from the spectral method.

The evolution of the TKE in different azimuthal modes shown in Figure 5.5 dis-
plays three phases: transition, linear instability and decay. As mentioned in Section
3.3.2, once the vortex adjusts itself from the unphysical nature of the initial perturba-
tions, various modes start to grow. The modes ky = 2 to ky = 5 show an exponential

growth rate early, at ¢ = 1.07, but the mode k4 = 1 does not grow exponentially
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Figure 5.2 The evolution of the mean axial velocity.
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Figure 5.3 The evolution of the mean tangential velocity.
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Figure 5.5 The evolution of the Ky in different azimuthal modes.
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until £ = 2.07". The other high wavenumber modes start to grow exponentially from
t = 1.57. The linear instability of most modes, except that of mode ks = 1, disap-
pears after ¢ = 2.57. Growth rates, ¢ = (T/Ks)(dKy/dt), evaluated at t = 2.0237T,
are displayed in Figure 5.6. The growth rate is greater for higher kg, in agreement
with linear theory. For larger wavenumbers, the growth rate is larger than the max-
imum growth rate predicted by the linear theory (Mayer & Powell 1992). It is not
known why this is the case; however, it may be due to the nonlinear transfer of energy

into the higher wavenumber modes.
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Figure 5.6 The Growth rates for Ky at time t=2.023T.

The relaminarizing process of the isolated vortex is captured by a sequence of snap
shots for isovorticity surfaces in Figures 5.7(a) to 5.7(f). Starting from a very weak
perturbation shown in Figure 5.7(a), a helical vortex shown in Figure 5.7(b) is formed
after a short transition time. Then, the vortex develops higher azimuthal modes as
shown in Figure 5.7(c) since the vortex is unstable. With the vortex stabilized, the
helical vortex is broken down as shown in Figures 5.7(d) and 5.7(e) and eventually

disappears shown in Figure 5.7(f).
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Figure 5.7 A sequence of isosurfaces of vorticity magnitude.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



111

5.8 Simulation of vortex with strain

The numerical simulation of an axial vortex with an external strain is completed
using the method described in Chapter 4. Details on the implementation of imposing
the external strain field, the choice of parameters for simulations, and statistical

results of the simulations are presented in this section.

v

}

Figure 5.8 A strained vortex.

5.3.1 Imposition of strain

A strained vortex consists of a vortex and an external strain field as shown in
Figure 5.8. The imposition of strain can be done by decomposing the full velocity

into a strain part and a part that does not include the strain:
vV =uy +us, (5.2)

where u, represents the velocity that does not include the strain and ug represents
the velocity that is induced by the external strain. In this work, a steady strain is
applied to the vortex for investigating the effect of the strain on the vortex. Hence,

with the steady and irrotational properties for the external strain field,

Jdug
ot

=0 and Y xus=0,
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substituting Equation (5.2) into Equation (4.16) yields

(5*, 881;‘,) = (6%, (uv +us) x v x w) + Elg (e5.v - vu) , (5.3)

where w = ¥ X (uy + Ug) = ¥ X uy is the vorticity. Comparing with Equations
(4.16) and (5.3), only the nonlinear term needs to be modified. By solving for the
velocity u, instead of the full velocity v, the external strain can be easily imposed

by modifying the nonlinear term alone.

P s(Rsp’ esp)

P(R_,6,)

Figure 5.9 Stream lines of a strained vortex on the cross section.
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5.3.2 Choice of parameters

For a vortex with a uniform strain field, there are stagnation points in the flow
field shown in Figure 5.9. The locations of the stagnation points can be found by
solving a potential flow which is a combination of linear strain and a point vortex

37
4 b

Ry = k—, and 6,, =

54
2re (5:4)

NP

or

where R, is the radius of stagnation points, 0, is the azimuthal angle, and the strain

rate e is defined as

ov. 19V V-
- = 2 —_— —_—
a e cos 26 a-nd - 80 +

pu
(911
N

= —esin20 . (

In order to avoid the instability of the stagnation point flow, the computation domain
has to be small enough so that the domain does not contain any stagnation points.
However, since the constant potential flow boundary condition is used in this work,
the computational domain has to be large enough to have an irrotational flow at the

boundary. To satisfy these two restrictions, a criterion for the strain rate is given as

e<e = . (5.6)

where e~ is the critical strain rate.

With viscous effects, the issue of Reynolds number is the key parameter to capture
the Widnall instability. For a given strain, if the Reynolds number is too small, the
minimum unstable length scale will be larger than the vortex core size so that there
will not be any unstable modes within the vortex. The strained vortex is related to a
homogeneous turbulent flow that combines uniform strain with solid body rotation.
This homogeneous flow has mean flow streamlines that are elliptical and, therefore,
it is called the elliptic streamline flow. Landman & Saffman (1987) gave a minimum

unstable length scale based on the linear stability analysis of the elliptic streamline

: /’YE-’,‘ , (5.7)

flow,

Njw

I~ =(2x)
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where v is the kinetic viscosity, 7 is half the value of the vorticity, and E7 is the critical

Ekman number, where E depends on # = e/v which is the eccentricity parameter.

D) 2
B = 2R (5.8)

v ¥

where ko is the wave number of the most amplified perturbation. Shariff, Verzico &
Orlandi (1994) showed that the stability of a strained vortex can be found from the

stability of the elliptic streamline flow if the average vorticity, defined by

Is

=2 = .'_9
¢=2y 2 (5.9)

3

[

is used to replace the normal definition of vorticity, since the vorticity of the ¢ vortex
that is used as a model in this work varies inside the vortex core. Substituting

Equation (5.9) into Equation (5.7), the minimum length scale can be rewritten as

2
I~ = _4mro (5.10)

- \/RC[‘E:; '
where the Reynolds number Rer is defined in Equation (3.9). In order to capture the
instability of the strained vortex, the minimum length scale [* should be less than

the size of the vortex core ry at least, therefore, the criteria for the Reynolds number

Rer can be obtained as
1674

Rer > Rep = (5.11)

&

where Rer is the critical Reynolds number.

Furthermore, Shariff et al. (1994) approximated the the critical value of £ as
E; = 3.256" — 187 + 0(87), (5.12)

where 3~ = 4e/( and ¢, is a constant. Substituting Equations (5.6) and (5.12) into
Equation (5.11) and neglecting the second term for small values of 8, the critical
Reynolds number Rep. satisfies the equation

. 87 re\ /R\? .
Rer—m\z) (a) , (5.13)
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where R is the computational domain size. For a given computational domain size
R, the critical Reynolds number is proportional to the dimensionless strain rate e*/e.

The selection of the grid size is a very important issue in the capture of the
Widnall instability. For a strained vortex with a weak strain rate, there is a very
small range of unstable waves with # around /3, where the angle 8 is the minimum
angle between the wave vector and streamwise axis (Bayly 1986). For the capture of
the Widnall instability, the grid size in the radial and streamwise directions has to
be aligned with the unstable wave vector. The grid size in the streamwise direction

is currently chosen as
. (AT)aug
" cos(w/3)’

where (Ar)qyy is the average grid size inside of the vortex core for the stretched grids

(5.14)

in the radial direction. For the simulations without strain described in Chapter 3
and Section 5.2, the computational domain is twice as long as the axial wavelength
of the most unstable mode. However, because of the need to align the grid with the
orientation of the most unstable mode of the elliptic flow instability, a computational
domain with two axial wavelengths becomes too expensive to use for these preliminary
simulations, given the limited available computer resources. Therefore, in this study,
the computational domain only contains one wavelength in the streamwise direction.
Of course, the trade-off is to sacrifice the sample size in the streamwise direction.

In this study, a total of four simulations are completed. The first simulation, called
STRN]1, is a test case. To simulate a strain rate as large as possible, the computational
domain size is reduced from 8r to 6.67ry in the simulation STRN2. The simulations
STRN3 and STRN4 are conducted to examine the effect of the external strain field
on the Oseen vortex in which the mean axial flow is zero. The effects of Reynolds

number also are investigated. Table 5.1 lists the summary of four cases.

5.3.3 Turbulence statistics

The investigation of turbulent statistical quantities for the strained vortex is de-

scribed in this section. The two-dimensional strain is imposed in the cross section,
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Table 5.1 Case parameters for the strained vortex.

Case |[ro/R| e/e” Ié] Rer | !*/ro | Axial flow | Domain size
STRN1 | 0.125 | 0.8967 | 0.0281 | 19268 | 0.942 wake R =8.0r9
STRN2 | 0.15 [ 0.8967 | 0.0404 | 29428 | 0.635 wake R =6.6Trg
STRN3 | 0.15 | 0.8967 | 0.0404 | 29428 | 0.635 none R =6.6Trg
STRN4 | 0.15 [ 0.8967 | 0.0404 | 58836 | 0.449 none R =6.6Trg

perpendicular to the vortex axis. Thus, in contrast to the isolated vortex, the strained
vortex is no longer axisymmetric in the mean. The turbulent quantities presented
in this section are obtained by taking the average in the axial direction (see Section

2.3).
5.3.3.1 Global turbulent kinetic energy

One can get a global sense of the stability of the flow by considering the global
TKE, that is the volume averaged TKE as defined in Section 3.3.2.

Figure 5.10 shows the evolution of the global TKE for the strained Oseen vortex.
For a comparison, the Oseen vortex without strain (Case F' in Section 3.3.2) is also
plotted. As discussed in Section 3.3.2, without strain, the Oseen vortex shows only
decay. In contrast to Case F', both Cases STRN3 and STRN4 show an exponential
growth of global TKE after a transition period. However, the global TKE decays
shortly thereafter. Due to a larger Reynolds number, Rer, Case STRN4 shows a
slightly longer growing period and higher level of global TKE than does Case STRN3.
Direct numerical simulations of the elliptic streamline flow (Blaisdell & Shariff 1994,
Blaisdell & Shariff 1996) indicate that the vortex should be unstable no matter what
the strain rate. The linear analysis of the elliptic streamline flow (Cambon, Teissédre
& Jeandel 1985, Bayly 1986, Peierrehumbert 1986, Landman & Saffman 1987, Waleffe
1990) also indicated that the strained vortex is unstable if the Reynolds number for

a given strain rate is “large enough”. There are two reasons for not completely
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Figure 5.10 The evolution of the Global TKE of the strained Oseen vortex.

capturing the Widnall instability in the present strained Oseen vortex. As mentioned
in the previous section, in order to capture the Widnall instability, the grid has to
be aligned with the most unstable wave vector because there is a very small range
of wave angles 0 for such a weak strain rate. In this study, to achieve a reasonable
resolution, the grid size is stretched in the radial direction so that it is impossible
to align the grid with the most unstable wave vector exactly. The second reason is
that most regions inside the vortex core are locally stable. The linear analysis of a
strained vortex is based on the vortex with uniform vorticity inside the vortex core.
But this is not true in the g vortex.

The minimum unstable length scales, [*/ry, in Table 5.1 are calculated based
on the average vorticity defined by Shariff et al. (1994). If we consider the aspect
ratio locally, the vortex should be stable in most regions inside the vortex core since
the vorticity of the ¢ vortex decays as the Gaussian profile. Despite the difficulty

in completely capturing the Widnall instability for such a weak external strain rate
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with a low Reynolds number, the external strain field does cause an instability in
the Oseen vortex. Since Cases STRN3 and STRN4 are eventually stable, subsequent
discussion will focus mainly on the strained g vortex.

Figure 5.11 shows the development of the global TKE for the strained ¢q vortex. For
a comparison, the results of the baseline Case A from the pseudo-spectral method and
the B-spline spectral method are also plotted. As mentioned in the previous sections,
the global TKE of an isolated vortex grows and then decays when the vortex is
stabilized with the decay of the wake. After the transition period, the strained vortex
also shows the exponential growth period since the linear instability is mainly caused
by the strong initial wake. However, the global TKE of the strained vortex continues
to grow for a longer period. For Case STRNI, the strained vortex also displays the
periods of saturation and decay since the Reynolds number is too low for such a weak
strain rate. With the minimum unstable length scale [*/ry = 0.944 as shown in the
Table 5.1, there might only be a few unstable modes in the vortex so that the Widnall
instability is difficult to catch completely. For Case STRN2, with a higher Reynolds
number and strain rate, the global TKE continues to show growth for all time rather
than show a saturation and eventual decay at later times because of the presence of
the Widnall instability.

Since the strained vortex reaches such a high turbulence level, it is necessary to

check the numerical resolution for the simulation. The Kolmogorov length scale is

defined b
e L3\ (/4
e = (——) , (5.15)

where ¢ is the dissipation rate. In this work, based on the assumption of homogeneous

turbulence, the Kolmogorov length scale is approximately evaluated by

1/2
174
lK = ’ (5’16)
(\/wfwf)

where w; is the fluctuating vorticity. Figure 5.12 shows the evolution of the minimum

Kolmogorov length scale. It is clear that the simulation did not resolve the small
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Figure 5.11 The evolution of the Global TKE of the strained vortex.
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Figure 5.12 The Kolmogorov length scale.
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structures well when ¢ > 4.07 since the Kolmogorov length scale reaches one order of

magnitude smaller than the grid size.
5.3.3.2 Mean velocity profiles

Contour plots of the mean axial velocity are shown in Figures 5.13 to 5.15 .
Since the external strain field is imposed in the cross section, contours are elliptic in
shape as expected. The major and minor axes of the elliptic contour lines are the z
-and y axes , respectively, rotated by 7 /4 radians in the counter clockwise direction.
However, the feature seems to be distorted at later times when the turbulence reaches
a high level. A low statistical sample size and a short computational domain are the
two factors that cause the distortion of the velocity profiles. As discussed in the
Section 3.3.2, a low statistical sample size is the main reason that causes the results
to appear somewhat jagged. However, for the stained vortex, another difficulty in
computing the desired statistics is the short one wave length computational domain
in the streamwise direction (see Section 5.3.2).

Contours of the mean tangential velocity shown in Figures 5.16 to 5.18 are also
elliptic in shape as expected. Unlike the mean axial velocity, the major and minor
axes of the elliptic contour lines change from the inside to the outside of the vortex
core. It is not surprising since the tangential velocity induced by the vortex is not
monotonically increasing along the radial direction, but the velocity induced by the
two-dimensional strain is monotonically increasing. The shape of the contour lines is
also distorted at a later time because of the low sample size and short computational
domain length.

Because there is no axisymmetric property in the strained vortex, profiles of the
mean axial velocity along different rays are shown in Figures 5.19 to 5.21 . Like the
isolated vortex, the mean axial velocity shows a slow decay at early time because of
the weak disturbance. There is some jagged behavior near the center of the vortex at

later times because of the low statistical sample size.
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Figure 5.15 Contours of V, at ¢t = 3.68T.

Figure 5.16 Contours of V; at ¢t = 2.407T.
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Figure 5.18 Contours of V; at t = 3.687.
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Figure 5.19 Profiles of V. for the strained vortex shown for various angles (6) at
time ¢t = 2.407.
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Figure 5.20 Profiles of V; for the strained vortex shown for various angles (6) at
time ¢ = 2.887'.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

1.00 -

0.80 -

0.60 -
V. R
Vo

0.40

LR R

0.20 -

0.00 1 L Il - I ] ol —. 1 i L L L I L beed, Il 1 L L L L ]

r[ro

Figure 5.21 Profiles of V, for the strained vortex shown for various angles () at
time ¢ = 3.687.
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Figure 5.22 Profiles of Vj for the strained vortex shown for various angles (6) at
time t = 2.407.
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Figure 5.23 Profiles of Vj for the strained vortex shown for various angles (4) at
time ¢ = 2.887.
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Figure 5.24 Profiles of Vj for the strained vortex shown for various angles (4) at
time t = 3.68T.
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Profiles of the mean axial velocity along different rays are shown in Figures 5.22
to 5.24. The peaks of tangential velocity are flattened because of turbulent diffusion.
Especially at the time ¢ = 2.88T, the tangential velocity appears as a limited constant

region near the edge of the vortex core.

5.3.3.3 Turbulent kinetic energy and Reynolds stress

The evolution of the TKE is displayed by a sequence of contour plots shown in
Figures 5.25 to 5.29. Once the strained vortex adjusts itself from the unphysical
nature of the initial perturbations, the TKE appears as a special structure as shown
in Figure 5.25. The peak of the TKE occurs in a strained annular region in which
there are three localized peaks along the azimuthal direction because of the effect
of the external strain field. However, as shown in Figure 5.26, those three peaks
quickly merge once the strained vortex starts the linear growth stage because the
lower azimuthal modes (ks = 1 and ks = 2) dominate, as discussed in Section 5.2.2.
At later times during the linearly unstable period, the peak location is pushed towards
to the center and the contours form a paired-spiral structure in shape near the origin

as shown in Figure 5.27. After the linearly unstable period, as shown in Figure 5.28,
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Figure 5.25 Contours of TKE at ¢t = 1.73T.
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Figure 5.26 Contours of TKE at ¢ = 2.407.
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Figure 5.27 Contours of TKE at ¢ = 2.887.
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Figure 5.29 Contours of TKE at ¢t = 3.687.
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the peak of TKE moves away from the origin by following a spiral trace rather than
staying at the origin, as is the case with the isolated vortex. It takes approximately
one T for the peak of the TKE to return to the same azimuthal location as shown
in Figure 5.29. With the effect of the external strain field, the peak of TKE never
reaches the origin of the vortex so that the global TKE continues to grow as shown
in the previous section.

The evolution of the Reynolds stress v’v’ is displayed by a sequence of contour
plots shown in Figures 5.30 to 5.34. At the early times, the contours of stress v7v’ have
similar structure to that of the TKE except for the opposite sign as shown in Figures
5.30 and 5.31. However, at time ¢t = 2.887 (Figure 5.32), the vortex develops regions
of positive stress vZv] because of the effect of the external strain field dominating.
At the later time (5.33), not only does the level of positive stress vZv/ increase, but
the regions also move in the counter clockwise direction which is consistent with the
behavior of the TKE. An interesting feature is that the the level of negative stress
vlv! does not change from time t = 2.407 to time ¢ = 3.307. Eventually, regions of

positive stress v/v] disappear and the level of negative stress v/v’ continues to grow.

-3.3E-05
-8.0E-05
-1.3E03
-1.7E-0%
-2L2E08
-2.TEQ0S
-3.1IE0¢

(%)

llUI'IIlIIFIIIlIIIIIIIllllll‘[

A

311!1.!1!JllllllllllllllLLl!ll

-3 -2 -1 0 1 2 3

Figure 5.30 Contours of v/v’ at t = 1.737.
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Figure 5.31 Contours of v.v] at ¢ = 2.407T.
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Figure 5.32 Contours of v/v/ at ¢t = 2.887.
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Figure 5.34 Contours of v/v. at t = 3.687.
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A time sequence of contours of stress v’vj are shown in Figures 5.35 to 5.39.
In contrast to the isolated vortex, the strained vortex develops regions of negative
stress v/vj. Once the vortex starts to grow, contours of v’v} form a pair of spiral
structures shown in Figure 5.36. The negative stress v/vj appears around the edge of
the vortex core, the positive stress focuses on the inside of the vortex core. However,
at time ¢t = 2.887', which is close to the end of the exponential growth stage, regions of
negative stress and positive stress switch locations with each other as shown in Figure
5.37 . It seems that the positive stress rotates outwards in the clockwise direction, but
the negative stress rotates inwards in the counter clockwise direction. The isolated
vortex also shows a region of negative stress near the center at later times. At the later
time t = 3.307", as shown in Figure 5.38, the region of negative stress has divided into
two subregions. The region of positive stress is quickly enlarged, while both the peaks
of negative and positive stress show growth. Figure 5.39 shows a lot of small scale
structure because of the limited statistical sample size and because the simulation is

not numerically well resolved at this time as mentioned in Section 5.3.3.1.
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Figure 5.35 Contours of vlvy at ¢ = 1.73T.
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Figure 5.37 Contours of vlvj at ¢t = 2.88T.
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Figure 5.39 Contours of v’v} at ¢t = 3.687.
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Figures 5.40 to 5.42 show profiles of the TKE along different rays for three different
times. At an early time of ¢ = 2.407, the peak of TKE is roughly located at r = 0.67¢
which is same as the value of the isolated vortex, and § = 7 /4. With the decay of the
wake, the peak moves to the location of r &~ 0.3r¢ which also matches the value of
the isolated vortex, and § = 7, as shown in Figure 5.41. At a later time of ¢t = 2.887,
the peak moves away from the origin to r & 0.6ry which is not the same as for the
isolated vortex. It is clear that the effect of external strain field results in the different

turbulence structure for the strained vortex.
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0.01
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r/ro

Figure 5.40 Profiles of TKE for the strained vortex shown for various angles (6) at
t = 2.407.

Profiles of the stress v’v’ along different rays for the same three times are also
shown in Figures 5.43 to 5.45 . At an early time of ¢ = 2.407 (Figure 5.43), since the
effect of the wake is dominant, the stress vZv’ is seen to be negative as in the isolated
vortex. However, the results are not axisymmetric. When the effect of the external
strain field becomes dominant over the decay of the wake, a large region of positive
stress v/v] develops in the strained vortex at the later times as shown in Figures 5.44

and 5.45.
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Figure 5.41 Profiles of TKE for the strained vortex shown for various angles (8) at
t = 2.88T.
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Figure 5.42 Profiles of TKE for the strained vortex shown for various angles (8) at
t =3.307.
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Figure 5.43 Profiles of v/v, for the strained vortex shown for various angles (8) at
t =2.40T.
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Figure 5.44 Profiles of v’v! for the strained vortex shown for various angles (8) at
t=2.88T.
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Figure 5.45 Profiles of v/v. for the strained vortex shown for various angles (8) at
t =3.30T.

Figures 5.46 to 5.48 display profiles of the stress v’v} along different rays for the
same three times. It is clear that a large region of negative stress v/v} develops in the
vortex because of the effects of the external strain field. Unlike the isolated vortex,

the peak of the stress v/vj; does not move to the location r & 2.0r at later times.
5.4 Summary of the Strained Vortex

Direct numerical simulations of the strained vortex have been performed by us-
ing the B-spline spectral method. The numerical method and the parallelization of
computer code are first validated by the simulation of isolated vortex. Results of
the B-spline method qualitatively match well with those from the pseudo-spectral
method. For the isolated vortex, all modes start an exponential growth after a short
transition period. The relaminarizing process is captured by visualization.

The Widnall instability in the strained Oseen vortex is shown to be difficult to

capture because of the localized effects for a low strain rate. An extremely high
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Figure 5.46 Profiles of v’v} for the strained vortex shown for various angles (6) at
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Figure 5.47 Profiles of v/v} for the strained vortex shown for various angles (8) at
t = 2.88T.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



141

0.01

0.005

vivg
0
V2
-0.005
r/To
Figure 5.48 Profiles of v’ v} for the strained vortex shown for various angles (8) at
t = 3.307.

Reynolds number is needed to completely catch the instability in the strained Oseen
vortex.

The Widnall instability has been captured in the simulations of the strained vortex
with axial flow. Because of the presence of the Widnall instability, the strained vortex
is unstable for all time. For a weak strain field, the Reynolds number has to be chosen
to be large enough to capture the Widnall instability.

With the effects of the external strain field, the turbulence structure inside the
vortex is altered. The peak of the TKE moves towards the center of the vortex
core during the linearly unstable period, but moves outwards before it reaches the
center. In addition, the location of the peak varies along the azimuthal direction.
The Reynolds stresses no longer have a uniform sign inside the vortex core. Since as
mentioned in Chapter 3, the negative eddy viscosity in the isolated vortex is associated
with an opposite sign of the Reynolds stresses, there may be a negative eddy viscosity

in the region with a negative value of v/ vy. This is left for future work to determine.
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With the limitation of available computer resources, the results of Case STRN2
are not numerically well resolved at later times (¢ > 4.07"). Simulations with higher

Reynolds numbers are needed for further study.
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6. CONCLUSIONS AND RECOMMENDATIONS

A study of turbulent axial vortices has been conducted by using direct numerical
simulation. Two classes of axial vortices have been considered: an isolated vortex and
a strained vortex. A detailed analysis of the Reynolds stress budgets on the isolated
vortex has also been completed in order to understand the turbulent transport in the
vortex. Based on simulations and analysis, a summary of conclusions is presented

below followed by recommendations for future work.

6.1 Summary of Conclusions

6.1.1 Isolated vortex

The simulations of an isolated turbulent axial vortex show that the evolution of
the global TKE is independent of the initial profile of the fluctuating velocity. The
isolated vortex is stable unless the mean axial wake flow has sufficient magnitude.
However, with the decay of the deficit, the centrifugally stabilizing motion of the
vortex core takes over the destabilizing effect of the isolated vortex. Eventually, the
isolated vortex returns towards a laminar state, but with a weakened wake deficit.

According to the behavior of the global TKE, the development of the isolated vor-
tex can be divided into five periods: transition, linearly unstable, unstable, saturating,
and relaminarizing. The mean wake deficit shows a decay during the development of
the isolated vortex, but a negative eddy viscosity in the region near the center of the
vortex results in the mean tangential velocity profile exhibiting anti-diffusion during
the saturating and relaminarizing periods.

The features of the TKE profile are related to the development of the isolated
vortex. During the linearly unstable and unstable periods, the peak of the TKE
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occurs in an annular region and moves towards the edge of the vortex. During the
saturating period, the peak of TKE moves towards the center of vortex. Once the
peak of the TKE reaches the center of the vortex, the vortex decays and the peak
stays at the center of the vortex. The stress v v}, shows a different sign near the
center of the vortex during the relaminarizing period. A similar feature is shown in
the stress v/v. but with the opposite sign. The presence of the different sign in the
Reynolds stresses v/vj and v7v’ is the key factor of the negative eddy viscosity being
created.

By analyzing budgets of the Reynolds stresses, the production term is the dom-
inant term in the Reynolds stress budgets, but it is the pressure strain, pressure
transport, and the turbulent transport terms that cause the complicated behavior in
the profiles of the Reynolds stresses. It is impossible to model each individual term
such as the pressure strain term, pressure transport term, as well as the turbulent
transport term, since these terms show complicated oscillating behaviors during the
development of the isolated vortex. However, an interesting feature is that the pres-
sure transport term and the turbulen transport term in the TKE equation almost
cancel each other. This is a valuable piece of information with which to generate a
new turbulence model for the vortex.

The formation of helical vortices is an important phenomenon. The helical vortices
sweep the outside fluid with low momentum inward and eject inner fluid with high
momentum outward. Therefore, the helical vortex structures are responsible for the

generation of the Reynolds stress.

6.1.2 Strained vortex

A preliminary study of the effects of an external strain field on an axial vortex
has been completed. The Widnall instability in the strained Oseen vortex is difficult
to capture for a weak strain rate. This is because of two reasons: first, the grid could

not be perfectly aligned with the most unstable wave vector, because the grid size is
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stretched in the radial direction. Second, most regions in the vortex core are locally
stable for the current Reynolds number.

The Widnall instability in the strained q vortex has been successfully caught in
this work. The strained vortex does not stabilize at later time with the decay of wake.
The turbulent structure within the strained vortex is altered by the presence of the
external strain. The peak of the TKE never reaches the center of the vortex core,
so the vortex remains unstable. This is an important result, because it means that
aircraft wake vortices will remain turbulent rather than relaminarizing downstream.

In addition, the strained vortex forms a paired-spiral structure in Reynolds stresses

vlvy and viv.. The Reynolds stresses are no longer of uniform sign inside the vortex

core.
6.2 Recommendations for Future Work

There are not only many unanswered issues left after this study, but also a number
of interesting issues that have been raised in this study. Some of them deserve future

study.

e Based on the completion of the isolated vortex simulations in this study, it
would be interesting to simulate the isolated vortex by using existing Reynolds
stress models. The comparison for each term based on the budget analysis in

this study could be very valuable for modifying existing turbulence models.

e Future simulations for the strained vortex with higher resoluticn are required
to complete the investigation of the effect of strain on the instability of the
axial vortex. A larger sample size in the streamwise direction is also expected

to improve the quality of the statistical quantities.

e A complete budget analysis of the strained vortex warrants a future study to
see which terms drive the peak of the TKE away from the center of the vortex,
which is a distinguishing feature in the strained vortex. The visualization of iso-

contours of the pressure strain term, the pressure transport term, and turbulent
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transport term could be useful to see how the strain affects the development of

the vortex.

e A large eddy simulation (LES) of the turbulent axial vortex deserves a future
study. The strain rate, in practice, is smaller than in this study. So, to capture
the Widnall instability, simulations need to be run at a very large Reynolds
number, which is impossible for DNS with the existing limitations on computer

resources.

e Currently, constant potential flow is imposed on the whole boundary. Obviously,
artificial vorticity is generated by specifying Dirichlet boundary conditions on
the outflow boundary, since with elliptic-like streamlines in the cross section,
the strained vortex creates inflow and outflow at the boundary. In this study,
the artificial vorticity is negligible for a small strain rate, but its effects are
uncertain for a large strain rate. If the effects of a large strain rate on the
vortex need to be investigated, a conformal mapping which maps the strained
physical domain to a circular computational domain should be considered. This

eliminates the artificial vorticity on the boundary.
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Appendix A: The Transport Equations for Reynolds Stress in Cylindrical
Coordinates
In this appendix the transport equations for Reynolds stresses in cylindrical co-

ordinates are presented. The equations in tensor form are given by
0 /——
En (u:u;) = Ciyj + Pyj + Oy + Ii; + Ttij + Ptij + Dij — €5 (A.1)

where C;; is the convection; P;;, the production; O;j, the rotation; II;;, the pressure
strain; T'¢;;, the turbulent transport; Pt;;, the pressure transport; D;;, the viscous
diffusion; and ¢;;, the dissipation. Each of these terms has been expanded in cylindri-
cal coordinates and listed in the equations that follow. In these equations, subscripts
refer to the component. For example, v! is the fluctuation part of the radial velocity

and P, is the production term in the equation for v’vj.

e Convection terms Cj;

C.. = —v;a(aL_fz - %ag’: ) 1;8(3?); e
Co = 22 _ T (5"(’;)% +E—v‘?‘) —v A )
Ce =~ 20 _ Y (a(;';" —597) — . 20), (A.6)
Coo = —v2) _V (3(3’0”" ) v 2w, (A7)

e The production terms P;;
Py = -2 [%VTWJr% (%‘g - Vo) vivp + %‘iv—v—] ; (A-8)
Py = =2 [%’Uﬂ’a + % (%lg’. + Vr) v + %%Z] ; (A.9)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ve  10V,—— 9V.—

., = =2 v’ - — 2 - .
P.. [8 vl Sy Zvpvl + £y v:] ; (A.10)
_ Lfovs 13V, W)\ /=, = av, 19V, V.\ —

Py = 5(0 r30 r) ,+v9)— —a—r--i-raa—r vivg
1 IVy -~ 1oV,  OV.\——
5(7‘30 )vv,—g(,z-i-ﬁ)vgvz, (A-11)
ho = (2, v vy (o o
rs ) r 09 - VgV, ar az vV,
119V, OVg\—— 1[0V, OV. = . =7\ . )
E(raa ) rvo 7(37 ' ar)(” +%) ; (A.12)
1 (0Vg ldV, Vo =, —= 19V oV, V.\——
Fos 2( rW r)<v9+ ‘) r g + Bz+ vevs
119V, OVo\—— 1[0V, OV
~3 ( a0 +a—) U 3 (E*‘ ar ) U - (A-13)
e The rotation terms O;;
O = 0; (A.14)
Ogg = 0; (A.15)
Ozz = 0; (A.16)
_ 1 [19V. Vo AVe\— L[V, Vi, 10V,
Ors = —z(;a—o—T“a?)”r‘i(aﬂ" aa)
1 /10V. aVp - 1oV, OV.\ o -
(7% -5 -3 (% - %) w (A1)
0. = _ LoV, aV; 7 10V 14V; .
=T T3\%: o) T3\ Trae )Y
10V Vo 1V.\—o— 1/aV. OV.\—s
§(ar+?‘;ae)”9"=‘§<ar ) (418)
On = L[ 0%\ 1 (aw 10%)
= 7 T3\ 8z ar ) T3\ 8z " ra8 )"
119V, Vo Vo — L1 [13V. 0OV —
~3 (:59‘ B w) U3 (;a—o - *) (A-19)
e The turbulent transport terms T't;;
19, —— 1[0 3}
- - TosiofY _ | 2 7 Y Sy sy ey )
Tho = 2 (rifofit) - 1 ( 25(79770) — 9007) — 27D (A0
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19, —— 1[0 7 R —
Tto = ——o(ro7of0} —;(ﬁ(vavavs)wv:vsva) ~ (oD (A.21)
Tt.. = —%E)a;(rv;v;v;) ——5—9-(1)6’,11;'02) — 5-(viviv (A.22)
Tts = —%éa;(rv,'_v,’.v(’,)—
1 a ¥ R A 4 I N | R e | 1oy oyt 5
; —a-a_(vrvevﬁ) + UV Ug — UgUpUyg -a_z(vrvgv:); (A'ZS)
19, ——  1/[¢ _
Tt. = —;E(rv;v;v;)—;(a%(v:v@v;)—v;vzvg) -2 oy (a29)
10, —— 1(8,——0 : o ]
Tte. = — 5 (rUrvevL —;(a_o(vﬁvevz)'*'vrl'vovlz) — golvevivl);  (A.25)
e The pressure transport terms Pt;;
2(0 —, —
2 (0 ,— @ ——
Ptog = —; (%(vép’)+vip') ; (A.27)
20 — :
Pt.. = ";’a';(v:p’)v (A.28)
1[0 — 9 — 1
= — — B — ¥ — — / .)
Plo = —1 | S G57) + 157 - 57| (A.29)
1[d 9
Pt.. = —; a—r(v; )+_7'(1';,-p’)} ; (A.30)
1[0 — 3 —
Pty. = > rag(vép’)*'—*z(vép')} ; (A.31)
(A.32)
e The pressure strain terms II;;
, !
o, = 2235 (4.33)
2p  Ov;
Moy = ;”;' AL (A.34)
a ’
0. = o%’ s (A.35)
Pl fov Ovg
H,-g P) [7‘ <~a7 Uy + aT‘ y (A.36)
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e The dissipation terms ¢;;

€g0

[

€rg

€rz

€62

b 4

it 24

et 4

i 4

p (v  Ov,\
S5+ 5)
P (10v.  Ov
',I(F a6 33)

o The diffusion term D;;

D,.

[(ov\? 1 (ov.  \° [3v\®
ar ) T2\ "% T\5:) |}
i v\ 2 1 /v 2 72\ 2
(5) +5 (5 ) (55 |
[ aw\? 1 (o , 2 AN
ar) T\ae T T\&:) |
XN o\, 9y
ar or ' rz\ 98 )\ o0 r 0z 0z
duldv, 1 (ov. vl o, vl dv}y
B or r2(00 ")(aa +”’)+a-a—:
(9up oL 1 (00 3L Dvdu
or oar 12\ 06 ") 06 dz Oz |’
1o (5,
“Irar \"or
2772 T . 2773
5 (57 G ver-) + 5E];
10 (07,
“|For \" or
1 82_l2 v - 2,72
= (Gt + a2 o o) + G|,
v li ra@ -i--l-—a2w+—82E ;
rdr \ Or r? 962 92 |’
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(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)
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D, = 1/[1 9 ( av:,vo)_{_

o

Flf (82:9((1;?) +Qa(;?) —23535—4@) + azai?] . (A49)
= (82(8?) "za(gia—v;) ‘”_"—) + a;g] : (A.50)
?12' (aZ(a?) +28(g’3 —ve_v) + 82;;7] . (A51)
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Appendix B: Introduction to B-splines

This appendix gives some of the basic properties of B-spline functions and the
Galerkin method based on B-splines. The class of B-spline based numerical method

discussed here is most easily understood in one spatial dimension.
B.1 Construction of B-splines

B-splines, or Basis splines, are defined as basis functions for the space of piece-
wise polynomials. Traditionally, B-splines are constructed by solving a linear set of
equations. However, from the method developed by de Boor (1978), given a set of
N +1 grid points: [€o, &1, &2, - - -,€N], one can construct N + k splines of order & using
a simple recurrence relation:

(7' - fl—-k—l) k—1 (§l —r) k—1
€= ) O 5 g

where [ = 1,2,..., N + k, gF(r) is the [** B-spline of order k, and the B-spline of

g (r) = (") (B-1)

order zero is defined as

L, e, <E<é,
Rr) = Mot S s e Ntk (B2)

0, otherwise.

Following de Boor (1978), the near-boundary B-splines can be constructed by consid-
ering each of the boundary knots to have a multiplicity of & + 1, where & is the order
of the B-splines. For example the B-spline of k** order, g¥(r), needs points £_;,6_5,
..., and {_x which are not defined. The multiple virtual points at the boundaries for

a B-spline of order k& are shown in Figure B.1. de Boor (1978) also developed the

o & En

oo 6 —0--uou-... [ NP PP
5—19 ® €Nt
f—ki 0 EN+k

Figure B.1 Uniform knots with virtual points at boundaries.
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following recursive relationship for evaluating the first derivative of a B-spline

i gF = kgi _ kgt
N (A S R R

The higher derivatives can be evaluated by repeated application of equation (B.3).

(B.3)

Figure B.2 Cubic B-splines on an 11-knot uniform grid.

B.2 The B-spline Properties

Most of the B-spline properties are given by de Boor (1978). Here, some important

properties that are helpful for understanding the B-spline spectral method are listed

below:
1. B-splines have local support and are positive on their support,

g,k(r) >0, for &1 <T <&,

9f(r) =0, for r<&og_rorr>¢.
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Each B-spline of order £ has support on & + 1 intervals, which is delimited by
knots. Figure B.2 shows an example of cubic B-splines. The local support of

B-splines leads to banded matrices that can be stored and solved.

2. The B-spline basis built by equation (B.1) satisfies

N4k

Y gi(r) =1
=1

3. Only [ + 1 of the B-splines has a non-zero [** derivative at the boundary for

[ = 0to k. This allows boundary conditions to be imposed conveniently.

4. Combining properties 2 and 3, two important properties can be derived

g _, = 9k(m)|_ =1,
]|, =~ Eo]] .
L] = o [t |,

B.3 Galerkin method

To illustrate the numerical techniques based on B-splines and the Galerkin method,

we consider the following model equation,

dﬂ.

Qﬁ‘f’(") = f(r) (B.4)
which is solved on the domain r € [to, t,]. If n = 0, Equation (B.4) is a representation
problem. We first approximate ¢ in term of B-splines for order £ and the knot set

that we have selected:
o(r) = é(r) = Zatgt(f‘ (B.5)

The expansion coefficients in equation (B.5) can be obtained by substituting the
expansion Equation (B.3) into equation (B.4) and applying the well-know Galerkin

projection. For the Galerkin method, we have

tn N4k _n tn
/to gk(r) Z: dr—n[gg(r)] ordr = «/t; ge(r) f(r)rdr. (B.6)
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Evaluating the integrals in equation (B.6), we obtain system of linear equations for

o
Aa=b (B.7)
where
A= {au} = [ gk(r);%g,(r)ra’r, (B.8)
and
b=t} = [ Fr)gu(rrdr (B.9)

The matrix A a multidialognal matrix. The bandwidth of matrix A in the Galerkin
method is equal to 2k + 1.
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Appendix C: Formulation for B-spline Spectral Method

This appendix gives the details of formulations for the B-spline spectral method
including the full definition of the mass and viscous matrices and the details on how

the nonlinear term is computed.
C.1 Mass and Viscous Matrices

The mass and viscous matrices defined in Equations (4.37) to (4.40) are assembled
from the following fourteen elemental matrices m; to mj4. All elemental matrices are
calculated once at the beginning of the code using Gaussian quadratures; However,
with the limitation of the computer memory, the mass and viscous matrices need
to be reassembled at every time step. Substituting the basis expansion vectors and
weight vectors given in Table 4.3.1 into Equations (4.37) to (4.40), we can obtain the

definitions of all elemental matrices as:

R
mo= [ Zgr)ardr,
R
me = [ gi(r)gi(ryr dr,
R
m; = /0 gr(r)gi(r)r dr,
R
m = ["g(r)gi(r)r dr + Fa(R)gu(R)
ms = [ o)t dr,
R
me = /; gu(r)gi(r)r? dr
R ]
me = [" Zara(r)dr - g(0)gi(0),
R
me = ["~gi(r)gi(r) dr,
R
mo = [*g(r)gi(r)rdr — RgL(R)G/(R),
R
mio = [ Gr)e () dr — B R)gl(B) — R R)gH(R).

R %
my = [ aur)gi(r) dr,
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R
my = [ gira(r) dr,
R ’
mi = [ gi(r)gl(r)r* dr — Fgu(R)g/(R),

R
mu = [ glrgl(r)r dr — R (R)g/ () -

The boundary terms used below are defined as

bt; = gi(R)ai(R), bt: = Rgx(R)gi(R), R

bt, = (B (F)

bt = SRR

L+ gu(R)GI(R), bts =

C.1.1 Mass matrices

_ g(R)g/(R) + g(R)gi(R)
R R? )

The definition of the mass matrix for each Fourier mode is presented as followings:

e k.=0andk; =0
A+tt =m;,

A-_=m1,
At =0,
At =0.

® k. # and ks =0
ATt =k.%m;,
A~ =2k.’m3 + m; + m, + bt ,
At~ = k.’ mj,
At =k.°m;.
e k. =0and ks #0
A*t = (k? —1)m3 +m,,
A" =(k*—1m; +my+m,+ (1 — kg)bty ,
At =90,
At =0
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(] k: 719 and k‘g # 0
A+ = B2 [(ke® — mg +my|
A~ =2k m3 + (ks — 1)m; + my + (1 — kg)bt, ,
At= = k,*[(ks +1)ms + ns] ,
A+ = k.2 [(ks + 1)m3 + mg] .

C.1.2 Viscous matrices
The definition of the viscous matrix for each Fourier mode is presented as follow-

ings:

e k. =0and ks =0

1
Bt = —E(ml + m, — bt,) ,
1
B™ = _E (m8 —ms7; — bts - btg) s
Bt~ = 0 ,
Bt = 0.
e k. #0andky =0
B+t kf (1.2
= —Eg _k:m.?: +m; +ms — btg] ,
1 .
BT = " Re 2k2m3 — 3(my — mg) + 3k2(m; + my) + me+
k2(bt, — bt,) — 2bts — bty — bts] ,
k2 .
BY~ = ——= [k2ms+m; +my— bty ,
K2
B™" = '*“'R%e [k3m3 +m; +my — btg] .
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e k. =0andky #0

B+ — _é [(K? — 1)%my, + (2k2 + 1)ma+
muo — (1~ £3)bty — (2 + &)bts] ,

B~ = —721-; [(=3 + 4ko + 2k7 4k3)m7 + (3 — 4ky + 2k2)ms + mg+
(—2 + kg — k3)bts + (ks + 1)(bts — (ks — 1)bts)] ,

Bt~ = 0,

Bt = 0.

o k.#0andks #0
2

B¥ = -2~ [K2((k} — 1)mg +my) + (K — 1)my + (2kZ + 1)mg + myo+
(L= k7)bty — (2 + K))bt2 | ,
B~ = —é [2k2m; — (=3 + 4ky + 2kF — 4Kk3 + kf)mq+
3k2((ks — 1)%bfm, + m3) + (3 — 4kg + 2k2)mg + mg +
k2((1 — k¢)bt; — 2bty) + (—2 + 3kg — k3 )btz +
(ks — 1)(bty — (ks — 1)bts) ] ,
Bt~ = -Z—i [£2((ko + 1)ms + ms) + (kg — 1)2((ks + 1)my + my;)+
(ke + 2)m, + my3 — (2ks )bty | ,
Bt = —Z—i [k‘f_((kg + 1)ms + me) + (kg — 1)*((ke + 1)m; + myo)+

(kg + 2)m2 +m,y — (1 + kg)btg] .

The mass and viscous matrices are stored in a special banded form for minimizing
storage. The structure of the mass matrix is shown in Figure C.1. By imposing the
regularity conditions (Loulou 1996), the bandwidth of the matrix in the first 2k rows
is locally widened. The elements denoted by * in Figure C.1 are the extra terms
introduced by the regularity conditions. In order to form such special banded mass
and viscous matrices, the expansion coefficients o and the nonlinear term vector F*

have to be ordered with the + and — modes alternating, i.e. a = {at, a7, af,a7,...}.
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C.2 Nonlinear Term

The computation of the nonlinear term is the most expensive operation of the code,
since the radial direction in which the B-splines are applied needs O(/N?) operations.
The details on how to evaluate the nonlinear term are presented in this section.

Substituting the expansion and weight basis vectors in Table 4.3.1 into Eq. (4.41),

we can obtain the nonlinear terms

1 L: p2r prR . -
Ff = / / / wit - (v x w)e i keb+5:2) 1o
27L. Jo Jo Jo

= ZIt(ikeyi —T7) — VARTE (C.1)

1 L 2r rR . .
F; = / / / Wi - (v x w)e~ko0+k:2) 1
2rL. Jo Jo Jo

= I7(ivf = Y5)+ F Bc — G 6, (C.2)

where

k., k.#0andks#0
+ k., k:#0 +
I+ = 1 . J =<1, k.=0and ks #0 , (C.3)
’ T 0, ks=0

1, ky#Oorky#0

I~ =k, F =ki—1, G = { (C.4)

0, otherwise

Terms v, 8¢, Tx, Y«, and & can be assembled from 11 nonlinear three-dimensional
matrices f, to f;; and expansion coefficients, A; to K, defined in Section 4.3.3. The
definition of terms v7, B¢, T, Tk, and & is given as

Ny Nr
"‘/;:— = Z Z (Emﬂ + Hm_[[)fl + (EmGl + HmJl)rf2 +

m=1 [=1

Lo+ 20 (Iirfs + Jr?s) + Fo |F (B = B b6 (- 2| +
r2 r

r

Gm(Fifo + Girfio) + Jm(Lir*fe + Jir°f10)
N, N,

f £
B = X3 (Anli= EnKi)fi + (Crli+ FnKi) 5 + i (’”Amfzcmf) +

m=1 I=1
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]
r

D, Jifse — G Kifg + Bm(lzrfs, + J[T?'fs) -+ (Dmlz — FmKl)

Ny N,

r r f f
Zl [Z (AmFi + Ho Ky, + AnGirfs + Cppy (Flr—; + Gl-:—) + By Gir?f, +
m=l1 (=1

(BnFt+ [ Ky + 2Jn K)rfs + D, ( 'zi—s + Glfe) + Jm Kir*fy

Nr Np f
SN (AmFi+ Ho K)rfs + AnGrr*fy + Cr (ﬂ;3 + Glf4) + By Girifs +

m=1 [=1

(B By + [n Ky + 200 Kz + D (Kif + Girfs) + Jm Kir®fy
N Np f
22> (Amli= EnKi)rfs + (Cli + FnK) = + Jfi(Con + 72 Am) +

m=1 =1

(DmIi — Fru K0)fr + B (Lir*fr + Jirf3) + D Jirfs — G Kirfyy

R R

f, = /0 g(r)gi(r)gm(r)dr , £, = /0 9x(r)gi(r)gm (r)dr
R R

fs =/0 9(1)g1(r)gm (r)dr £, =/0 9(r)g1(r)gm (r)dr
R R

f5 =/0 ak(r)ai(r) g, (r)dr fs=/0 9(r)gi(r)gm (r)dr
R R

fr= [ hra)gnmdr,  fo= [ G0G(r)gn(r)dr
R R

fo = /0 g(r)g(r)gi(rydr,  fio= /0 9k(r)gi(r)gm (r)dr

fu= [ dir)a(r)gi(r)dr

As mentioned in Section 4.3.5, the nonlinear terms are evaluated in physical space.

The first step is to compute the expansion coefficients 4; to K; in Fourier wave space.

Then they are transformed to physical space. The second step is to evaluate terms

v, By Tr, Yk, and & in physical space and transform them back to Fourier wave

space. Finally, the nonlinear terms can be evaluated from Equations (C.1) and (C.2).
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