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ABSTRACT

Eshpuniyani, Brijesh, Purdue University, December, 2003. Flow Physics of Strained
Turbulent Axial Vortices. Major Professor: Prof. Gregory A. Blaisdell.

The flow physics of strained turbulent axial vortices has been studied using direct

numerical simulations (DNS) as an investigative tool. These simulations use a b-

spline/Fourier spectral method. Two specific cases have been considered. A vortex

that has no axial flow in its initial laminar state is first studied (this simulation is

called STRN4). This allows us to focus exclusively on the effect of the strain field.

The strain field causes the streamlines to be elliptical, thereby introducing a short

wavelength instability called the elliptic instability. This is followed by studying a

vortex that has a wake-like axial flow profile in its initial laminar state (this simulation

is called STRN2). We now have the instability due to shear in the axial flow in

addition to that due to the strain field.

In both these cases the initially laminar vortex is perturbed randomly. Evolution

of the overall level of turbulence is studied by computing the global turbulent ki-

netic energy (GTKE). In STRN4 the GTKE evolves in an “oscillatory” fashion, with

periods of exponential growth followed by saturation and decay. The growth rate

decreases for successive exponential GTKE rises. In STRN2 the first exponential

GTKE rise occurs with a much larger growth rate than the first exponential GTKE

rise for STRN4. This is due to the instability associated with the axial flow. We then

observe an “oscillatory” pattern, followed by a period during which the GTKE main-

tains an almost uniform level, and then a final period of growth. In both the cases,

the simulation had to be stopped towards the end of the final GTKE rise because the

turbulence outgrows the computational domain.
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Flow visualization is used to study the evolution of the vortex in terms of its

structure. In STRN4 we observe the presence of left and right running helical waves

along with a sinusoidal bending of the vortex along its axis. As the simulation pro-

gresses, the wavelength of this sinusoidal bending is seen to increase. This is reflected

in the dominant modes found by computing the two dimensional energy spectra. The

dominant modes are found to shift from (kθ, kz) = (±1, 4) to (±1, 1) as the simula-

tion progresses. In STRN2, we initially observe helical waves with positive azimuthal

wavenumbers. The initially dominant modes are computed to be (kθ, kz) = (1,1),

(2,2), (3,3), (4,4) and (5,5). As the simulation progresses, the vortex structure shows

the presence of features that correspond to a varied set of dominant modes. Towards

the end of the simulation (±1, 1) are found to be the dominant modes. Two dimen-

sional energy spectra also give us information about how the turbulent kinetic energy

is spread over different wavenumbers (length scales). In general, increases in GTKE

are accompanied by the presence of more small scale structure and vice versa. In

addition to the broad understanding obtained in this manner, the evolution of some

mean and statistical quantities of interest is discussed.

Formulation for large eddy simulation (LES) in the context of the numerical

method used in this study has been completed. The DNS code has been modified

to perform large eddy simulations. Validating this code and using it to perform LES

to study the vortex at higher Reynolds numbers is one of the major suggestions for

future work.
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1. INTRODUCTION

1.1 Motivation and Background

Kuchemann (1965) calls vortices the ‘sinews and muscles of fluid motions’. Figure

1.1 is indicative of the typical structure of an axial vortex. As can be seen, an axial

vortex is composed of regions that vary from being potential in nature to being highly

dependent on viscosity.

Research directed towards finding some order in the seemingly chaotic phenomenon

of turbulent flows has revealed the presence of organized structures in the form of

vortices (Vincent and Meneguzzi (1991); Kida (1993); Cadot, Douady and Couder

(1995)). These findings suggest that a clear understanding of vortical flows will en-

hance our understanding of turbulent flows. In a general turbulent flow we can expect

to see several of these vortices, of varying sizes that span a range of length scales,

deforming and interacting with each other in a complicated fashion. In order to make

the problem tractable, it is of interest to understand the behavior of vortices in sim-

plified situations. The present study is one such investigation that focuses on an axial

vortex in the presence of an external strain field. The approach taken is that of direct

numerical simulations (DNS).

Besides the interest in vortices purely from the scientific standpoint of wanting to

further the understanding of turbulent flows, and fluid mechanics in general, there

exists a need to understand vortices to make progress in being able to solve some

pressing problems in the realm of day to day practical living. One such problem is

known as the wake hazard problem. The wing-tip vortices behind a large aircraft

threaten the stability of any following aircraft. This problem is particularly severe

during take-off and landing. A need to increase the capacity of airports demands



2

shorter time gaps between successive landings and take-offs. Thus, how long these

vortices persist becomes crucial. If we have a clear understanding of these vortices,

in particular the instability mechanisms and the fully turbulent state, we may be

able to hasten their breaking down, or at least their weakening in strength. This

shall alleviate the danger of a following aircraft losing control, when it encounters the

invisible strongly rotating flow.

Another example of situations in which the presence of vortices presents problems

arises in the case of helicopters. The vortices shed by the propeller blades result in a

complex and unsteady flowfield. The interaction between this flowfield and the blades

result in the generation of the loud “slapping” noise commonly associated with heli-

copters. A good understanding of vortices might thus enable us to better understand

the process of sound generation in helicopters, and possibly other situations.

Vortices are not always disadvantageous in nature though. In many situations it

is of interest to have vortices in the flowfield. Coming back to aircraft, the same wing

tip vortices that threaten the stability of following aircraft can also be of advantage

while flying in formation. The vortices in this case have the effect of reducing the

downwash for the following aircraft in the formation, thus reducing the drag. Birds

can often be seen using this phenomenon to their advantage. In situations like this,

a good understanding of vortices, in particular the motion of wing tip vortices, might

help us design and control formations that lead to better fuel efficiency and speed for

a group of aircraft flying over long distances.

Also, vortices are very adept at enhancing the process of mixing. Thus, in situ-

ations like combustion chambers, where proper mixing of the fuel and oxidizer can

lead to greater efficiency, it might be of interest to have a mechanism to generate

vortices in a manner (the parameters being, say, strength and frequency) that helps

the combustion process reach better efficiencies. Being able to break these vortices

up into a turbulent state might further enhance the mixing process.

Another motivation for the current study arises from the use of turbulence models

in engineering turbulent flow calculations at the present time. The mean flow field is
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solved for, with the effects of turbulence being included via a model. This is in contrast

to direct numerical simulations (DNS), which while being a good research tool to study

the physics of turbulent flows, are still limited to low Reynolds number flows due to

their severe computational costs. A middle approach, large eddy simulations (LES),

is showing promises of being used to simulate flows at realistic Reynolds numbers

in the near future. DNS involves numerically solving the Navier Stokes equations,

with a grid that is fine enough to resolve all the relevant scales of the flow. The

number of grid points needed to meet this requirement of being able to resolve all the

relevant flow scales increases rapidly with increasing Reynolds numbers, thus limiting

DNS to low Reynolds number flows. LES on the other hand solves the filtered form

of Navier Stokes equations (Appendix C). The scales that are larger than the filter

width are simulated, while the effect of the scales that are smaller than the filter

width is calculated using a model. Thus LES are economical as compared to DNS,

but more expensive than turbulence modeling. Now, in order for turbulence models

to have any hope of correctly reflecting the physics, and not just be ad hoc in nature

(as is often the case presently), there is a need for as much turbulent flow data as

possible. Data obtained in DNS and LES is of great use for this purpose. Also,

within the already challenging and complex problem of being able to account for all

the scales of turbulence in a model, turbulence modeling for strongly rotating flows

is a particularly difficult task. The vortex is one such flow. Hence the data obtained

in the current study, in addition to increasing our understanding of vortices, shall be

very useful in the development of new and improved turbulence models.

The DNS carried out for the current study uses the q vortex to specify the initial

laminar flow field. The q vortex model was proposed by Lessen, Singh and Paillet

(1974) and has the following tangential and axial velocity components:

Vθ

V0
=

q0

r̂
(1 − e−r̂2

) (1.1)

Vz

V0
= (1 − e−r̂2

) . (1.2)
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Here r̂ = γr/r0 is the dimensionless coordinate, γ = 1.12090642 being the root of

1 + 2γ2 = eγ2

. V0 is the initial axial velocity deficit. The initial swirl number, q0, is

a measure of the relative strength of the tangential velocity component to the axial

velocity deficit.

Lessen et al. (1974) and Lessen and Paillet (1974) performed the first stability

analysis of the q vortex. They performed both inviscid and viscous calculations. They

found that all the modes get stabilized, irrespective of their orientations, if the swirl

parameter is increased above 1.5. Inviscid stability analysis of the q vortex by Duck

and Foster (1980) revealed the the presence of a continuous spectrum of unstable

modes. For each combination of the swirl parameter q and the axial and azimuthal

wavenumbers, the spectrum was found to contain an infinite number of higher modes.

The stability characteristics of the q vortex model were also studied by Leibovich

and Stewartson (1983). They used asymptotic methods for their study and derived

the following sufficient condition for the axial vortex to be unstable:

Vθ
dΩ

dr

[
dΩ

dr

dΓ

dr
+

(
dVz

dr

)]
< 0 (1.3)

Here Ω = Vθ/r is the basic flow’s angular velocity. This study also revealed instabil-

ities at q = 1.58, albeit with very small growth rates. This study indicates that the

instabilities would be strong for q <
√

2.

Khorrami (1991) performed a stability analysis of a trailing line vortex using the q

vortex model. He included viscous effects in this analysis. Two unstable modes were

found with azimuthal wavenumbers 0 and 1. Evidence for the possibility of viscosity

having a destabilizing effect on swirling flows was found for the first time in this

study. These viscous modes have growth rates that are orders of magnitude smaller

than the growth rates of the inviscid modes. These are long wavelength instabilities

having an axial wavelength that scales with the vortex core radius. Results similar to

Khorrami’s analysis are found in experiments conducted by Singh and Uberoi (1976)

and Sarpkaya and Daly (1987).



5

Ragab and Sreedhar (1994, 1995a, 1995b) studied turbulent axial vortices using

DNS and LES. They first studied the Lamb-Oseen vortex. This is simply the q

vortex without the axial flow. It was found that in the absence of the axial flow, the

initial disturbances are simply quenched. This is in accord with stability properties

as discussed above. No axial flow corresponds to the swirl parameter being infinite.

Later they included a wake like axial flow (i.e. now they studied the q vortex). The

axial velocity deficit is found to weaken faster than the tangential velocity. This

means that the swirl number value increases and eventually becomes large enough for

the turbulence to quench and the vortex relaminarizes. Qin (1998) also performed a

DNS study of the Lamb-Oseen and q vortices. In one of his q vortex simulations, he

visualized the relaminarization process by plotting sequence of vorticity magnitude

isosurfaces. Helical waves with positive azimuthal wavenumbers are observed to grow

initially. Eventually a quenching of the turbulence and relaminarization is observed.

Till now we have looked at instability caused by the presence of a wake like (or jet

like) axial flow profile with a sufficiently large deficit (or excess). Often more than one

vortex is present (for example, trailing vortices behind aircraft come in pairs). These

vortices interact with each other. The physics of vortices under the influence of other

vortices (such as the instability mechanisms which would cause an initially laminar

vortex to transition into a turbulent state) is different from that of an isolated vortex.

One way in which the vortices interact with each other is via a strain field. When

this strain field is in the plane normal to the vortex axis, the streamlines become

elliptical (see figure 1.2). This ellipticity of the streamlines brings into play what is

known as the elliptical instability. In a recent review paper, Kerswell (2002) notes

that this instability has a resonance based mechanism wherein “a normal mode, or

pair of normal modes, of oscillation on the undistorted circular flow become tuned to

the underlying strain field”. The elliptical instability is a short wavelength instability

and occupies the center-stage for much of the work presented in this thesis. We shall

come back to it shortly and discuss its characteristics in detail.
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Crow (1970) developed a stability theory for a pair of trailing vortices. He points

out that simple diffusion is not the mechanism for the decay of trailing vortices. The

vortices usually undergo a symmetric, almost sinusoidal instability, ultimately joining

at intervals to form a trail of vortex rings. The most rapidly growing mode of the long

wavelength instability predicted by Crow’s formulation is the wavy pattern observed

in practice. It is predicted that the trailing vortices distort into symmetric waves of

wavelength 6.8 times the span of the aircraft. Compared with the process of vortex

formation, the growth of this instability is very slow. The perturbed vortices are

confined to fixed planes which are inclined at an angle of 48 degrees to the horizontal.

This instability functions through the resonance between a bending Kelvin wave on

the vortex filament and the external strain field from the other vortex filament.

Tsai and Widnall (1976) investigated the stability of short-wave displacements

on a vortex filament of constant vorticity in a weak externally imposed strain field.

For the straight filament considered by Tsai and Widnall, the cross section of the

region of constant vorticity becomes an ellipse in straining flow and the velocity

field is no longer tangential. The presence of strain introduces a short wavelength

instability known as the Widnall instability. The maximum rate of amplification and

the width of the instability zone (range of unstable wavenumbers) are proportional to

the strain rate to vorticity ratio. Using numerical simulation, Robinson and Saffman

(1984) extended the validity of the weak strain results (in a qualitative sense) to finite

strain.

Cambon et al. (1985, 1994) studied the elliptic streamline flow using Rapid Dis-

tortion Theory (RDT). This is a homogeneous turbulent flow which combines effects

of both rotation and strain. It is thus similar to the mean flow in a vortex strained

in the plane perpendicular to its axis. Pierrehumbert (1986), Bayly (1986) and Wal-

effe (1990) studied the linear stability of the elliptical streamline flow by performing

inviscid stability analyses using different methods. They reported that there are no

unstable modes for circular streamlines, i.e. pure rotation. However, a band of un-

stable modes exists for elliptic streamlines. The growth rate of these modes is a
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function of the polar angle of the wavenumber vector. Increasing the ellipticity of the

streamlines has the effect of increasing the width of the band of unstable angles. The

magnitude of the wavenumber vector does not affect the growth rate of the unstable

modes according to the inviscid theory. Hence an instability of the basic two dimen-

sional flow is sufficient to create arbitrarily small three-dimensional fluctuations. This

was suggested by Pierrehumbert (1986) to be a possible mechanism of the cascade

process in turbulence. Landman and Saffman (1987) report that viscosity modifies

the growth rate of the instabilities and there is no longer an independence between

the growth rate and the magnitude of the wavenumber vector. A high wavenumber

cut-off exists for the instability but there is no low wave number cut-off. Arbitrarily

large scales are thus unstable.

Eloy and Dizes (1999) studied the linear stability of Burgers and Lamb-Oseen

vortices in the presence of a strain field in the plane normal to the vortex axis. They

assumed the Reynolds numbers to be large and the strain and stretching to be small

in their study. The short wavelength instability as described by Tsai and Widnall

(1976) and Moore and Saffman (1975) was found to be active for both vortices. Eloy

and Dizes refer to this instability as the TWMS instability. It involves the reso-

nance of stationary helical Kelvin waves with azimuthal wavenumbers 1 and -1. The

external strain amplifies these waves around critical axial wavenumbers. This insta-

bility mechanism has been extended by Eloy and Dizes to include viscous and axial

stretching effects. Although the case of helical waves with azimuthal wavenumbers 1

and -1 is considered, it is pointed out that any combination of two waves with the

same frequency and axial wavenumber, and azimuthal wavenumbers differing by 2,

will resonate with the strain field. The growth rate of any such combination is shown

to depend slightly on the azimuthal wavenumbers involved by Waleffe (1989). This

similarity in the growth rates of the different combinations is suggested as a possible

explanation for the rich variety of features observed in the vortex structure in exper-

iments and numerical simulations of high Reynolds number flows. For low Reynolds
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numbers though, it is expected that viscosity will strongly filter both azimuthal and

axial wavenumbers.

Dizes and Laporte (2002) investigate the linear stability of a flow that is composed

of a pair of parallel Gaussian vortices. They consider a general situation in which

these vortices have different circulations and radii. Also, the flow is quasi-steady in a

reference frame that rotates with the vortex system. They obtain the viscous growth

rate of the globally unstable modes by considering the local stability in each of the

vortex centers. The final formula relating the growth rate to the axial wavenumber is

tested using DNS and LES. The simulations at high Reynolds numbers (greater than

105) agree well with the predictions, while for small Reynolds numbers (2500-5000)

the theory is found to underestimate growth rates by about 20 percent.

Blaisdell and Shariff (1994, 1996) have performed DNS for the elliptical streamline

flow to examine its nonlinear development and the fully turbulent state. A principal

issue they investigate is whether the instability modes grow and dominate the flow

even when large initial disturbances are present. The governing parameters for the

elliptic streamline flow are identified to be the aspect ratio of the elliptic streamlines

(rotation rate to strain rate ratio), mean flow time scale to turbulence time scale ratio

and the turbulent Reynolds number. The elliptic streamline flow is linearly unstable

for all nonzero strain rates. Linear theory predicts the turbulent kinetic energy to

grow exponentially. The simulation results agree with this prediction initially. At

later times, the growth rate is observed to decrease. This is attributed to the growing

importance of the nonlinear effects.

Leweke and Williamson (1998) experimentally investigated the three-dimensional

instability of a pair of counter-rotating vortices, and provided the first clear iden-

tification of the elliptical instability manifesting in vortex cores. They observe the

evolution of the short wave instabilities in the two vortices to be cooperative in na-

ture. Using fluorescent dye flow visualization, they present pictures that show the

onset of both, the long wave Crow and the short wave elliptical instabilities. It is seen

that the short wave instability deforms the vortex core, in contrast to the long wave
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instability which is a wavy displacement of the vortex along its length only. Leweke

and Williamson note that this core deformation involves a “wavy displacement of

the vortex center, the existence of a cylindrical invariant stream tube, and a radial

motion of the fluid, which is in opposite directions inside and outside this tube”. The

cooperative nature of the short wave instabilities on the two vortices is revealed upon

observing that the vortex centers, at any given axial position, get displaced in the

same direction. It is also observed that the amplitude of the small scale instability is

larger in regions where the two vortices have been brought together as a result of the

Crow instability. This is evidence supporting the proportionality between the growth

rate and the strain rate (smaller separation means larger strain rate).

Orlandi et al. (1998) reproduced results of the above experiments by Leweke and

Williamson in a DNS study of trailing vortices. Taking advantage of the increased

capability of DNS in obtaining and analyzing velocity and vorticity data, they could

look at the non-axial vorticity components and how these lead to the cross diffu-

sion of circulation between the vortex pair. They also looked at creating density

perturbations along the vortices’ axes as a possible way to initiate the cooperative

instability.

Afanasyev (2002) experimentally studied the stability of a pair of vortices in a

fluid which itself is in solid body rotation. One area to which this study contributes

is geophysical flows. Quasi-two-dimensional vortices are found abundantly in the at-

mosphere as well in the oceans. Earth’s rotation affects the large scale vortices while

the smaller scale vortices can find themselves to be in rotating flow fields because of

the presence of other vortices. Understanding the stability properties of anticyclonic

columnar vortices in a rotating fluid is important with respect to such geophysical

flow situations. The main non-dimensional parameter in such situations is the Rossby

number (Ro), which is the ratio of the vorticity in the columnar vortex to the back-

ground vorticity. Afanasyev performed this study for Rossby numbers greater than

unity. In these experiments Afanasyev found that the anticyclonic vortex is subject to

elliptical instability when the initial ellipticity is large. The vortex filament is found
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to be sinusoidally deformed in the plane of maximum stretching (symmetry plane for

the vortex pair).

Coppens (1998), Qin (1998) and Blaisdell and Qin (1999) have performed DNS of

axial vortices in the presence of an external strain field. Qin (1998) performed DNS

of strained q vortices, perturbed randomly from their initial laminar state with a

specified initial turbulent kinetic energy profile. He considered cases with and without

a wake like axial velocity profile over a range of Reynolds numbers. Qin (1998) and

Blaisdell and Qin (1999) report success in capturing the Widnall instability for a case

with a wake like axial velocity profile.

There have also been several studies of the elliptic instability in the weakly non-

linear regime. Waleffe (1989) studied a strained vortex that is bounded and uniform.

In contrast, a non-bounded and nonuniform strained vortex was considered by Sipp

(2000). The qualitative features of how the elliptic instability develops in both these

situations are found to be similar. In both cases, it is deformations which reduce

the systems’ symmetry that cause the instability. Guckenheimer and Mahalov (1992)

and Knobloch et al. (1994) analyze this situation of instability caused by symmetry

reduction from the point of view of Hamiltonian systems. Even though fluid dy-

namics equations have not been explicitly used by these researchers in deriving their

results, they find amplitude equations that have the same structure as found by Wal-

effe (1989) and Sipp (2000). Sipp analyzed in detail a case which has small amplitude

initial conditions. In this analysis the linear regime is found to select a perturbation

with phase angle π/4. This corresponds to the direction in which the basic flow is

stretched. This selected eigenmode is found to grow exponentially till its amplitude

reaches a critical value. Once this critical value is reached, the perturbation leaves

the unstable direction due to the nonlinearities as well as changes to the mean field.

The phase is found to now settle at −π/4. This corresponds to the direction in which

the basic flow is contracted. The perturbation is now found to die out by returning

its energy to the mean flow. A new linear regime, having negligible phase shift terms,
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is reached. At this time it is possible that this cycle of linear instability, saturation

and attenuation can start again.

This result that the elliptic instability indeed saturates seems to be in contra-

diction to experimental observation by Leweke and Williamson (1998) and the DNS

results of Orlandi et al. (1998), both of which suggested otherwise. A similar ob-

servation was made by Malkus (1989). He performed an experimental study using a

rotating elastic cylinder that is elliptically distorted. The observation in this study

was that the unstable waves, after growing for some time, suddenly break down into

small scale turbulence. This apparent paradox between the prediction that the elliptic

instability should saturate, and experimental and numerical observations that sug-

gest the opposite scenario, was resolved by Kerswell (1999) and Mason and Kerswell

(1999). Their DNS study revealed that the above predicted saturated state was not

observed because either these states were themselves made unstable by the presence

of secondary instabilities, or were disrupted by other elliptical instability modes that

are growing.

Lebovitz and Saldanha (1999) point out that the above mentioned studies of

the short-wave instability in the weakly nonlinear regime consider only the local

bifurcations of the system. They show that global bifurcations can also result from

the development of the elliptic instability in the weakly nonlinear regime. Due to this

reason, and due to the possibility of the weakly nonlinear saturated states themselves

being unstable, one has to be careful while attempting to draw conclusions about the

role played by the elliptical instability in situations such as the dispersion of wingtip

vortices in the wake of an aircraft.

In contrast to the elliptical instability of bending waves, i.e. perturbations that

bend the vortex axis, Pradeep and Hussain (2001) investigated the effect of strain

on axial waves. These are perturbations that do not deflect the vortex axis while

causing variations in the core vorticity. They consider the instability resulting from

an axisymmetric variation in the core area along the axis of a vortex column, in the

presence of an external strain field, and call it the core dynamics instability (CDI).
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CDI results from the tilting of the column’s axial vorticity. This results in a generation

of radial and azimuthal vorticity components, which can undergo stretching due to the

strain. They observe that the CDI leads to a more rapid transition than the bending

wave instability, and suggest that this is due to the location of the self-stretching.

Self stretching induced by CDI occurs near the vortex axis, a region of large vorticity

magnitudes, while the self-stretching in the case of bending waves takes place in the

periphery of the core, a region of low vorticity magnitudes.

Mason and Kerswell (2002) point out that although we have developed a good

understanding of the linear instability of elliptical streamlines, the nonlinear evolution

of this instability has still not been studied in detail. According to them efforts in

this direction have faced obstacles because a natural situation that is amenable to

numerical simulation is not available. They provide examples to support this claim.

It is pointed out that in studying elliptical flow in a plane layer, the compromise

of enforcing periodicity had to be made (Lungren and Mansour (1996)). In other

DNS studies, such as that of the elliptical instability of a vortex pair by Laporte and

Corjon (2000), or that involving an elliptical geometry (Mason and Kerswell (1999)),

the increased computational cost placed a limitation on how much we could learn.

It is suggested by Mason and Kerswell (2002) that strained rotating flows can also

be studied in the area of precessing flows. In these flows, the strain acts perpendic-

ular to the plane of streamlines, in contrast to elliptic flows in which the strain is in

the plane of streamlines. The streamlines thus remain circular in precessing flows.

However the line passing through their centers does not stay perpendicular to the

plane containing them. The streamlines are thus sheared across each other. However,

in both these categories of flows, the instability mechanism involves the pairwise res-

onance of inertial waves. Although the conditions for the two waves to resonate and

grow would be different in the two scenarios (Kerswell (2002)), the non linear dynam-

ics for the two flow scenarios are expected to be similar. With this in mind, Mason

and Kerswell used DNS to study the nonlinear dynamics generated by instabilities

in a precessing flow situation. Multiple nonlinear states are found to co-exist. Some
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of these states are chaotic. The flow seems to select what the authors call “the most

efficient dissipative state”. The term “efficiency” here has been loosely defined by the

authors as “some ratio of total dissipation to instability kinetic energy”.

1.2 Objectives

The present study continues the work of Blaisdell and Qin (1999). Initially the

plan was to study the vortex at higher Reynolds numbers by performing LES. How-

ever, it was later discovered that the simulations by Qin were not carried out for a

sufficient length of time. This resulted in an incomplete understanding of the flow

physics. The focus of the current study thus shifted to revisiting Qin’s simulations

and obtaining a more complete and correct picture of strained turbulent axial vortices.

Two of the DNS performed by Qin (1998) have been extended further in time.

One of these, labeled as STRN2 by Qin, considers a strained axial vortex with an

initial wake like axial velocity profile. The other, labeled as STRN4 by Qin, considers

a strained axial vortex that does not have an initial axial flow. The overall aim of this

study is to study the evolution of these two vortices from their initially laminar state

in detail. In order to accomplish this, we can create a list of objectives as follows:

• Study how the overall level of turbulence evolves in time by computing the

global turbulent kinetic energy (defined in Section 3.5).

• Use flow visualization to study how these vortices evolve in terms of their struc-

ture.

• Compute 2-D energy spectra (defined in Section 3.6.1) to study the distribution

of turbulent kinetic energy over different wavenumbers (length scales).

• Take a close look at how some mean and statistical quantities of interest (mean

velocity and vorticity components, turbulent kinetic energy, Reynolds stress

components and enstrophy) evolve in time.



14

One of the major contributions of the work presented in this thesis is in providing a

detailed DNS study of how the elliptical instability behaves beyond its initial linearly

unstable phase. Also, the DNS study of the strained vortex with a wake-like axial flow

presented here is the first such study, wherein a flow that simultaneously contains the

elliptical instability and the axial flow instability is studied in detail beyond the initial

linearly unstable phase. The detailed statistics computed during these simulations are

a valuable contribution to the field of turbulence modeling, particularly for strongly

rotating flows.

1.3 Layout of Thesis

The numerical method used for performing these DNS is explained in chapter two.

Chapter two also discusses the boundary conditions and how these are implemented

in the context of the current numerical method. The initial conditions are explained

in chapter three. This is followed by an explanation of how strain is imposed and

what constraints this leads to in choosing the parameters for our simulations. We then

take a close look at the results obtained in terms of the objectives listed out above.

Chapter four finally draws some conclusions and makes some suggestions for future

work. Appendices A and B contain details associated with the numerical method

explained in chapter two. Appendix C deals with the formulation of LES, first in

general and then in the context of the current numerical method. This falls in line

with one of the suggestions made for future work in chapter four, which is to study

the vortex at higher Reynolds numbers by performing LES.
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Figure 1.1 Typical axial vortex structure (Takahashi and McAlister (1987)).

Figure 1.2 A strained vortex (Qin (1998))
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2. DIRECT NUMERICAL SIMULATIONS I

FORMULATION

2.1 Introduction

The turbulent flow simulation approach used in the current study assumes that

the dynamics of turbulence is represented by the Navier-Stokes equations, a system of

non-linear partial differential equations, obtained by applying the laws of conservation

of mass, momentum and energy to a fluid, along with the continuum hypothesis. A

simulation that uses a discretization fine enough to resolve all the relevant length and

time scales is known as a direct numerical simulation (DNS). The disparity between

the largest and the smallest scales increases rapidly with increasing Reynolds numbers.

The immense computer resources required to resolve a turbulent flow well, even at

moderate Reynolds numbers, make DNS a very expensive proposition for simulating

real life engineering flows. For this reason most DNS are limited to low Reynolds

number flows and are mainly used as an investigative tool to better understand the

flow physics.

It is with this intention that a DNS study of turbulent axial vortices is being

performed. This chapter develops the numerical method used in the current study.

2.2 Governing Equations

The incompressible Navier-Stokes equations can be written as

−→∇.−→u = 0 (2.1)

∂−→u
∂t

+ −→u .
−→∇−→u +

−→∇p =
1

Re

−→∇.
−→∇−→u , (2.2)

where −→u = velocity and p = pressure. Here all quantities are normalized using the

radius of the computational domain (Figure 2.1), R, as the length scale and the initial
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axial velocity deficit, Vo = Vz(r = ∞)−Vz(r = 0), as the velocity scale, where Vz(r) is

the mean axial velocity. In simulations of vortices without a wake like axial velocity

profile, Vo is assigned the value it would have for a corresponding case with axial

flow, with the same initial swirl number (defined in section 3.2). Re = VoR/ν is the

computational Reynolds number.

Using the identity −→u .
−→∇−→u = −−→u × −→ω + 1

2

−→∇(−→u .−→u ) we write the momentum

equation as
∂−→u
∂t

+
−→∇P = −→u ×−→ω +

1

Re

−→∇ .
−→∇−→u , (2.3)

where −→ω =
−→∇ ×−→u is the vorticity and P = p + 1

2
−→u .−→u is the modified pressure.

2.3 Numerical Method

2.3.1 Choice of method

The vortex under consideration is time developing and, therefore, homogeneous

in the axial (z) direction. This corresponds to a vortex far downstream, under the

approximation that the flow changes slowly in the streamwise direction. Also, the

azimuthal direction is naturally periodic. This enables the use of a Fourier spectral

method in the streamwise and azimuthal directions. Basis spline polynomials (b-

splines) are used in the radial direction. These provide spectral-like accuracy and

are Ck−2 continuous, where k is the order of the splines being used. In the current

work, 4th order b-splines are used. Also, since b-splines have local support on a given

interval (Figure 2.2), they lead to sparse matrices that can be efficiently stored and

solved.

Loulou (1996) developed a serial computer program to study turbulent pipe flow

that solves the incompressible Navier-Stokes equations in cylindrical coordinates using

a Galerkin formulation with a Fourier spectral method in z and θ and a b-spline

method in r. The program was modified by Qin (Qin et al. 1998 ) to solve the vortex

problem and to run on an IBM SP2 parallel computer. Parallelization was done using

the MPI message passing library. This code is used for the current work and it is

further modified to perform large eddy simulations.
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2.3.2 Weak form

Before solving the filtered Navier-Stokes equations, they are transformed to a form

that is better suited to numerical computation. Let −→v be a numerical approxima-

tion to −→u that consists of a truncated expression in terms of divergence free vector

functions (Moser et al. (1983)). Thus equation (2.1) drops out by construction.

The continuity constraint results in the velocity vector having only two independent

components. Hence two distinct classes of divergence free vectors are required to rep-

resent −→v . For the current problem, since homogeneity is assumed in the streamwise

direction and the azimuthal direction is periodic, −→v is represented as

−→v =
∑

jml

[α+
jml(t)

−→u +
l (r, kθ, kz) + α−

jml(t)
−→u −

l (r, kθ, kz)]e
i(kθθ+kzz), (2.4)

where α± are the expansion coefficients, kz = 2πm/Lz (−Nz/2 ≤ m ≤ Nz/2− 1) are

the streamwise wave numbers, kθ = j (−Nθ/2 ≤ j ≤ Nθ/2 − 1) are the azimuthal

wave numbers and −→u ±

l (1 ≤ l ≤ Nr) are the basis expansion vectors.

Also, let
−→
ξ be any vector function representable by an additional set of divergence

free vector functions such that it is homogeneous at the domain boundary. Now the

standard weighted residual technique is used, with
−→
ξ as the weight function, to get

the weak form of the Navier-Stokes equation

(−→
ξ ,

∂−→v
∂t

)
=

1

Re

(−→
ξ , (

−→∇ .
−→∇−→v )

)
+

(−→
ξ , (−→v ×−→ω )

)
(2.5)

where (−→a ,
−→
b ) =

∫
D
−→a .

−→
b dV is an inner product.

−→
ξ being divergence free and

homogeneous at the boundary results in the pressure term dropping out. The weight

function
−→
ξ is chosen as

ξ±k (r, θ, z; kθ, kz) = w±

k (r, kθ, kz)e
−i(kθθ+kzz) (2.6)

where w±

k (1 ≤ k ≤ Nr) are the basis expansion vectors for the weight function, which

are described in detail in section 2.3.4.
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2.3.3 System of equations

Substituting equations (2.4) and (2.6) in equation (2.5) we obtain, for each Fourier

mode (kz , kθ), the following system of ordinary differential equations:

 A++ A−+

A+− A−−





 α̇+

α̇−


 =


 B++ B−+

B+− B−−





 α+

α−


 +


 F+

F−


 (2.7)

Here,

A++ =

∫ R

0

w+
k · u+

l r dr A+− =

∫ R

0

w−

k · u+
l r dr (2.8)

A−+ =

∫ R

0

w+
k · u−

l r dr A−− =

∫ R

0

w−

k · u−

l r dr (2.9)

are the mass matrices,

B++ =

∫ R

0

w+
k · (▽̂ · ▽̂u+

l )r dr B+− =

∫ R

0

w−

k · (▽̂ · ▽̂u+
l )r dr (2.10)

B−+ =

∫ R

0

w+
k · (▽̂ · ▽̂u−

l )r dr B−− =

∫ R

0

w−

k · (▽̂ · ▽̂u−

l )r dr (2.11)

where ▽̂ is the del operator in wave space, are the viscous matrices, and

F± =
1

2πLzR

∫ Lz

0

∫ 2π

0

∫ R

0

w±

k · (v × ω)e−i(kθθ+kzz)r dr dθ dz. (2.12)

are the nonlinear terms. α̇± is the time derivative of α±. Note that each submatrix

(for the mass and viscous matrices) has the dimension Nr x Nr, thus resulting in a

2Nr x 2Nr system.

The orthogonality property
∫ 2π

0

e−ikθeilθdθ = 2πδkl (2.13)

is used to reduce the volume integrals for the mass and viscous matrices in equation

(2.5) to single integrals in r. The row index in these matrices corresponds to w±

k while

the column index corresponds to u±

l . The basis expansion vectors for the velocity and

weight functions presented in the following section are used to evaluate the expressions

for the mass and viscous matrices, and the nonlinear terms. These are included in

Appendix B.
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2.3.4 Basis expansion vectors

The numerical method chosen uses divergence free vector functions to represent

the velocity field. Also, in order to deal with the coordinate singularity at the ori-

gin, the basis expansion vectors for the velocity field must satisfy certain regularity

conditions (Loulou 1996). These vectors are defined as follows. Note that since −→v is

real, we have −̂→v −j,m,l = −̂→v
∗

j,m,l, where the superscript ∗ stands for complex conjugate.

Hence, the vectors are constructed only for kθ > 0.

For kθ = 0, kz = 0

u+
l =




0

gl(r)

0


 , u−

l =




0

0

gl(r)
r


 (2.14)

For kθ > 0, kz = 0

u+
l =




−ikθgl(r)

(rgl(r))
′

0


 , u−

l =




0

0

g′

l(r) + (1−kθ)
r

gl(r)


 (2.15)

For kθ = 0, kz 6= 0

u+
l =




0

kzgl(r)

0


 , u−

l =




−ikzgl(r)

kzgl(r)

g′

l(r) + gl(r)
r


 (2.16)

For kθ > 0, kz 6= 0

u+
l = kz




−ikθgl(r)

(rgl(r))
′

0


 , u−

l =




−ikzgl(r)

kzgl(r)

g′

l(r) + (1−kθ)
r

gl(r)


 (2.17)

Here gl(r) is the lth B-spline function (Figure 2.2) and g′

l(r) is the derivative of gl(r)

(de Boor (1978)).

The basis expansion vectors for the weight function, w±

k , are chosen to be the

complex conjugate of u±

l . Therefore this is a Galerkin formulation. However, the
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requirement that w±

k be homogeneous at the boundary, which is needed for the pres-

sure term to drop out of equation 2.5, requires us to eliminate those vectors that are

non-zero at the boundary. The equations corresponding to these are thus dropped

from (2.7). Appropriate boundary conditions are applied to complete the system of

equations.

2.3.5 Boundary conditions

As mentioned above, the basis vectors that are not homogeneous at the boundary

are eliminated. Since this results in a loss of the corresponding equations from (2.7),

appropriate boundary conditions have to be applied in order to complete the set of

equations. It is known that the flow far away from the vortex core is irrotational

(McCormick et al. (1968), Takahashi and McAlister (1987)). Thus we can apply

potential flow boundary conditions. In the current work, constant potential flow is

imposed at the boundary. Since the q-vortex or the Oseen vortex is used to specify

the initial mean flow field (explained in section 3.2), the mean tangential and axial

velocities obtained from these models at the boundary are imposed as the boundary

condition for the velocity field.

The equations resulting for each Fourier mode are now derived. Here V̂r

p
(R, kθ, kz),

V̂θ

p
(R, kθ, kz) and V̂z

p
(R, kθ, kz) are the potential flow velocity components at the

boundary in Fourier wave space for mode (kθ, kz). Since we are imposing constant

potential flow at the boundary, V̂ p
r,θ,z = 0 for all kθ, kz 6= 0.

For kθ = 0 and kz = 0, the nonhomogeneous basis weight vectors are w+
Nr and

w−

Nr. Equations corresponding to these two vectors are removed from (2.7), and the

following potential flow boundary conditions are used to replace them:

Nr∑

l=1

α+
l (0, 0)gl(R) = V̂θ

p
(R, 0, 0) (2.18)

Nr∑

l=1

α−

l (0, 0)
gl(R)

R
= V̂z

p
(R, 0, 0) (2.19)
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Note that α±

l (0, 0) = α±

00l, where kθ = 0 corresponds to j = 0 and kz = 0 corresponds

to m = 0 in α±

jml. Since gl(R) = 0 for all l except l = Nr, these give the following two

equations to re-complete (2.7):

α+
Nr

(0, 0) = V̂θ

p
(R, 0, 0) (2.20)

α−

Nr
(0, 0) = RV̂z

p
(R, 0, 0) (2.21)

For kθ 6= 0 and kz = 0, the nonhomogeneous basis weight vectors are w+
Nr−1, w+

Nr,

w−

Nr−1, and w−

Nr. Equations corresponding to these four vectors are removed from

(2.7), and the following potential flow boundary conditions are used to replace three

of these equations:

Nr∑

l=1

−ikθα
+
l (kθ, 0)gl(R) = V̂r

p
(R, kθ, 0) = 0 (2.22)

Nr∑

l=1

α+
l (kθ, 0)(gl(R) + Rg′

l(R)) = V̂θ

p
(R, kθ, 0) = 0 (2.23)

Nr∑

l=1

α−

l (kθ, 0)

(
g′

l(R) +
1 − kθ

R
gl(r)

)
= V̂z

p
(R, kθ, 0) = 0 (2.24)

Using the properties of the b-spline functions, we get the following equations from

these:

α+
Nr−1(kθ, 0) = 0 (2.25)

g′

Nr−1(R)

g′

Nr(R) + 1−kθ

R

α−

Nr−1(kθ, 0) + α−

Nr
(kθ, 0) = 0 (2.26)

α+
Nr

(kθ, 0) = 0 (2.27)

The fourth constraint is developed using a new basis weight vector that is constructed

from a linear combination of those vectors that were eliminated.

w1
new

(r) = c1w
+
Nr−1(r) + c2w

+
Nr(r) + c3w

−

Nr−1(r) + c4w
−

Nr(r) . (2.28)

The required homogeneity of this vector at the boundary restricts us to choosing only

one coefficient arbitrarily. Choosing c3 = 1 and applying the condition w1
new

(R) = 0,
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we obtain c1 = 0, c2 = 0, c3 = 1 and c4 = − g′
Nr−1

(R)

g′
Nr

(R)+
1−kθ

R

. We thus have a new basis

weight vector

w1
new

(r) = w−

Nr−1(r) −
g′

Nr−1(R)

g′

Nr(R) + 1−kθ

R

w−

Nr(r). (2.29)

The fourth equation, that now re-completes (2.7), is a linear combination of the four

eliminated equations with c1, c2, c3 and c4 as the coefficients for equations corre-

sponding to w+
Nr−1(r), w+

Nr(r), w−

Nr−1(r) and w−

Nr(r) respectively.

For modes kθ = 0 and kz 6= 0, the nonhomogeneous weight vectors are w+
Nr,w

−

Nr−1,

and w−

Nr. Equations corresponding to these three vectors are removed from (2.7), and

the following potential flow boundary conditions are used to replace these equations:

Nr∑

l=1

−ikzα
−

l (0, kz)gl(R) = V̂r

p
(R, 0, kz) = 0 (2.30)

Nr∑

l=1

kzgl(R)(α+
l (0, kz) + α−

l (0, kz)) = V̂θ

p
(R, 0, kz) = 0 (2.31)

Nr∑

l=1

α−

l (0, kz)

(
g′

l(R) +
gl(r)

R

)
= V̂z

p
(R, 0, kz) = 0 , (2.32)

These give the following three equations to re-complete (2.7):

α−

Nr−1(0, kz) = 0 (2.33)

α+
Nr

(0, kz) = 0 (2.34)

α−

Nr
(0, kz) = 0 (2.35)

For kθ 6= 0 and kz 6= 0, the nonhomogeneous basis weight vectors are w+
Nr−1, w+

Nr,

w−

Nr−1, and w−

Nr. Equations corresponding to these four vectors are removed from

(2.7), and the following potential flow boundary conditions are used to replace three

of these equations:

Nr∑

l=1

−ikzgl(R)(kθα
+
l (kθ, kz) + α−

l (kθ, kz)) = V̂r

p
(R, kθ, kz) = 0 (2.36)

Nr∑

l=1

kzα
+
l (kθ, kz)(gl(R) + Rg′

l(R)) + kzα
−

l (kθ, kz)gl(R) = V̂θ

p
(R, kθ, kz) = 0 (2.37)
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Nr∑

l=1

α−

l (kθ, kz)

(
g′

l(R) +
1 − kθ

R
gl(r)

)
= V̂z

p
(R, kθ, kz) = 0 (2.38)

We get the following equations from these:

g′

Nr−1(R)

g′

Nr(R) + 1−kθ

R

α+
Nr−1(kθ, kz) + α+

Nr
(kθ, kz) = 0 (2.39)

g′

Nr−1(R)

g′

Nr(R) + 1−kθ

R

α−

Nr−1(kθ, kz) + α−

Nr
(kθ, kz) = 0 (2.40)

kθα
+
Nr

(kθ, kz) + α−

Nr
(kθ, kz) = 0 (2.41)

The fourth constraint is developed using a new basis weight vector that is constructed

from a linear combination of those vectors that were eliminated.

w2
new

(r) = c1w
+
Nr−1(r) + c2w

+
Nr(r) + c3w

−

Nr−1(r) + c4w
−

Nr(r) . (2.42)

The required homogeneity of this vector at the boundary restricts us to choosing only

one coefficient arbitrarily. Choosing c1 = 1 and applying the condition w2
new

(R) = 0,

we obtain c1 = 1, c2 = − g′
Nr−1

(R)

g′
Nr

(R)+
1−kθ

R

, c3 = −kθ and c4 = kθ
g′

Nr−1
(R)

g′
Nr

(R)+
1−kθ

R

. We thus have

a new basis weight vector

w2
new

(r) = w+
Nr−1(r)−

g′

Nr−1(R)

g′

Nr(R) + 1−kθ

R

w+
Nr(r)−kθw

−

Nr−1(r)+kθ

g′

Nr−1(R)

g′

Nr(R) + 1−kθ

R

w−

Nr(r)

(2.43)

The fourth equation, that now re-completes (2.7), is a linear combination of the four

eliminated equations with c1, c2, c3 and c4 as the coefficients for equations corre-

sponding to w+
Nr−1(r), w+

Nr(r), w−

Nr−1(r) and w−

Nr(r) respectively.

2.3.6 Nonlinear term

Taking advantage of the fact that the integral

1

2πLz

∫ 2π

0

∫ Lz

0

w±

k · (v × ω)e−i(kθθ+kzz) dθ dz (2.44)

is indeed the definition of the inverse Fourier transform of w±

k · (v × ω), a pseudo

spectral approach is used to evaluate the non-linear terms (2.12). In this approach,

fast Fourier transforms (FFT) are used to evaluate the product w±

k ·(v×ω) in physical
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space. The Gauss quadrature technique is used to compute the integrals over r to

machine accuracy thus alleviating numerical errors in the radial direction. The inverse

transform is used to go back into Fourier wave space thus obtaining the value of the

non-linear term for each (kθ, kz) mode. De-aliasing (Orszag 1971, Canino et al. 1988)

is ensured by using the 3/2 rule while performing the Fourier transforms. The pseudo

spectral approach using FFTs requires O(N log2N) operations as compared to O(N2)

required for a full spectral approach. This approach thus saves on computational cost

which is a significant concern in DNS and LES. The evaluation of the nonlinear term

is explained in detail in Appendix B.

2.3.7 Time advance

A mixed explicit-implicit method developed by Spalart, Moser and Rogers (1991)

is employed to solve the system of equations (2.7). This method (also called the

SMR method) computes the non-linear terms explicitly using a third order Runge-

Kutta scheme, while implicitly time-marching the linear viscous term using a Crank-

Nicholson scheme.

Consider a model system of equations

∂f

∂t
= L(f) + N(f) , (2.45)

where L(f) is the linear term consisting of the viscous term, while N(f) is the nonlinear

convective term. The SMR method advances fn at time t to fn+1 at time t + ∆t as

follows:

f ′n = fn + ∆t[L(α1fn + β1f
′) + γ1N(fn)] (2.46)

f ′′n = f ′n + ∆t[L(α2f
′ + β2f

′′) + γ2N(f ′) + ζ1N(fn)] (2.47)

fn+1 = f ′′n + ∆t[L(α3f
′′ + β3fn+1) + γ3N(f ′′) + ζ1N(f ′)] (2.48)
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where

α1 =
29

96
, α2 = − 3

40
, α3 =

1

6
, (2.49)

β1 =
37

160
, β2 =

5

24
, β3 =

1

6
, (2.50)

γ1 =
8

15
, γ2 =

5

12
, γ3 =

3

4
, (2.51)

ζ1 =
17

60
, ζ2 =

5

12
. (2.52)

Upon applying this method to the system of equations (2.7), we obtain the fol-

lowing:

Ã1α
′ = B̃1αn + ∆tγ1F(αn) (2.53)

Ã2α
′′ = B̃1α

′ + ∆t [γ2F(α′) + ζ1F(αn)] (2.54)

Ã3αn+1 = B̃1α
′′ + ∆t [γ3F(α′) + ζ2F(α′)] (2.55)

where

F =


 F+

F−


 , α =


 α+

α−


 , (2.56)

and Ãi and B̃i are the effective mass and viscous matrices

Ãi =


 A++ A−+

A+− A−−


 − βi∆t


 B++ B−+

B+− B−−


 , (2.57)

B̃i =


 A++ A−+

A+− A−−


 − αi∆t


 B++ B−+

B+− B−−


 . (2.58)

Although the method requires three storage locations, the algorithm in table 2.1

makes it possible to implement it using only two storage locations.

As indicated by Ã−1
i , a linear system is being solved. The parallel implementation

of the algorithm is facilitated by the fact that a separate linear system is solved for

each mode (kθ, kz).
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Table 2.1 SMR method using two storage locations (Loulou 1996, Qin 1998).

Time Location 1 Location 2

tn α1 = αn α2 = αn

tn α1 = F(α1) α2 = B̃iα
2

α1 = α2 + γ1∆tα1 α2 = (α2 − α1)/(γ1∆t)

α1 = α′ = Ã−1
1 α1 α2 = B̃iα

1 + ζ1∆tα2

tn α1 = α2 + γ2∆tF(α1) α2 = (α2 − α1)/(γ1∆t)

α1 = α′′ = Ã−1
2 α1 α2 = B̃3α

1 + ζ2∆tα2

tn α1 = α2 + γ3∆tF(α1) α2 = α2

α1 = α′′′ = Ã−1
3 α1 α2 = α1

tn+1 = tn + ∆t αn+1 = α′′′ αn+1 = α′′′

Figure 2.1 The coordinate system and the computational domain
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Figure 2.2 Cubic B-splines on an 11-knot uniform grid (Qin (1998))
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3. DIRECT NUMERICAL SIMULATIONS II

RESULTS AND DISCUSSION

3.1 Introduction

Qin (1998) performed a series of direct numerical simulations (DNS) of a strained

turbulent axial vortex using the B-spline spectral method. Using a q vortex with an

imposed steady and irrotational external strain field as the initial state, Qin simulated

cases both with and without an axial flow. For cases without an axial flow, he reports

an eventual decay of the global turbulent kinetic energy (GTKE) (defined in Section

3.5). The reason suggested by Qin for not being able to capture the Widnall instability

is the local stability of most regions inside the vortex core. Of the two cases with axial

flow considered by him, Qin reports an unbounded growth of GTKE for the case with

the higher Reynolds number, indicating a complete capture of the Widnall instability.

The current study started with an aim to complete a DNS database for a thorough

parametric study, which would hopefully aid in more clearly understanding the factors

that enabled the capture of the Widnall instability. It was later discovered that the

simulations by Qin were not carried out for a sufficient length of time thus resulting

in an incomplete understanding of the flow physics. The focus of the current study

shifted to revisiting Qin’s simulations and obtaining a more complete and correct

picture of strained axial vortices.

3.2 Initial Conditions

The initial mean flowfield (see figure 3.1) corresponds to that of a q vortex. The

tangential and axial velocity components are given by

Vθ

V0
=

q0

r̂
(1 − e−r̂2

) (3.1)
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Vz

V0

= (1 − e−r̂2

) . (3.2)

Here r̂ = γr/r0 is the dimensionless coordinate, γ = 1.12090642 being the root of

1 + 2γ2 = eγ2

. V0 is the initial axial velocity deficit. The initial swirl number, q0, is

a measure of the relative strength of the tangential velocity component to the axial

velocity deficit. For simulations without axial flow, Vz is set to 0. As mentioned in

section 2.2, for cases without axial flow, Vo is assigned the value it would have for a

corresponding case with axial flow, with the same initial swirl number. q0 is set to 1

in all our simulations.

The initial mean velocity field has to be converted from physical space (as given

above in equations 3.1 and 3.2) to the expansion coefficients (see section 2.3). This is

accomplished using the procedure described in Appendix A. The mean velocity field

corresponds to kθ = kz = 0 in the wave space. In order to provide initial turbulent

fluctuations, the expansion coefficients for the non zero wave numbers are perturbed

randomly. A power spectrum is specified to generate the desired initial turbulent

kinetic energy (TKE) profile in the physical space (see figure 3.2).

3.3 Imposing Strain

An external strain field is imposed by decomposing the velocity into two parts

−→v = −→
uv + −→

us (3.3)

where −→us is the velocity induced by the strain field, while −→uv is that part of the

velocity which does not include the strain. −→us is given by

−→us = e cos(2θ)er − e sin(2θ)eθ (3.4)

where e is the strain rate (defined in section 3.4), while er and eθ are the unit vectors

in the radial and azimuthal directions respectively. The external strain field applied

is both steady and irrotational.

∂−→us

∂t
= 0 and ▽×−→

us = 0 (3.5)
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Substituting equations 3.3 and 3.5 into equation 2.5 results in the following equation

(
−→
ξ ,

∂−→uv

∂t
) =

1

Re
(
−→
ξ , (

−→∇.
−→∇−→uv)) + (

−→
ξ , ((−→uv + −→us) ×−→ω )) (3.6)

where where −→ω =
−→▽× (−→uv +−→us) =

−→▽×−→uv is the vorticity. Thus we see that only the

nonlinear term needs to be modified if one solves for −→uv instead of −→v . Note that the

strain enters the formulation only through modes kz = 0 and kθ = ±2 (see equation

3.4).

3.4 Constraints

The parameters that form the framework within which the current numerical

simulations are carried out are the initial core radius to computational domain radius

ratio, r0/R, the non-dimensional strain rate, e/e∗ (e∗ defined later), and the Reynolds

number, ReΓ = Γ∞/ν. Certain features of the flowfield, in particular the presence

of stagnation points, the boundary conditions, and the magnitude and orientation of

the unstable wave vectors, lead to constraints within which these parameters can be

chosen.

As can be seen in figure 3.3, the flow field for a vortex with an externally imposed

uniform strain field contains stagnation points. The computational domain cannot

contain these stagnation points, as their presence will cause undesired instability. In

reality, the strain field of a pair of vortices is not uniform, and the stagnation points

do not correspond to the wake vortex problem we are trying to better understand.

Solving the potential flow obtained by combining a point vortex and linear strain

gives us the location of these stagnation points

Rsp =

√
Γ∞

2πe
, and θsp =

π

4
or

3π

4
, (3.7)

where Rsp and θsp are the radius and azimuthal angle of the stagnation points, and e

is the strain rate defined as

Srr =
∂Vr

∂r
= e cos 2θ and Sθθ =

1

r

∂Vθ

∂θ
+

Vr

r
= −e cos 2θ . (3.8)
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Since we are using potential flow boundary conditions, the radius of the computational

domain has to be sufficiently larger than the core radius to ensure irrotationality of

the flow at the boundary. For the current simulations the ratio of the initial core

radius to the computational domain radius is kept less than or equal to 0.15 (see

table 3.1). For a given computational domain radius, R, and Γ∞, equation 3.7 places

an upper limit on the strain rate we can impose

e ≤ e∗ =
Γ∞

2πR2
. (3.9)

where e∗ is the critical strain rate.

As discussed in chapter one, the presence of strain introduces a short wavelength

instability (Widnall instability). If we are to capture this instability in our simu-

lations, we need to make sure that the core size of our vortex is greater than the

smallest (in terms of length scale) instability mode. The strained vortex is related to

the so called elliptic streamline flow in matters of stability. This flow is a combination

of solid body rotation and uniform strain. It is a homogeneous turbulent flow, and

as the name suggests, it has elliptic streamlines. Linear stability analysis reveals the

following to be the smallest unstable length scale for this flow (Landman and Saffman

(1987))

l∗ = (2π)
3

2

√
ν

γE∗
γ

, (3.10)

where ν and γ are the kinematic viscosity and half the vorticity respectively. E∗

γ is

the critical Ekman number

E∗

γ =
2πνk2

0

γ
, (3.11)

where k0 is the wave number of the most amplified perturbation. Shariff, Verzico and

Orlandi (1994) showed that the above result can be used to determine the smallest

unstable length scale of a strained vortex, if one replaces the vorticity, 2γ, by an

average vorticity (the vorticity inside the core of our q vortex is not constant, as

opposed to the situation in an elliptic streamline flow) defined as

ζ = 2γ =
Γ∞

πr2
0

, (3.12)
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Substituting this in equation 3.10 gives us the smallest unstable length scale for our

strained vortex

l∗ =
4π2r0√
ReΓE∗

γ

, (3.13)

The requirement that the minimum unstable length scale l∗ be less than the core

size r0 of the vortex establishes a lower limit on the Reynolds number which can be

deduced from equation 3.13 by setting l∗ = r0

Re∗Γ =
16π4

E∗
γ

, (3.14)

Thus we hope to capture the Widnall instability only for Reynolds numbers that are

greater than this critical Reynolds number Re∗Γ. It is desirable to express Re∗Γ in

terms of the strain rate. This is achieved by using the following approximation for

E∗

γ (Shariff et al. (1994)) for small strain rates

E∗

γ ≈ 3.25β∗ − c1β
∗2 + O(β∗3) , (3.15)

where β∗ = 4e/ζ and c1 is a constant. Since we are only applying small strain rates

to our vortex, and thus are dealing only with small values of β∗, we can neglect the

second order term in the above equation to get

E∗

γ ≈ 3.25β∗ + O(β∗2) (3.16)

Substituting equations 3.16, 3.12 and 3.9 in equation 3.14, we get

Re∗Γ =
8π4

3.25

(
e∗

e

) (
R

r0

)2

, (3.17)

Table 3.1 reflects the use of this result in setting up the parameters for the various

DNS.

3.5 Revisiting Qin’s DNS

Qin (1998) presented four direct numerical simulations of a strained turbulent axial

vortex (see table 3.1). STRN1 and STRN2 included a wake like axial velocity profile,

while STRN3 and STRN4 considered a vortex without any axial flow. Qin observed
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an unbounded monotonic growth of the global turbulent kinetic energy (GTKE) in

STRN2, while GTKE showed eventual decay for the other cases. Here GTKE is the

non dimensionalized volume averaged turbulent kinetic energy defined as

K =
1

πR2LzV0
2

∫ R

0

∫ 2π

0

∫ Lz

0

krdzdθdr , (3.18)

where R is the radius of the computational domain, Lz is the length of the computa-

tional domain in the streamwise direction, and k is the local turbulent kinetic energy

per unit mass.

Upon continuing the simulation STRN2 further in time, it was discovered that the

GTKE eventually decays in a manner similar to the DNS at a lower Reynolds number

(STRN1). This indicated that the Widnall instability may not have been captured

(see figure 3.4), contrary to the conclusion drawn earlier based on a DNS that was not

extended far enough in time. Note that the non-dimensional time, t, is being scaled

by the mean flow time scale defined as T = 2πr0/V
max
θ (t = 0). This scaling has been

done while plotting the temporal evolution of any quantity in this study. This led

to a fresh look at the DNS results by Qin and an inquiry into the possible reasons

behind the perceived lack of success in capturing the Widnall instability. As this

instability is introduced by the external strain field, the simulations of the strained

vortex without an axial wake (STRN3 and STRN4) were revisited in order to study

the effect of the strain field without any possible interference from the axial flowfield

during the simulation.

The fact that these DNS were carried out at low Reynolds numbers was consid-

ered as a possible reason for not capturing the Widnall instability. Hence, DNS of a

strained vortex at higher Reynolds numbers were performed. However, eventual de-

cay of GTKE was observed in all these simulations (see figure 3.5). Here Re = V0R/ν

is the computational Reynolds number. Although the DNS performed at these high

Reynolds numbers are expected to be severely under-resolved, this was the best at-

tempt possible at the time in seeing if the flow becomes unstable as the Reynolds

number is increased.
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Shariff et al. (1994) present the evolution of modal energies for a three-dimensional

vortex ring simulation. The evolution of all but a few unstable modes show a striking

resemblance to the GTKE behavior in figure 3.5. However, after a long period of time

the initially stable modes also show unbounded growth. Since a strained vortex has

the same short wavelength instability as a vortex ring (Widnall et al.), the possibility

of a similar phenomenon occurring in the current DNS was explored by extending

the DNS at the largest Reynolds number considered to a longer period of time. It is

observed that the GTKE begins to grow exponentially after a long period of decay

(see figure 3.6).

Upon this observation, STRN4 was extended in time to see if the Widnall in-

stability can indeed be captured at the Reynolds numbers considered by Qin. It is

observed that the GTKE does grow exponentially after a long period of decay (see

figure 3.7). However, we do not observe an unbounded growth of GTKE. Instead the

GTKE reaches a peak value and begins to decay again. An “oscillatory” behavior is

observed for some time. We shall see later that eventually the domain size becomes

a constraint in the current simulation. The simulation cannot be carried further in

time, thus prohibiting us from finding out the eventual behavior of the vortex.

STRN2 was also revisited to include the effect of a wake-like initial axial velocity

profile. Upon extending STRN2 further in time (see figure 3.8), it was observed that

GTKE seems to settle down at a level which is higher than the initial GTKE after

a period of oscillatory behavior. There seems to be some sort of an “equilibrium”

turbulent state that the vortex has reached. After maintaining this state for a long

period of time, the GTKE begins to grow again. Taking a cue from STRN4, this

simulation has also been carried out till we encounter the domain size limitation.

This will be explained while discussing STRN2 in detail.

3.6 STRN4 - A Close Look

Let us first look at STRN4 closely as it does not have any axial flow, thus allowing

us to focus exclusively on the effects of the applied strain field. In order to study the
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flow in sufficient detail, in a systematic and convenient manner, the simulation has

been divided into four different time periods. These time periods have been defined

using the time history of GTKE as a guideline. See figure 3.7 for the definitions of the

terms “1st ebb”, “1st peak”, etc. These terms shall now be used to define the four

time periods. The first time period is from the initial state till the “2nd ebb”. The

time period from the “2nd ebb” till the “2nd peak” forms our second time period.

The third time period is from the “2nd peak” till the “4th ebb”, and the time period

from the “4th ebb” till the end of the simulation forms our fourth time period. In

each of the time periods, the flow has been closely studied at several locations. These

locations have been marked by circles in figure 3.7.

Note that during the discussion, some loosely defined terms such as “interior of

the vortex”, “outer regions of the vortex”, etc. have been repeatedly used. This has

made it easier to present a physical picture of how the vortex evolves in time. The

meaning of these terms at any given time is clear when one looks at the appropriate

figures that have been referred to during the discussion. Also, the term “core” has

been used to mean the region from the centerline to the initial core radius (r/r0 = 1)

although the vortex core changes in size as the vortex evolves.

3.6.1 Checking Resolution

Before we proceed to take a close look at the results obtained, we need to see how

well our simulation is resolved. One way to do this is by computing the 1-D energy

spectra defined as follows:

E1D(r, kθ) = Eθ(r, kθ) =

∫

kz

[ ur (r, kθ, kz)ur
∗(r, kθ, kz)

+ uθ (r, kθ, kz)uθ
∗(r, kθ, kz)

+ uz (r, kθ, kz)uz
∗(r, kθ, kz)]dkz (3.19)
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This 1-D energy spectra is a measure of the turbulent kinetic energy contained in

the different azimuthal modes kθ. Integration over the axial wavenumbers kz is pos-

sible since we have assumed homogeneity in the axial direction. In a well resolved

simulation we expect to see the following two principal features:

• A drop in E1D by at least about 2 orders of magnitude as we go from kθ = 0 to

higher values of kθ.

• Absence of any significant pile up of energy in the higher wavenumbers.

The 1-D energy spectra has been computed at times which correspond to the flow

being highly turbulent (as indicated by peaks in the GTKE evolution). It is at

these times that the our simulation faces the highest challenge of being well resolved.

Figure 3.9 shows the 1-D energy spectra at t/T = 45.12 (just after GTKE reaches

the 2nd peak). Three different radial locations have been considered as the level of

turbulence varies with distance from the vortex axis (this will be looked at later).

The features mentioned above are indeed observed. We do observe a small pile up of

energy at higher wavenumbers. This indicates a slight lack of resolution. This pile

up is larger at r/r0 = 2. Note that the same computational azimuthal wavenumbers

correspond to larger physical wavelengths as we move away from the center. This is

the reason why resolution of smaller scales is poorer at a greater distance from the

center. However, the pile up is not significant and we can consider the results to be

of a reasonable quality in terms of resolution. Figures 3.10, 3.11 and 3.12 show the

1-D energy spectra at t/T = 72.01 (3rd peak of GTKE), 107.57 (4th peak of GTKE)

and 127.08 (last location at which flow is closely looked at) respectively. We see the

presence of the above features at all these times. This gives us confidence in the

results we have obtained and we can now take a close look at them to enhance our

understanding of the flow.
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Let us also define a 2-D energy spectra as follows:

E2D(r, kθ, kz) = ur (r, kθ, kz)ur
∗(r, kθ, kz)

+ uθ (r, kθ, kz)uθ
∗(r, kθ, kz)

+ uz (r, kθ, kz)uz
∗(r, kθ, kz) (3.20)

This 2-D energy spectra gives us information regarding the spread of energy over

various length scales (higher wavenumbers correspond to smaller length scales). Also,

during periods of GTKE growth (particularly when we have exponential growth of

GTKE), it is of interest to know which modes contain most of the energy. These are

the unstable modes responsible for the flow becoming turbulent. This information

can be obtained from the above defined 2-D energy spectra.

3.6.2 The Broad Picture

In this section we obtain a broad vision of the flow. Flow visualization is used to

study the evolution of the vortex in term of its structure. This is done by plotting

vorticity magnitude isosurfaces at several locations along the evolution of GTKE.

Along with visualizing the flow in this manner, we get a quantitative feel of the

range of length scales present in the flow by computing the 2-D energy spectra. As

mentioned above, the 2-D energy spectra also gives us information about the unstable

modes during the periods of GTKE growth. After confirming that the GTKE is

growing exponentially, the growth rate (defined later) of GTKE is computed to know

how fast these unstable modes grow.

During the first period (initial state to 2nd ebb), we essentially have a decrease in

the overall level of turbulence. The vortex structure does not vary much in this time

period. Let us move directly into the second time period as it is here that the vortex

begins to deform.
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3.6.2.1 Second Time Period

This is a period of exponential growth of GTKE. When the GTKE grows ex-

ponentially, we can define its growth rate as σ = d
d(t/T )

(ln(GTKE)). For this first

exponential ascent of GTKE, the growth rate is computed to be 0.44. Figure 3.13

shows vorticity magnitude isosurfaces at t/T = 35.27. Parts (a) through (d) of this

figure correspond to 0.1, 0.25, 0.5 and 0.75 times the peak vorticity magnitude at

this time respectively. Lower vorticity magnitudes correspond to the outer regions of

the vortex, while with increasing vorticity magnitudes we move to the inner regions.

We observe that the vortex has a sinusoidal structure which would correspond to a

bending wave instability mode. In part (d) of this figure, which corresponds to the

inner structure of the vortex, we see a helical structure in addition to the sinusoidal

structure observed in the outer regions. Figure 3.14 presents the 2-D energy spectra

at this time. We have contour plots of log10(E2D) at r/r0 = 0.5, 1.0 and 2.0 in parts

(a), (b) and (c) of this figure (and the subsequent 2-D energy spectra plots) respec-

tively. We can see that the unstable modes are (kθ, kz) = (±1, 4). We also see that

as we move outwards the energy contained in these unstable modes becomes lower.

This indicates that the onset of this instability is inside the core. Recall from chapter

one that the predicted unstable azimuthal wavenumbers for the elliptical instability

are ±1 (Eloy and Dizes (1999)). Also, it was pointed out that this instability has

been observed to involve a deformation of the vortex core. Leweke and Williamson

(1998) have observed a “wavy displacement of the vortex center” in their experiments.

Figure 3.15 shows the perturbation velocity vectors in a cross-sectional plane at this

time. As we can see in this picture, there exists a circular region within which the

perturbation velocity has a direction opposite to that outside the region. This fea-

ture is a typical characteristic of the elliptical/Widnall instability (Coppens (1998)).

The observation of these features in our current study assures us that we are indeed

capturing the elliptical instability. Note that kθ = ±1 indicates the presence of left

and right running helical waves. These are not clearly observable in the isosurface
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plots at this time step. However we clearly see the presence of these helical waves at

t/T = 40.

Parts (a), (b) and (c) of figure 3.16 show vorticity magnitude isosurfaces corre-

sponding to vorticity magnitudes that are 0.1, 0.25 and 0.5 times the peak vorticity

magnitude at t/T = 40. We observe an increase in the amplitude of the sinusoidal

bending of the vortex. We also observe the presence of the helical structure in the

outer regions of the vortex now. Note that both left and right handed helical struc-

tures are seen here. Part (c), which corresponds to the high vorticity magnitude

internal structure of the vortex, shows that small scale structure is beginning to form

in the interior regions. These features are reflected in the 2-D energy spectra shown

in figure 3.17. In part (a) of this figure we see that the turbulent kinetic energy is

spread over a wider range of wavenumbers (higher wavenumbers correspond to smaller

length scales). This range of wavenumbers becomes smaller as we move outwards.

The magnitude of energy contained in the unstable modes also decreases as we move

outwards. However this magnitude is higher than before at all the three locations.

We can also see more of the vortex becoming turbulent (meaning more presence of

small scale structure). Another piece of information obtained from part (c) of fig-

ure 3.16 is that the peak vorticity magnitude no longer lies at the centerline of the

vortex. A plot of the vorticity magnitude isosurface corresponding to 0.75 times the

peak vorticity magnitude is not included for this and subsequent times. This is so

because no definite structure is observable at high levels of vorticity magnitude from

here on. Also, from here on, parts (a), (b) and (c) of all the figures showing vorticity

magnitude isosurfaces will correspond to 0.1, 0.25 and 0.5 times the peak vorticity

magnitude at those times.

Figure 3.18 looks at the vortex structure at t/T = 42.98. We are now approaching

the end of the 2nd time period. The GTKE has been growing exponentially and is

now nearing the 2nd peak. The outer portions of the vortex are also now beginning

to show a substantial presence of small scale structure. We look at the vortex just

after the GTKE peak (“2nd peak”) in figure 3.19 (t/T = 45.12). Although we have
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fine scale turbulence in the outer regions of the vortex also, the sinusoidal and helical

structure is still preserved. This is reflected in the 2-D energy spectra presented in

figure 3.20. The turbulent kinetic energy is spread over a large range of wavenumbers

now, especially in the inner regions of the vortex. The outer region is also showing lots

of fine scale structure now. However, we can still clearly pick out (kθ, kz) = (±1, 4)

as the most energetic modes.

3.6.2.2 Third Time Period

This period starts with a decay in the GTKE. Figures 3.21 and 3.22 present

pictures of vortex structure in terms of vorticity magnitude isosurfaces during this

descent of GTKE. Figure 3.21 corresponds to t/T = 49.01 and shows the vortex

to be still quite turbulent with a lot of fine scale structure. However, figure 3.22

which corresponds to t/T = 56.83, just after the GTKE reaches an ebb, shows a

consolidation of the vortex. We still observe the presence of the sinusoidal and helical

structures, though now much less pronounced. In figure 3.23 note the drop in the

peak values of the 2-D energy spectra. We also notice that the most energetic modes

are no longer (kθ, kz) = (±1, 4). In the inner regions of the vortex, (kθ, kz) = (0, 1)

and (kθ, kz) = (1, 3) dominate. In the outer regions the dominant modes are (kθ, kz) =

(±1, 3). This shift in the wavenumber of the sinusoidal unstable mode from kz = 4

to kz = 3 means that a larger length scale is now becoming unstable.

We now follow the next ascent of GTKE. Figure 3.24 presents the vortex structure

at t/T = 67.56. The vortex is again displaying the growth of sinusoidal and helical

waves. The outer regions of the vortex once again show pronounced left handed and

right handed helical structures. We also observe a slightly sinusoidal bending of the

vortex along its axis. As we move into the interior of the vortex, we observe this

sinusoidal bending and helical twisting of the vortex much more clearly. However

the sinusoidal wave has a larger wavelength now as compared to the first GTKE

ascent. This is in accordance with the new unstable wavenumbers (kθ, kz) = (±1, 3).

These can be picked out in the 2-D energy spectra presented in figure 3.25. We
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do not see a significant increase in the range of wavenumbers containing substantial

levels of turbulent kinetic energy. On the contrary, in the outer regions of the vortex, a

smaller range of energy containing wavenumbers (and hence length scales) is observed.

However, the level of energy contained in unstable modes has increased significantly.

Note that the process of larger scales breaking down to smaller scales again begins

in the interior as can be seen in part (c) of figure 3.24. As the GTKE peaks again

at t/T = 72.01, we once again observe the presence of fine scale structure (see figure

3.26). Small scale structure is present all the way to the outer regions of the vortex.

Note that a strong helical, and not so strong sinusoidal, structure is still maintained.

This corresponds to the dominant modes being (kθ, kz) = (±1, 3). These can be

identified in figure 3.27. We observe a large range of energy containing length scales

(wavenumbers) now. This corresponds to the fine scale structure observed in the

vorticity magnitude isosurface plots. This exponential rise of GTKE occurred at a

growth rate of 0.26. Thus while the unstable axial wavelength has increased, the rate

at which this mode is growing has decreased.

We now follow the descent of GTKE till the 4th ebb (end of third period). Figure

3.28 shows the vortex structure during this descent at t/T = 78.51, followed by figure

3.29 at at the 4th ebb (t/T = 90.14). We do observe some consolidation (meaning

lesser fine scale structure), particularly in the inner regions of the vortex. However,

the reduction in the amount of fine scale structure is not as much as the earlier

descent in this time period. This is reflected in the 2-D energy spectra presented

in figure 3.30. We still have a lot of fine scale turbulence though containing lesser

energy (as is expected with a decrease in GTKE). Note that modes (kθ, kz) = (−1, 2),

(kθ, kz) = (0, 1) and (kθ, kz) = (1, 3) are the dominant energy containing modes inside

the core now. At r/r0 = 1, (kθ, kz) = (±1, 3), (kθ, kz) = (−1, 2), (kθ, kz) = (0, 1) and

(kθ, kz) = (1, 1) are the dominant modes. Further out, the dominant modes are

observed to be (kθ, kz) = (±1, 3) and (kθ, kz) = (±1, 2). The unstable modes once

again seem to be shifting to smaller axial wavenumbers (larger axial length scales).
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As noted earlier, having larger unstable length scales is indicative of the vortex as a

whole becoming more unstable.

3.6.2.3 Fourth Time Period

The GTKE now begins to ascend again. Figure 3.31 shows that helical and sinu-

soidal modes again begin to grow. Looking at the 2-D energy spectra at this time

(t/T = 100.78) shows that the unstable modes are now (kθ, kz) = (±1, 2) (see figure

3.32). So, the unstable modes have shifted from being (kθ, kz) = (±1, 4) in the first as-

cent of GTKE, to (kθ, kz) = (±1, 3) in the second GTKE ascent, to (kθ, kz) = (±1, 2)

in this third and final GTKE ascent in our simulation. In the inner regions of the

vortex, the mode (kθ, kz) = (0, 1) is also seen to have a substantial level of energy. At

t/T = 104.37, which is further along this GTKE ascent, the same trend continues.

Figure Figure 3.33 shows an increased presence of fine scale structure in the outer

regions of the vortex. The unstable modes are more pronounced, especially the helical

waves. This is reflected in the 2-D energy spectra presented in figure 3.34. The range

of energy containing wavenumbers shows a marked increase in the outer region of the

vortex. The energy carried by the unstable modes also increases substantially in the

outer region of the vortex. At r/r0 = 0.5 however, the opposite is observed with the

peak value of the 2-D energy spectra decreasing. The GTKE is growing exponentially

in this period of ascent with a growth rate of 0.16. The trend of increasing unstable

axial wavelengths and decreasing exponential growth rates has continued.

Figure 3.35 presents the vortex structure at the 4th peak of GTKE (t/T = 107.57).

The helical waves are very pronounced in the outer regions. In the 2-D energy spectra

(see figure 3.36), the peak value of the energy spectra in the interior regions of the

vortex (now at r/r0 = 0.5 and r/r0 = 1) has decreased substantially. The peak

value at r/r0 = 2 has also slightly decreased. However, the energy is spreading out

into larger wavenumbers (smaller length scales). This can be seen if we look at the

increased spread of energy around the unstable modes. It seems that the vortex is

headed towards having more and more fine scale structure. Also the turbulence seems
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to be spreading outwards towards the boundary of our domain. This is confirmed

in figure 3.37. Here vorticity magnitude isosurfaces are presented at t/T = 127.08.

We see fine scale structure present in a much larger portion of the vortex. In fact

substantial level of vorticity magnitude has now reached the boundary. This is in

conflict with our potential flow boundary condition. Hence the simulation has to be

stopped now. We would need a larger computational domain size to be able to study

the vortex further. Although we cannot make a definite statement about what the

vortex would do next, it seems that we now have an unbounded growth of turbulence.

The 2-D energy spectra at this time (see figure 3.38) shows that in the interior regions

of the vortex the dominant modes have further shifted to (kθ, kz) = (±1, 1). The peak

value at all the three radial locations has decreased. It thus seems that the turbulent

kinetic energy is being passed on to smaller length scales.

3.6.3 Mean and Statistical quantities

Now that we have a physical feel of how the vortex evolves in time, let us look

at the evolution of some mean and statistical turbulent quantities of interest (mean

velocity components, mean vorticity components, Reynolds stresses, turbulent kinetic

energy and enstrophy). Since the applied strain field makes the streamlines elliptical,

the flow is no longer axisymmetric. We thus have to be careful not to miss the

azimuthal variation of the mean and statistical quantities being studied. Here we

look at how the above mentioned quantities evolve in time at the angular locations of

θ = 45o and θ = 135o. These correspond to the major and minor axes of the elliptical

streamlines. Note that the mean flow is symmetric about the major and minor axes

of the elliptical streamlines. Also, θ = 45o corresponds to the direction in which the

vortex is most stretched while θ = 135o corresponds to the direction in which the

vortex is most compressed. Hence the evolution of mean and statistical quantities

in these two directions will be representative of their evolution in the stretched and

compressed regions of the vortex.
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3.6.3.1 First time period

Let us turn our attention to the first time period. We first look at the evolution of

turbulence. Figure 3.39 shows how the turbulent kinetic energy (henceforth referred

to as TKE) evolves in time. The initially laminar vortex is perturbed in such a way

that the TKE peaks at the core radius at the beginning of the simulation. As the

simulation progresses in time, the peak value of TKE increases and moves to the

center. The peak then stays at the center but decreases in value till the 2nd ebb of

GTKE is reached.

Before we start looking at the mean velocity field, let us write down the equations

governing the evolution of the three mean velocity components:
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Note that since we are assuming axial homogeneity, the mean and statistical quantities

do not vary axially. Hence the ∂/∂z terms in the above equations are zero.

Figure 3.40 shows the evolution of the mean tangential velocity. We observe a

gradual diffusion of the mean tangential velocity. The peak value decreases and moves

outwards. Note that the peak value of Vθ is higher at θ = 135o. This is a consequence

of the strain field. Since we do not have any axial flow to start with, equation 3.23

tells us that Vz will stay zero throughout the simulation. Figure 3.41 confirms this as
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the values observed are very small. The non-zero values are simply due to limitations

in the sampling space while computing mean and statistical quantities. The evolution

of mean radial velocity is presented in figure 3.42. Although the presence of strain

makes the radial flow non-zero in the mean, we expect it to stay small intuitively. This

is indeed the case in this and subsequent time periods. For the remaining periods,

only the tangential mean velocity shall be looked at, as it is the only component that

is relevant to understanding the flow better.

Let us now look at the three mean vorticity components. Figure 3.43 shows the

evolution of the mean axial vorticity. We have a gradual diffusion of the mean axial

vorticity (this corresponds with the gradual diffusion of the mean tangential velocity

observed). The peak value stays at the centerline and decreases slowly. Within the

core the mean axial vorticity decreases, while it increases outside the core. The

vorticity is thus diffusing outward. The evolutions of the mean tangential vorticity

and the mean radial vorticity are presented in figures 3.44 and 3.45. Once again,

in the absence of any axial flow, these components of mean vorticity are expected

to be zero. The small non-zero values observed are a reflection of the limitations in

sampling space. For the remaining time periods, we shall not look at these mean

vorticity components.

The turbulence affects the mean velocity via the Reynolds stresses Rij = v′

iv
′

j as

can be seen in equations 3.21, 3.22 and 3.23. The Reynolds stresses can be interpreted

as being responsible for momentum transfer via the motion of eddies in a turbulent

flow, analogous to viscous stresses which account for momentum transfer via molecular

motion. Although we have identified the mean tangential velocity to be the only

component that is relevant to understanding the flow better, we will also look the

Reynolds stress components that affect the radial and axial components of the mean

velocity. Besides ensuring completeness in studying the flow, with regards to Reynolds

stresses, this will also add to the information available for development of new and

improved turbulence models for strongly rotating flows.
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The turbulence affects the mean tangential velocity via the Reynolds stress com-

ponents Rθθ = v′2
θ , Rrθ = v′

rv
′

θ and Rθz = v′

θv
′
z (see equation 3.22). Figures 3.46, 3.47

and 3.48 show the evolution of these Reynolds stress components. Rθθ exhibits es-

sentially the same behavior as the TKE. However at θ = 45o, the peak value, instead

of settling at the center, establishes itself very close to the center. At θ = 45o the

peak value of Rrθ also increases initially and moves to the center, and then decreases

in value while staying at the center. Note that the values of Rrθ at the two angular

locations considered are in general of opposite signs and similar magnitudes. In the

absence of axial flow we expect Rθz to be zero. The non-zero values observed in figure

3.48 are a result of insufficient sampling space in the homogeneous axial direction.

The Reynolds stress components responsible for the effect of turbulence on the

mean axial flow are Rzz = v′2
z , Rrz = v′

rv
′
z and Rθz = v′

θv
′
z (see equation 3.23). Figure

3.49 shows the evolution of Rzz. We observe that Rzz attains a value at the centerline

very early in the simulation and maintains this value as the simulation progresses.

This becomes it’s peak value towards the end of the first time period. The magnitudes

of Rzz values are found to be comparable at the two locations. Evolution of Rrz is

presented in figure 3.50. Again, in the absence of axial flow we expect Rrz to be zero.

Insufficient sampling space while calculating the statistics results in non-zero values

observed.

The turbulence affects the mean radial velocity via the Reynolds stress components

Rrr = v′2
r , Rrθ = v′

rv
′

θ, Rrz = v′
rv

′
z and Rθθ = v′2

θ (see equation 3.21). We observe that

Rrr evolves (see figure 3.51) in a manner similar to the TKE. The peak value initially

increases and moves to the center, and then decreases in value while staying at the

center. The evolutions of Rrθ, Rrz and Rθθ during this time period have already been

discussed above.

For the remaining time periods, evolutions of Rrz and Rθz will not be looked at.

As has been pointed out above, we expect these values to be zero in the absence of

any axial flow. Small non-zero values have been observed throughout the simulation.

This has simply been a result of limitation in the sampling size.
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Finally we look at the evolution of enstrophy (see figure 3.52) to get a measure

of the level of vorticity fluctuations. Initially the enstrophy has its peak at the core

radius. As we move through this time period, the level of enstrophy decreases rapidly.

At the end of this time period, the peak has moved to the centerline.

3.6.3.2 Second time period

We now move on to the second time period, i.e., till the 2nd peak of GTKE. We

again start by looking at the behavior of turbulence. Figure 3.53 shows the evolution

of TKE. As the simulation progresses, the peak value of TKE stays at the center

and increases in value. The TKE profile also becomes fuller which shows that a large

portion of the vortex becomes turbulent. At the beginning of this time period all

the turbulence was essentially within the vortex core. This changes as the simulation

progresses and we observe substantial turbulence up to more than twice the core

radius. At the 2nd peak of GTKE, the TKE peak seems to begin to move away from

the center.

Figure 3.54 shows the evolution of the mean tangential velocity. As the simulation

progresses through this time period, initially the mean tangential velocity continues

to diffuse slowly in the same way as the first time period. However as the GTKE

approaches it’s peak (i.e. towards the end of this time period), the tangential velocity

starts decreasing rapidly in the interior of the core (from r/r0 = 0 till about r/r0 =

0.8) and outside the core. However, the peak which was moving slowly outward and

falling in value, moves inward and stays approximately around r/r0 = 0.8. It also

increases in value for some time (this is clearly visible at θ = 45o) but eventually

decreases. We observe a reversal in the curvature of the Vθ profile as we move from

the centerline to the peak and then from the peak to the edge of the core. We will

come back to this point when we look at the Reynolds stresses.

Figure 3.55 shows the evolution of the mean axial vorticity. Recall that we ob-

served a gradual diffusion of the mean axial vorticity in the first time period. That

behavior continues for some time in this time period as well. However, we observe
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a sudden drop in the centerline value at one stage and a reversal in trend inside the

core. Ωz increases from the centerline till approximately the core edge and then drops

steeply and settles into a slow decay to zero as we approach the boundary. Note that

this corresponds to 3.16 (c) where we observed that the vorticity maximum has left

the center.

Figures 3.56 and 3.57 and show the evolution of Rθθ and Rrθ during this time

period. We observe that the regions of rapid decrease in the mean tangential velocity

show high levels of Rθθ and Rrθ. This could be a reflection of a high level of momentum

transfer via turbulent eddies into the annular region approximately between r/r0 =

0.8 and r/r0 = 1 from both the sides. Note that Rθθ values at θ = 45o reach about

twice the magnitude of those at θ = 135o towards the end of this time period. Rrθ

values are in general of the same magnitude but opposite signs at the two angular

locations considered. Figure 3.58 shows the evolution of Rzz. In contrast to Rθθ, Rzz

has low values at the centerline. As we move outwards, the level of Rzz increases

steeply and after reaching a peak, decreases steeply. A much smaller peak is formed

as we move further out and eventually the value decays to zero as we approach the

boundary. We observe that Rrr behaves in a manner similar to Rθθ in terms of the

profile shape (see figure 3.59). However, as opposed to Rθθ, here we have higher values

of Rrr at θ = 135o towards the end of this time period.

Figure 3.60 shows an increase in the level of vorticity fluctuations as we approach

the 2nd peak in the GTKE profile. We also observe the development of a peak in

enstrophy at roughly the same location to which the peak in Ωz shifted from the

centerline. The values of enstrophy at the two angular locations have the same order

of magnitude.

3.6.3.3 Third time period

Continuing the trend established above, we start by looking at the distribution of

TKE (figure 3.61). Throughout the third time period, the TKE profile maintains its

trend of peaking at the center and decaying as we move outwards. The third period
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starts with the GTKE decaying from the 2nd peak. The GTKE then goes through

an ebb and another peak, and the end of this time period coincides with the GTKE

reaching the fourth ebb. The peak value of the TKE follows the GTKE in its trend.

It falls as we move from the 2nd peak to the 3rd ebb, then increases in value as the

GTKE grows till the 3rd peak, and then falls again as the GTKE goes from the 3rd

peak to the 4th ebb.

Figure 3.62 presents the evolution of tangential velocity in the third time period.

As the GTKE moves from the 2nd peak to the 3rd ebb, the peak drops in value and

moves outward. As we reach the 3rd ebb we observe an increase in Vθ in the interior

of the core (approximately between r/r0 = 0 to r/r0 = 0.8). We need to compute

eddy viscosity to see if this is a result of anti-diffusion. As we move from the 3rd ebb

to the 3rd peak, we see a behavior similar to that observed during the approach to the

2nd peak in the previous time period. A rapid decrease in Vθ is observed in regions

to the left and the right of the peak for some time. As we reach the 3rd peak, we

observe that the peak value is again beginning to decrease and move outward. The

final portion of this time period, i.e. the fall of the GTKE from the 3rd peak to the

4th ebb, displays a behavior of Vθ that is similar to the first part of this time period,

i.e. the decay of GTKE from the 2nd peak to the 3rd ebb. The peak value falls

and moves outward at a considerable rate, thus showing a highly diffusive process.

However, once again in the interior of the core, we see an increase in the value of Vθ.

Whether this is a result of anti-diffusion or not has to be determined by computing

the eddy viscosity.

We now look at how the mean axial vorticity evolves in this time period (figure

3.63). The limitation in the sampling space available results in the noise observed in

the profiles for Ωz . Due to this noise it is difficult to make a statement about the

shape of the profile . However a rough impression obtained is that the shape taken

by the profile towards the end of the 2nd time period is maintained.

The Reynolds stresses that account for the effect of turbulence on the mean tan-

gential velocity, namely Rθθ and Rrθ, are plotted in figures 3.64 and 3.65. As the
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GTKE falls from the 2nd peak to the 3rd ebb, the value of Rθθ inside the core falls

rapidly, while about the same level is maintained outside the core. The peak value

stays established at the center. As the 3rd ebb is reached, the peak value shows an

increase, but is accompanied by a steep drop as we move away from the centerline.

At θ = 45o, Rrθ starts with a positive value in the interior of the core as the GTKE

begins it’s descent. As the simulation progresses through the 3rd time period, we ob-

serve a reversal in this trend. The peak value at the centerline becomes negative. Rrθ

in the interior of the core is now negative and we have mixed regions of positive and

negative values as we move outward. This reversal in sign is another indication that

we may have anti-diffusion. However, as mentioned before, eddy viscosity needs to be

computed to confirm that. At θ = 135o, Rrθ values are opposite in sign to the values

at θ = 45o while having comparable magnitudes. As the GTKE now increases from

the 3rd ebb to the 3rd peak, both Rθθ and Rrθ profiles show a trend that is similar

to what was observed in the 2nd time period. This is in accord with the similarity in

the Vθ profiles for these two ascents of the GTKE. As the GTKE now descends from

the 3rd peak to the 4th ebb, similar trends are observed in the Rθθ and Rrθ profiles as

in the descent from the 2nd peak to the 3rd ebb. The shift from positive to negative

values of Rrθ at θ = 45o (and from negative to positive at θ = 135o in the interior of

the core is delayed and less pronounced. Nevertheless we once again have indications

of the presence of anti-diffusion in our flow. Note that during this time period, Rθθ

values at the θ = 135o location are about twice those at θ = 45o. This is opposite of

what was observed in the second time period.

Let us take a look at how Rzz evolves during this period (see figure 3.66). Rzz

decays rapidly as the GTKE decreases from the 2nd peak to the 3rd ebb. During

the increase of GTKE from the 3rd ebb to the 4th peak, the Rzz profiles are similar

in trend to the 2nd time period - an increase from the centerline value, a peak, and

then a steep fall followed by a gradual decay to zero as we approach the boundary.

The second small peak that was observed clearly during the second time period seems

to be absent now. After this as the GTKE decreases from the 3rd peak to the 4th
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ebb, Rzz again decreases rapidly in a manner similar to the descent of GTKE from

the 2nd peak to the 3rd ebb. Rrr at θ = 45o behaves in a manner similar to Rθθ at

θ = 135o (and vice versa) in this time period (see figure 3.67). Note that during this

time period, Rrr values at the θ = 45o location are about twice those at θ = 135o.

This is opposite of what was observed in the second time period.

Finally we look at the evolution of enstrophy during this time period (see figure

3.68). The peak value stays at the centerline throughout this period. The core

contains the most significant level of enstrophy at any time. As we move away from

the core radius (approximately r/r0 = 1), the enstrophy level falls rapidly. The

enstrophy level follows the GTKE pattern. As the GTKE descends to the 3rd ebb,

the enstrophy level also falls. It then increases as the GTKE ascends to the 3rd peak

and falls as the GTKE descends to the 4th ebb at the end of this time period. This

is intuitively expected as a higher level of vorticity fluctuations should correspond to

the presence of more small scale turbulence and vice versa. The enstrophy level is of

the same order of magnitude at both the angular locations considered.

3.6.3.4 Fourth time period

We now enter the fourth and final time period of STRN4. During this time period

the GTKE ascends from the 4th ebb and after peaking enters a state in which it seems

to have some random oscillations before beginning a steep plunge. As mentioned in

the discussion of the vortex structure, the simulation has to be stopped at this time

as we have a substantial level of vorticity at the boundary which is in conflict with our

potential flow boundary conditions. The peak just before the final GTKE oscillations

is thus taken to be the last meaningful point in the simulation.

As before, we start by looking at evolution of TKE (see figure 3.69) As the GTKE

grows, we observe an increase in TKE all the way from the centerline to the outer

regions of the vortex. The peak value stays at the center and increases rapidly. As we

reach the final GTKE peak (just before GTKE starts showing random oscillations)

the peak TKE value at the center falls. However the TKE in the outer regions of
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the vortex shows a significant increase. This trend continues as we enter the final

oscillatory part of the GTKE evolution. We now observe a substantial level of TKE

all the way to the vortex boundary. The profiles at θ = 45o are some what fuller than

the profiles at θ = 135o.

Let us now look at the evolution of the mean tangential velocity in this final

period of the simulation (see figure 3.70). As the GTKE begins to ascend, we see

trends similar to the later part of the 2nd period and ascends during the 3rd period.

There is a rapid decrease in regions to the left and and right of the peak. Initially

during this ascent the peak shows a movement to the left but then reverts back to

its outward movement. For θ = 135o, this initial rapid decrease to the right of the

peak (and the initial leftward movement of the peak) is not observed. As we reach

the peak, we observe the beginning of a collapse of the profile. The peak value

falls drastically. As we move into the final oscillatory part of the GTKE evolution,

the profile essentially flattens out. There is a great deal of diffusion. Insufficiency

of computational domain size towards the end of the simulation is observed as we

observe significant diffusion close to the boundary.

The evolution of mean axial vorticity during this period is presented in figure 3.71.

The amount of noise in the profiles due to the limitations in the sampling space make

it difficult to recognize trends. The one thing we can notice though is that towards

the end of this time period, mean axial vorticity is becoming non-zero as we approach

the boundary. This is in conflict with our boundary conditions which require the flow

to be potential (irrotational) at the boundary. As noted already, it is because of this

reason that the simulation cannot be continued further with our current domain size.

Figures 3.72 and 3.73 show the evolution of Rθθ and Rrθ during this period. As the

GTKE rises, trends similar to the 2nd time period and ascents during the 3rd period

get established. At θ = 45o, the peak value at the centerline begins to rise. The value

falls from the centerline, goes through an ebb and then another smaller peak before

finally decaying to zero as we approach the boundary. For Rθθ, the behavior is similar

at θ = 135o except for the Rθθ levels being about half of what they are at θ = 45o.
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For Rrθ, the major difference between the two angular locations is again the reversal

of sign. As we approach the peak in GTKE, the trend begins to change for Rθθ

with the centerline value starting to decrease. At the GTKE peak, the profile shape

changes to being flatter. In the final GTKE oscillations, the value of Rθθ decreases in

the inner portions of the domain while increasing as we move outwards, tending to a

somewhat uniform value throughout the domain. For Rrθ this change in trend, with

the centerline value beginning to decrease, starts at the location of the GTKE peak.

The flattening out of the profile is more gradual as compared to Rθθ.

Figure 3.74 shows the evolution of Rzz in this time period. As the GTKE in-

creases, the level of Rzz begins to increase. Initially the centerline value does not

show much variation, the increase in level happening mostly in the region approxi-

mately between r/r0 = 0.5 and r/r0 = 2. However later on the centerline value does

increase significantly before beginning to fall again. Towards the end of this time

period, the level of Rzz decreases in the interior of the vortex while increasing as we

move towards the boundary. We can see how Rrr evolves during this time period in

figure 3.75. Initially the level increases rapidly inside the core. Again, the levels at

θ = 135o are about twice the levels at θ = 45o during the initial part of this time

period. At θ = 45o, the level inside the core seems to saturate after some time and

the level in the outer regions begins to rise. Towards the end, Rrr seems to approach

a somewhat uniform level throughout. This saturation is not observed at θ = 135o.

The level in the interior keeps increasing for most of this time period. Towards the

end, the value in the interior drops to about the same level as at θ = 45o and here

we see a somewhat uniform level throughout the domain.

Finally let us look at how the enstrophy evolve during this time period. This is

presented in figure 3.76. As expected, we observe an increase in enstrophy as the

flow becomes more turbulent. Towards the end of this time period the level falls

though and levels out to a somewhat uniform value throughout the domain. We

have a significant level of vorticity fluctuations near the boundary. As pointed out
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earlier, this is not compatible with the potential flow boundary conditions, and the

simulation is thus stopped.

3.7 STRN2 - A Close Look

We now turn to study STRN2 in detail. This simulation considers a strained

vortex which has a wake-like axial velocity profile in the initial conditions. In the

absence of the external strain field, the instability introduced by the axial flow is

observed to be quenched as the vortex eventually re-laminarizes. This was observed by

Qin (1998) in his isolated vortex simulations (the term isolated implying the absence

of an external strain field).

Just as in the above study of STRN4, we divide the simulation into different

time periods using the time history of GTKE as a guideline. See figure 3.8 for the

definitions of the terms “1st peak”, “1st ebb”, “2nd peak”, etc. The first time period

for STRN2 is from the initial state to the “1st peak”. The time period from the “1st

peak” till the “1st ebb” forms the second time period. The third time period is from

the “1st ebb” till the “2nd” ebb. After this point the flow enters a kind of a “steady

state” in terms of the GTKE. This period lasting from the “2nd” ebb till the end

of this GTKE “steady state” (this location labeled as “3rd ebb”) is our fourth time

period. From the “3rd ebb” to the “4th peak” is our fifth time period. The sixth

time period is from the “4th peak” to the “5th peak” and from the “5th peak” till

the end of the simulation is our seventh and last time period. Note that the terms

“3rd ebb”, “3rd peak”, “4th peak”, “5th peak” and “6th peak” are simply being used

to mark locations of interest along the GTKE evolution, and do not mean peaks and

ebbs in a strict sense. The flow has been studied closely at several locations in each

of these time periods. These locations are marked by circles in figure 3.8.

Similar to the STRN4 discussion, some loosely defined terms such as “interior of

the vortex”, “outer regions of the vortex”, etc. have been repeatedly used. This has

made it easier to present a physical picture of how the vortex evolves in time. The

meaning of these terms at any given time is clear when one looks at the appropriate
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figures that have been referred to during the discussion. Also, the term “core” has

been used to mean the region from the centerline to the initial core radius (r/r0 = 1)

although the vortex core changes in size as the vortex evolves.

3.7.1 Checking Resolution

Let us first check if our simulation is well resolved. Figures 3.77, 3.78, 3.79 and

3.80 present the 1-D energy spectra (equation 3.19) at the 1st peak, 2nd peak, 5th

peak and 6th peak of the GTKE respectively. These are the times when we have high

levels of turbulence challenging the resolution of our simulation. As can be seen, the

two criterion for a well resolved simulation listed in section 3.6.1 are met. We thus

have confidence in our simulation with regards to how well it has been able to resolve

the various scales of motion. Let us now go ahead and study the flow closely.

3.7.2 The Broad Picture

As in STRN4, we start with obtaining a broad vision of the flow. In this section we

will use flow visualization to study the evolution of the vortex in terms of its structure.

Vorticity magnitude isosurfaces at several locations along the GTKE evolution will be

looked at. Along with visualizing the flow in this manner, we will obtain a quantitative

feel of the length scales present in the flow by computing the 2-D energy spectra

(equation 3.20). This will also give us information regarding the unstable modes

during the periods of GTKE growth. After confirming the exponential nature of

GTKE growth, we shall compute the growth rate to know how fast these unstable

modes grow.

3.7.2.1 First Time Period

This is a period of exponential growth of GTKE. The growth rate, as defined in

section 3.6.2.1, is computed to be 3.71. Figure 3.81 shows vorticity magnitude isosur-

faces at t/T = 2.53. Parts (a) through (d) of this figure correspond to 0.1, 0.25, 0.5
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and 0.75 times the peak vorticity magnitude at this time respectively. Lower vortic-

ity magnitudes correspond to the outer regions of the vortex, while with increasing

vorticity magnitudes we move to the inner regions. We observe the presence of left

running helical waves along the vortex. Note that we have multiple helical waves

present. Figure 3.82 presents the 2-D energy spectra at this time step. Contour plots

of log10(E2D) are presented here at r/r0 = 0.5, 1.0 and 2.0 in parts (a), (b) and (c) of

this figure (and the subsequent 2-D energy spectra plots) respectively. We can pick

out (kθ, kz) = (1,1), (2,2), (3,3), (4,4) and (5,5) to be the modes carrying a significant

amount of energy in the inner regions of the vortex. This presence of multiple energy

carrying modes corresponds to the presence of a family of helical waves. However,

in the outer region we see that (kθ, kz) = (2,2) is the dominant mode. Recall from

chapter one that the presence of a wake-like axial velocity profile introduces multiple

unstable modes. Also, the helical waves seen here are similar to those seen by Qin

(1998) in his study of isolated vortices with a wake-like axial flow. Qin had also

observed that, when an initial wake-like axial velocity profile is included, the initial

exponential growth of GTKE is similar for both isolated and strained vortices. These

observations tell us that the instability caused by the axial flow is dominating in this

time period.

Figure 3.83 shows us the vortex structure at t/T = 3.07. The outer region of the

vortex is now showing the helical wave to be more developed. Fine scale structure

is beginning to develop in the inner region. Note that here (and in the remaining

vorticity magnitude isosurface plots), we no longer have part (d) that corresponded

to 0.75 times the peak vorticity magnitude. This is so because no definite structure

can be observed at that vorticity magnitude level. Figure 3.84 presents the 2-D energy

spectra at this time. We can see that in the inner regions energy is spread over a

wider range of wave numbers now (higher wavenumbers means smaller length scales).

The outer region (part (c)) now shows that modes (kθ, kz) = (2,3), (3,4) and (4,6)

are also beginning to become energetic.
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We continue with looking at the vortex structure at t/T = 3.91 (see figure 3.85).

The outer region of the vortex is also becoming turbulent as can be seen by the

presence of fine scale structure. The family of left running helical waves can still be

clearly seen as being the large scale structure. If we look at the 2-D energy spectra

at this location (see figure 3.86) we can see that the dominant modes are shifting in

terms of their kz value. (kθ, kz) = (1,1), (2,3) and (3,4) are the dominant modes in

the inner region (part (a) of this figure). As we move outwards to r/r0 = 1 (part (b))

we observe (kθ, kz) = (1,1), (2,1), (2,3) and (3,3) to be more energetic modes. In the

outer region (part (c)), (kθ, kz) = (2,2), (2,3), (3,2) and (3,5) are the energetic modes.

Note that higher values of kz correspond to the helical waves going around the vortex

more number of times.

We now look at the vortex structure at the end of this time period, i.e. when

the GTKE has reached the 1st peak. As would be expected in a more turbulent

state, we observe more fine scale structure (see figure 3.87). The large scale structure

of left traveling helical waves is still very much present though. In the 2-D spectra

corresponding to this time (figure 3.88) we see the energy distributed over a wide

range of wavenumbers (more fine scale structure). In part (a) of this figure, we see

that (kθ, kz) = (-1,1) is one of the energy containing modes. A negative azimuthal

wavenumber corresponds to a right running helical wave. Recall that kθ = −1 was

present throughout STRN4 in one of the unstable modes. It is possible that till

now the axial flow instability has been dominating and we are now beginning to

see the effect of the strain. We also see several other modes carrying a substantial

amount of energy in the interior of the vortex. As we move outwards, the number

of energy containing modes is smaller. Also these do not have a negative azimuthal

wavenumber. Remember that the elliptic instability gets initiated inside the vortex

core. This may be the reason we are seeing the appearance of negative kθ in the

interior of the vortex only.
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3.7.2.2 Second Time Period

The GTKE now begins to decrease. Figure 3.89 shows the vortex structure at

t/T = 7.61. We still have lot of final scale structure in the outer portion of the vortex.

However the inner portion of the vortex begins to re-consolidate. This trend is seen

to be continuing in figure 3.90 which presents the vortex structure at t/T = 11.43.

In particular, note the formation of a central filament in part (b) of this figure. We

can also see both left and right running helical waves around this filament. This is

further indication that we are beginning to see the strain field in action. In part (b)

of figure 3.91 (here we are seeing the vortex structure at t/T = 16.22) this process

of re-consolidation is observed to have moved along further. It seems that the cross-

sectional area of the vortex is increasing and decreasing as we move along the vortex

length. If this is so, we might be observing the presence of the core dynamics (CDI)

instability (Pradeep and Hussain (2001)). In figure 3.92 we are looking at the vortex

structure at the end of this time period. The GTKE has now reached the 1st ebb.

As would be expected in low turbulence situation , we see lesser fine scale structure.

In part (b) of this figure we observe both a sinusoidal bending along the vortex axis

and a periodic core area variation along the vortex axis. That all these features are

indeed present is confirmed by picking out the dominant modes in the 2-D energy

spectra plots presented in figure 3.93. In the inner regions of the vortex (parts (a)

and (b) of this figure) we observe that (kθ, kz) = (±1, 1), (0,3) and (2,3) to be the

dominant modes. In the outer portion (part (c)) we have (kθ, kz) = (0,1) and (2,3)

to be the dominant modes.

3.7.2.3 Third Time Period

We observed at the end of the last time period that modes corresponding to

different kinds of instabilities are present simultaneously. We expect to see a rich

variety of features in terms of the vortex structure as the GTKE begins to grow

again. The GTKE now grows exponentially with a growth rate of 0.13. Note the

dramatic drop in the growth rate when compared with the first period. Figure 3.94
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shows the vortex structure at t/T = 22.07 during this second GTKE ascent. Figure

3.95 presents the 2-D energy spectra at this time. We have (kθ, kz) = (0,3) as one

of the energy carrying modes. This would correspond to a periodic variation in the

cross-sectional area as we move along the vortex axis. This can indeed be observed,

most prominently in figure 3.94 (a). We also have (kθ, kz) = (-1,2) and (2,3) as

dominant modes. This corresponds to left and right running helical waves. These are

also observed in figure 3.94 (a). We continue to see this rich structure in figure 3.96.

Here the vortex structure is shown at t/T = 23.58 which is still during this second

GTKE ascent. Figure 3.97 gives us information about the dominant modes at this

time. (kθ, kz) = (1,1) is also present now. Also, (kθ, kz) = (-1,2) and (2,3) and (0,3)

are observed at all three radial locations now. This was not the case at t/T = 22.07

where the dominant modes at r/r0 = 2 were different and much less energetic than the

other two radial locations. Figure 3.98 presents the vortex structure at t/T = 25.61

which corresponds to the 2nd peak of GTKE. The vortex has “tightened” (meaning

that most of the vorticity is now contained in a very small annular region). We still

have (kθ, kz) = (-1,2), (0,3) and (2,3) as energetic modes. We also note the presence

of (1,1) as a dominant mode. This mode was present with a small amount of energy

at t/T = 22.07 r/r0 = 2. At this second peak of GTKE, we also see (2,2) to be one

of the dominant modes.

Figure 3.100 shows the vortex structure at t/T = 32.01. The GTKE is now

decaying again. The vortex is “loosening up” again. The structure looks similar to

when the GTKE was on its way up. We see a very consolidated vortex at t/T = 40.01

(see figure 3.101). The vortex structure now looks much like the structure at the 1st

ebb of GTKE. We reach the 2nd ebb of GTKE (and the end of this time period) at

t/T = 51.48. Figure 3.102 shows the vortex structure just after the 2nd GTKE ebb

is reached. Small scale structure is almost absent. This is also reflected in the 2-D

energy spectra plots presented in figure 3.103. The dominant modes at this time are

(kθ, kz) = (0,1), (0,3) and (-1,2). The energy levels in the outer regions (see figure

3.103 (c)) is much lower.
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3.7.2.4 Fourth Time Period

This time period is characterized by the fact that the GTKE evolution maintains

a sort of a steady state. Figure 3.104 shows the vortex structure at t/T = 56.01. As

expected we don’t see much difference, in terms of how much small scale structure is

present, as compared to the situation just after the 2nd ebb of GTKE. Left running

helical waves are still prominently visible. At t/T = 62 (see figure 3.105), in addition

to the left running waves, a sinusoidal bending along the vortex axis is also clearly

visible. The same is the case at t/T = 68.08 (see figure 3.106). Dominant modes at

this time can be picked up in the 2-D energy spectra plots presented in figure 3.107.

We find that (kθ, kz) = (-1,1), is the most dominant mode at this time. Another

modes that is carrying a significant amount of energy is (0,1). Note that dominant

modes have shifted since the beginning of this period. Although, the overall level

of turbulence (as measured by GTKE) is not varying much during this time period,

turbulent kinetic energy is being transferred between different modes. This could

indicate that selection is being made for an instability mechanism to take over. As

we move on to a later location (t/T = 74.04) during this time period, we continue

to see the presence of left running helical waves and a sinusoidal bending along the

vortex axis (see figure 3.108). Let us now take a look at the vortex structure just

after this time period ends. Figure 3.109 presents the structure of the vortex at

t/T = 80.52. The vortex has “tightened” up considerably. We see the presence of left

running helical waves and a sinusoidal bending along the vortex axis. Let us pick out

the dominant modes at this time and contrast them with what modes dominated just

at the beginning of this time period. Figure 3.110 presents the 2-D energy spectra at

this time. The dominating modes are (-1,1), (0,1) and (0,2). These are different from

the modes dominated as we entered this time period.

3.7.2.5 Fifth Time Period

The GTKE now begins to climb again. Here the GTKE grows exponentially with

a growth rate of 0.11. Figure 3.111 presents the vortex structure at t/T = 83.51.
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The helical waves and the sinusoidal bending are more prominent. At t/T = 85.45,

the vortex has “tightened up” as can be seen in figure 3.112 The 2-D energy spectra

at this time, shown in figure 3.113, shows that in the interior regions of the vortex,

turbulent kinetic energy is now spread over a large range of wavenumbers. The

dominant wavenumbers are (kθ, kz) = (±1, 1), (0,1), (0,2) and (2,2). The GTKE

now reaches what we have termed to be its 3rd peak (though this is not really a

peak in the strict sense of the word). At this time, the vortex is in a “tightened”

state. The structure shows the presence of various deformations corresponding to

different dominant modes (see figure 3.114). This is substantiated by the continued

observance of the above dominant wavenumbers in the 2-D energy spectra presented

in figure 3.115.

The GTKE still continues to increase though at a reduced rate. Figure 3.116 shows

the vortex structure at t/T = 90.92. The vortex continues to be in what we have

been calling a tightened state. The structure still shows the presence of deformations

corresponding to a varied range of dominant modes. At the end of this time period

(we have called this stage the 4th peak of the GTKE, though once again we are not

really at a peak in the strict sense of the word), the vortex is still in a tightened

state. We are still seeing features that correspond to various dominant modes (see

figure 3.117). This is substantiated by 2-D energy spectra for this location, presented

in figure 3.118. The dominant modes at this time are found to be (±1, 1). There

are other modes that contain a significant amount of energy. However, the fact that

peaks are at (±1, 1) could be of particular significance since these were the dominant

modes towards the end of STRN4, and we are now entering the final ascent of GTKE

in STRN2.

3.7.2.6 Sixth Time Period

The GTKE now begins what could be called its final ascent in this simulation.

The GTKE grows exponentially with a growth rate of 0.11. This is the same growth

rate as for the GTKE ascent from the 3rd ebb to the 3rd peak. Note that the growth
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rates presented in this thesis are truncated at the second decimal place. If more

significant digits are used, we will see that the growth rate in this final GTKE ascent

is slightly smaller than that for the GTKE ascent from the 3rd ebb to the 3rd peak.

Figure 3.119 shows the vortex structure at t/T = 96.77. The vortex still continues to

be in its tightened state and displays features that show the presence of various modes

carrying a substantial amount of energy. However, as pointed out above, of particular

interest is the sinusoidal bending accompanied by left and right running helical waves

that would correspond to (±1, 1). Vortex structure at t/T = 98.45 is shown in figure

3.120. The vortex seems to tighten up even further. The 2-D energy spectra for this

time, shown in figure 3.121 reveal (0,2) and (2,2) to be carrying a significant amount

of energy in addition to (±1, 1). This substantiates the observation of a varied set of

features in the vortex structure at this time.

At t/T = 100.29, the vortex seems to be beginning to loosen up (see figure 3.122)

We are still seeing a range of flow features that would correspond to several signifi-

cantly energetic modes. The vortex structure at t/T = 101.34, shown in figure 3.123,

is along the same lines. The 2-D energy spectra at this time, shown in figure 3.124

shows us that the dominant modes are still (±1, 1), (0,2) and (2,2). In figure 3.125 we

see the vortex structure at t/T = 103.05. Both left and right running helical waves

and a sinusoidal bending along the vortex axis are prominent. This is also the case

in figure 3.126. This is the situation just after the so called 5th peak of GTKE is

reached. The dominant modes are still (±1, 1), (0,2) and (2,2) as can be seen in figure

3.127. Through this time period, the dominant modes have stayed the same.

3.7.2.7 Seventh Time Period

We now enter the final time period of this simulation. The GTKE is still rising.

Figure 3.128 shows the vortex structure at t/T = 106.41. We are now beginning to

see a substantial presence of small scale structure. Figures 3.129, 3.130 and 3.131

show the vortex structure at times t/T = 108.55, 109.52 and 111.27 respectively. We

are beginning to see the presence of a significant level of vorticity near the domain
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boundary. At t/T = 111.27 we have arrived at the last GTKE peak in this simulation.

The 2-D energy spectra at this time (see figure 3.132) shows (±1, 1) and (0, 2) to be

the dominant modes.

The GTKE now plunges, and as can be seen in figures 3.133 and 3.134, we have a

substantial level of vorticity at the domain boundary. This is in conflict with the use

of potential flow boundary conditions. The simulation has to be thus stopped. The

2-D energy spectra at t/T = 113.93 presented in figure 3.135 shows that (kθ, kz) =

(±1, 1) are the dominant modes. These were also the dominant modes at the end of

the STRN4 simulation. Also the growth rate for the final ascent of GTKE in STRN4

was 0.16. This value is comparable to the growth rate in the final GTKE ascent

for STRN2 which was 0.11. It thus seems that the same instability mechanism has

eventually dominated in both the simulations.

3.7.3 Mean and Statistical quantities

Following the trend established in the discussion for STRN4 above, we now take

a look at the evolution of some mean and statistical turbulent quantities of interest

(mean velocity components, mean vorticity components, Reynolds stresses, turbulent

kinetic energy and enstrophy) during each of these time periods. Once again, the flow

is not axisymmetric. We thus have to be careful not to miss the azimuthal variation

of the mean and statistical quantities being studied. Here we look at how the above

mentioned quantities evolve in time at the angular locations of θ = 45o and θ = 135o.

These correspond to the major and minor axes of the elliptical streamlines. Note

that the mean flow is symmetric about the major and minor axes of the elliptical

streamlines. Also, θ = 45o corresponds to the direction in which the vortex is most

stretched while θ = 135o corresponds to the direction in which the vortex is most

compressed. Hence the evolution of mean and statistical quantities in these two

directions will be representative of their evolution in the stretched and compressed

regions of the vortex.
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3.7.3.1 First time period

As before we start by looking at the evolution of turbulence. Figure 3.136 shows

how the TKE evolves in time. As was the case in STRN4, the initially laminar vortex

in STRN2 is perturbed in such a way that the TKE peaks at the core radius at the

beginning of the simulation. Let us first consider the situation at θ = 45o. In the

early stages of the simulation, as the level of TKE grows, the peak location moves

just inside the core radius. As the GTKE approaches the “1st peak”, the location

of the TKE peak oscillates between moving inwards to the centerline, then outwards

to the core radius and then finally, as the GTKE reaches the “1st peak”, moving

inwards again. Towards the end of the first period, we notice that the peak value of

the TKE does not vary much. However the value in the outer regions of the vortex

increases, indicating a larger portion of the vortex to be turbulent. At θ = 135o

also the peak seems to oscillate during this time period. However, it seems that this

peak’s oscillations are out of phase with the oscillations of the peak at θ = 45o. Also,

towards the end of this time period, the amount of increase in turbulence in the outer

regions is less as compared to the situation at θ = 45o.

We now turn our attention to the evolution of the mean flow. Figure 3.137 shows

how the mean tangential velocity evolves in time. Initially as the GTKE grows, Vθ

does not show much variation. In the later stages of this period, we observe rapid

diffusion, with the peak decreasing in value and moving outwards. Slightly before

the onset of rapid diffusion, a small increase in the Vθ value is observed in the region

just to the left of the peak. Also, in this simulation, due to the initial wake like

axial velocity profile, the evolution of the mean axial velocity becomes significant in

addition to the mean tangential velocity. This is shown in figure 3.138. Here also

we see a trend similar to the Vθ profile, with a slow variation of the profile in the

early stages, followed by a rapid diffusion as the GTKE approaches the 1st peak. In

both tangential and axial velocity profiles, we notice that by the end of this time

period, the changes in the flowfield have reached outer regions of the vortex. Just
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as in STRN4, we have a mean radial flow due to the ellipticity of the streamlines.

However, the mean radial flow is relatively much smaller than the mean tangential

and axial flows (see figure 3.139). It is not seen as being significant to understanding

the overall flow, and hence is not included in the discussion for the rest of the time

periods.

Let us now look at how the mean vorticity evolves in time. Figure 3.140 shows

the evolution of mean axial vorticity. In accordance with how the mean velocity field

changes in time, the mean axial vorticity, after not showing much change in the initial

stages, shows a relatively rapid diffusion as the GTKE approaches the “1st peak”.

The peak value stays at the centerline and falls in value. Ωz within the core decreases

in value while an increase is observed outside the core. Note that contrary to STRN4,

there is no shift of the peak away from the centerline. Since we also have a mean

axial flow in this simulation, the axial component of the mean vorticity is not the only

non-zero component. Figure 3.141 shows how the mean tangential vorticity evolves

in time. Once again the pattern observed is similar, a gradual change in the earlier

stages followed by a relatively rapid diffusion as we approach the first GTKE peak.

Note that both the axial and tangential mean vorticity profiles become noisy within

the first period itself. This is a reflection of the limited sampling space available

to compute mean and statistical quantities. This effect is seen in the mean radial

vorticity profiles also (see figure 3.142) which display a noisy behavior about zero

instead of remaining identically zero as would be expected.

Now that we have looked at the evolution of the mean flow, let us take a look

at how the Reynolds stresses behave. Let us first consider Rθθ, Rrθ and Rθz as the

turbulence affects the mean tangential velocity via these components, as can be seen

in equation 3.22. Figure 3.143 shows how Rθθ evolves in time. Right from very early

stages in the simulation, we observe the onset of a twin peak structure to the profile.

The locations of these twin peaks for the two angular locations seem to be out of

phase. A significant level of Rθθ is observed till about a distance of about 1.5 times

the core radius from the centerline (highest levels being within the core itself). The
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spread is lesser at θ = 135o. This could be the reason for the different locations of

the twin peaks.

Figures 3.144 and 3.145 show the evolution of Rrθ and Rθz during this time period.

Note that very low levels are present for both these Reynolds stress components. This

makes it difficult for us to differentiate between any patterns that may be present in

the Rθθ profile from the presence of noise due to the limited sampling space available

for the computation of mean and statistical quantities. However, with this cautionary

note in mind, we will proceed with identifying any patterns that Rrθ and Rθz might

be following. We observe a very noisy profile in both cases. It seems as if Rrθ values at

the two angular locations differ in sign while being similar in magnitude. In contrast

to this Rθz values at both locations are of the same sign (positive) and are similar in

magnitude.

The Reynolds stresses that affect the mean axial velocity are Rzz, Rrz and Rθz

(see equation 3.23). We have already looked at the evolution of Rθz above. Let us

take a look at how Rzz evolves in time (see figure 3.146). As the GTKE grows, the

Rzz profile is found to peak just inside the core radius. As we move through this time

period, the profile shape changes. Instead of growing from a near zero value at the

centerline and going through the above mentioned peak, the profile shape shows an

almost uniform level from the centerline till about 1.5 times the core radius at the

θ = 45o location. At the θ = 135o location, this uniform level is seen to extend till

about 2 times the core radius. At the θ = 45o location, we observe the presence of

non zero values of Rzz further out. Figure 3.147 presents the evolution of Rrz during

this time period. Initially we see the development of a profile shape in which Rrz

has near zero values at the centerline, decreases as we move outwards, goes through

an ebb (a negative peak) within the core and then increases again to reach near

zero values just outside the core. Later on in this time period, as the GTKE keeps

increasing, the profile flattens out with a decrease in the peak value. The single ebb

structure is eventually lost at the end of this time period we see a noisy profile with
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very low values. This noisiness of the profile may just be the effect of limitations in

the sampling space.

Let us now look at Rrr, the sixth and final independent Reynolds stress tensor

component. Rrr along with Rrθ, Rrz and Rθθ (these three components have been

looked at above) bring the effect of the turbulence in the evolution of the mean radial

velocity. This can be seen in equation 3.21. Figure 3.148 shows the evolution of Rrr

in the first time period. We observe that the variation of the Rrr profile in time is

similar in behavior to the evolution of TKE in this time period. In the early stages

of the simulation, the peak location moves just inside the core radius. At θ = 45o,

as the GTKE approaches the “1st peak”, the location of the TKE peak oscillates

between moving inwards to the centerline , then outwards to the core radius and then

finally, as the GTKE reaches the “1st peak”, moving inwards again. We see this

oscillatory behavior at θ = 135o also. However, the peak locations seem to be out of

phase. Towards the end of the first period, we notice that the peak value does not

vary much. However the value in the outer regions of the vortex increases.

Finally we take a look at the evolution of enstrophy, to see how the level of vorticity

fluctuations vary in time. The simulation starts with the enstrophy decreasing from

it’s initial level (see figure 3.149) and then begins to rise as the simulation progresses.

This rise is initially gradual but becomes significantly faster as the GTKE approaches

the “1st peak”. The level of enstrophy within the vortex core is significantly higher

than outside. However, we do observe the presence of a significant level of fluctuating

vorticity in the outer regions of the vortex towards the end of this time period. Just

as was the case with TKE and the Reynolds stress components, at θ = 135o, the

spread outwards is lesser than that at θ = 45o. The enstrophy levels for both angular

locations are of the same order of magnitude.

3.7.3.2 Second time period

As the GTKE decreases during this time period, the TKE profile shows a signifi-

cant change in shape. (see figure 3.150). The peak moves to the center and decreases
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in value. Right at the end of this time period, we see a small increase in the peak

value at θ = 45o. At θ = 135o, a small increase is observed in the level of turbulence

even as we go away from the centerline (at the end of this time period).

In figure 3.151 we observe that the mean tangential velocity continues to diffuse

in the outer regions of the vortex, though the rate at which this diffusion takes place

is considerably reduced as compared to the later half of the first time period. This

is reasonable as the GTKE is now decreasing and as the flow becomes less turbulent,

we expect a slower diffusive process. At the θ = 45o location, we observe an increase

in Vθ in the region to the left of the peak. This could be an indication of the presence

of anti-diffusion, which has to be confirmed by computing the eddy viscosity. Slow

diffusion is also observed in the mean axial velocity (see figure 3.152).

The mean axial vorticity, Ωz continues to diffuse as we enter this time period (see

figure 3.153). However, a shift is observed in this trend with the peak value actually

increasing at the centerline for some time. The diffusive process then starts again.

One thing to be remembered is that we have a certain amount of noise in our profiles

for mean and statistical quantities. Hence some of the small “shifts in trends” could

be false. Figure 3.154 shows the variation of the mean tangential vorticity during this

time period. We observe a continuation of the diffusive process. The noisy behavior

of the profiles makes it difficult to notice trends.

The variation of Rθθ in the second time period is shown in figure 3.155. We see the

emergence of a profile shape which has a peak at the center, a rapid decay reaching a

low level as we reach the core edge, and then a leveling out. Towards the end of this

time period, this trend shifts at the θ = 45o location, and the profile shape seems to

be going back to a multi peaked structure.

Figure 3.156 shows the variation of Rrθ during this time period. We observe

that the sign of Rrθ flips repeatedly as the GTKE decreases (this is true at both

the angular locations). This indicates that the eddy viscosity might be switching

between being positive and being negative. A negative value of eddy viscosity points

to the presence of anti-diffusion. The profiles at both the angular locations approach
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limiting profiles as we approach the end of this time period. The limiting profiles

at θ = 45o and θ = 135o have the characteristic of Rrθ being of opposite signs and

similar magnitudes at the two angular locations (can be considered approximately

“flipped” over). These limiting profiles start from near zero values at the centerline

and after passing through a peak (positive at θ = 45o and negative at θ = 135o) at

about the center of the core, decay to zero as we move further outwards. This decay

is seen to be pretty much complete at about the core radius.

The variation of Rθz during the second time period is shown in figure 3.157. It is

difficult to identify any pattern that might exist in the Rθz profiles. This is particularly

true at the θ = 45o location where the levels become very low as we move through

this time period. However at the θ = 135o location, at the end of this time period,

the profile shape is similar to that finally attained by Rrθ at this location.

The variation of Rzz during the second time period is shown in figure 3.158. As

the GTKE decreases, the level of Rrr falls. This fall in the level is most pronounced

in the region outside the core. From a multi peaked broad shape, the profile changes

to having its peak at or near the centerline, followed by a rapid decay to a low level

by the time we reach the core edge.

The variation of Rrz in this time period is shown in figure 3.159. At the θ = 45o

location, no particular pattern in the profile shape seems to emerge during this time

period. The noisiness in the profile could just be a reflection of the limited sampling

space available for computing the statistical quantities. At the θ = 135o location the

situation is different. Although the values are still very low, we do identify a trend in

the profile shape. A small positive peak inside the core is formed. Towards the end

of this time period, the centerline value is observed to consistently increase.

Figure 3.160 shows the variation of Rrr during the second time period. The profile

shape changes from a multi peaked broad shape to one which peaks at the center and

decays rapidly as move outward. Once it decays to a low value, the profile flattens out

as one goes into the outer regions of the vortex. This is very similar to the variation
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of TKE during this time period. At the end of this time period, the profile seems to

be again moving towards a multi peak structure at the θ = 135o location.

Figure 3.161 shows the variation of enstrophy during this time period. As ex-

pected, the level of vorticity fluctuations decreases significantly as the flow becomes

less turbulent during this time period.

3.7.3.3 Third time period

As the GTKE begins to rise in this time period, the peak value of TKE also

rises (see figure 3.162). At θ = 45o, the peak value during this ascent of GTKE

moves a little away from the centerline and returns there. Also, at the end of the

GTKE ascent, the TKE profile becomes a little fuller in the outer half of the core. At

θ = 135o, this fullness of profile is observed closer to the centerline. Also, the level of

turbulence is observed to be higher. This might indicate a tendency to return to the

profile shape during the earlier GTKE ascent (1st time period). Then as the GTKE

begins its descent to the 2nd ebb, the profile becomes similar to what was observed in

the 2nd time period. The above mentioned fullness goes away. The peak value falls

rapidly. The variation in TKE is most significant in the inner portion of the core.

The behavior of the mean tangential velocity as the GTKE ascends (see figure

3.163) is similar to the later part of the first time period (GTKE was also increasing

then). We observe a rapid diffusion. Later on as the GTKE is decreasing again

towards the 2nd ebb, the rate at which Vθ is diffusing becomes smaller. We also

observe indications of what may be a possible anti-diffusion to the left of the peak.

There are instances of Vθ increasing in this region. At θ = 45o, the mean axial velocity

(see figure 3.164) does not show much decrease during the GTKE ascent. However,

as the GTKE begins to decrease there is a quick decrease within the core and then

again the change in Vz for the remaining portion of this time period is minimal. In

contrast, at θ = 135o, the diffusion of Vz is more uniform. Note that right towards

the end of this time period, close to the centerline the Vz profile is departing from its

initial wake-like shape.
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Figure 3.165 shows the variation of the mean axial vorticity during this time

period. Although we observe a substantial oscillation at the centerline, it seems that

Ωz does not show much variation in most of the domain. There are indications of

switches between diffusive and anti-diffusive processes inside the core (close to the

centerline) with Ωz switching between falling and rising in value. While looking at

the mean tangential vorticity evolution (see figure 3.166), the noisiness of the profiles

makes it difficult to identify detailed trends. However the overall behavior of Ωθ

during this time period has been to decrease. The peak seems to have become less

negative and has moved outwards. We might also be observing a change in the shape

of the profile close to the centerline. This would correspond to the change in the Vz

profile shape.

The variation of Rθθ during the third time period is shown in figure 3.167. The

principle observation is that Rθθ during this time period is essentially contained within

the region which extend to about 1.2 times the core radius. At θ = 135o, Rθθ is seen

to be contained closer to the centerline as compared to θ = 45o.

Figure 3.168 shows the variation of Rrθ in the third time period. As the GTKE

grows, the profiles at the two angular locations leave the shape they had achieved at

the end of the last time period. At the θ = 45o location, Rrθ profile is observed to

repeatedly flip over (change sign) as we progress through this time period. A typical

profile shape in the initial stages of this time period has Rrθ peaking at or near the

centerline, decaying rapidly as we move outward, crossing the Rrθ = 0 axis at about

halfway through the core, going through a negative peak just inside the core radius

and then increasing again to zero as we continue moving outward. When the profile

flips, the above description with the signs changed holds true. Later on the profile

decays and the above mentioned shape is lost. At the θ = 135o location, the profile

initially develops a shape that has a peak negative value at the centerline, a quick

increase to a near-zero peak near the centerline, followed by a decrease again to a

negative peak (less negative than the centerline value) just inside the core radius.
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Later the profile leaves this shape and eventually the level of Rrθ falls and we have a

noisy profile about the Rrθ = 0 axis.

The variation of Rθz in the third time period is shown in figure 3.169. At the

θ = 45o location, in the early parts of this time period the profile shape has negative

Rθz values near the centerline. This changes and in the later part of this period, we

have near zero values at the centerline, an increase as we move outward till a peak

is reached, followed by a decay back to zero as we move further out. As we have

come through this time period, a small positive peak has been established at about

0.6 times the core radius. At the θ = 135o location, in the initial part of this time

period, Rθz becomes increasingly negative in the inner portion of the vortex core.

This trend stops as we move on through this time period. There are instances of Rθz

being positive very close to the centerline and decaying to zero rapidly. Eventually

have a noisy profile with very small values.

The variation of Rzz during the third time period is shown in figure 3.170. The

profile shape obtained towards the end of the last time period is essentially maintained

as we go through a rise and decay of GTKE during this time period. Although

the centerline value does show rises and falls, the level of Rzz does not vary much

elsewhere. When the GTKE peaks, at the θ = 45o location we do observe a slight

increase in the level at about the core radius. In contrast, at θ = 135o a high level of

Rzz is observed inside the core at this GTKE peak. As the GTKE begins to decrease,

these go away, and the level is approximately sustained till we approach the end of

the time period. At this time period comes to an end we observe that the level in the

region close to the centerline has decreased substantially.

Figure 3.171 shows the variation of Rrz during this time period. In the previous

time periods, the level of Rrz had stayed considerably low. This changes now and

within the core there is a significant level. At the θ = 45o location during the descent

of GTKE, the level fluctuates between being significantly negative and being slightly

positive or nearly zero. The main difference at the θ = 135o location seems to be the
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containment of the negative value region nearer the centerline and a more pronounced

presence of a positive value region in the outer part of the core.

The evolution of Rrr during this time period is presented in figure 3.172. Let us

first look at the θ = 45o location. Note that the inner part of the vortex core is

the region where substantial activity takes place. As the GTKE increases, we see an

increase in the level of Rrr also. At the 2nd peak, we see a bulge in the profile in the

outer half of the core. This bulge goes away as the GTKE starts decreasing again.

The centerline value increases for some time even during the GTKE decay. However,

eventually it falls and as this time period comes to an end the profile has decayed

substantially with Rrr being of about the same level as in the initial part of this time

period. At the θ = 135o location, there is much lesser variation in the centerline value

in terms of magnitude. However it rises and falls more frequently. During the GTKE

decay, the Rrr profile shows rises and falls instead of a consistent decay as was the

case at θ = 45o. Also, the profiles are in general fuller as compared to the the θ = 45o

location.

Figure 3.173 shows the variation of enstrophy in this time period. In the earlier

time periods we had observed the presence of a significant amount of enstrophy outside

the core. This is not the case any more. Although the level of enstrophy rises and

falls along with the rise and fall of GTKE, most of it is contained within the core

during this time period. When GTKE reaches the 2nd peak, the enstrophy profile

is fuller (and the level is somewhat higher) for θ = 135o. This corresponds to the

TKE profile behaving the same way at this angular location. More turbulence would

generally mean a higher level of vorticity fluctuations.

3.7.3.4 Fourth time period

Figure 3.174 shows the variation of TKE in the fourth time period. As the GTKE

maintains a sort of a “steady” state in this time period, the TKE profile also does

not show much variation. The level of turbulence in the vortex shows small rises and

falls (this is most easily seen in the behaviors of the peak value which is located at
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or near the center). This is consistent with the behavior of GTKE. Although there

are small level fluctuations, the overall behavior is that of a “steady” type. Note that

at θ = 135o, as we move away from the centerline, the TKE level falls faster than at

θ = 45o.

As the GTKE level maintains a sort of a steady value, the mean tangential velocity

continues to diffuse (see figure 3.175). through this time period. As would be expected

in the absence of significant GTKE increases or decreases, the rate at which Vθ diffuses

also does not vary much. Not only has the peak been decreasing in value and moving

out, the profile also seems to be becoming flatter. There are instances of Vθ increasing

slightly in the region to the left of the peak. This could be because of the presence

of anti-diffusion. As mentioned before this has to be confirmed by computing eddy

viscosity. Within the core, the mean axial velocity decreases quite a bit (see figure

3.176). Note that the centerline value itself doesn’t show much of a shift. Similar to

the Vθ profile, the Vz profile is also becoming flatter. The profile shape inside the core

is no longer maintaining a wake-like shape.

The mean axial vorticity shows a rapid decrease inside the core region as we go

through this time period (see figure 3.177). However right at the end of this time

period, the centerline value has shown a substantial jump. In regions outside the core,

the change is not significant. We observe that the mean tangential vorticity is now

significantly lower (see figure 3.178). Despite the noisy profiles, the overall impression

obtained is of a continuation of the diffusive process during this time period. Also

note the change in the profile shape inside the core region. This corresponds to the

departure from the wake-like shape of the axial velocity profile.

The variation of Rθθ during the fourth period is shown in figure 3.179. We observe

slight rises and falls of the Rθθ level during this time period, consistent with the small

variations if GTKE. At the angular location of θ = 135o, Rθθ is contained closer to the

centerline while having higher values, as compared to the angular location of θ = 45o.

Figure 3.180 shows the variation of Rrθ during the fourth time period. Let us first

look at the θ = 45o location. Note that the magnitude of Rrθ during this time period
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does not vary much. This is consistent with the level of turbulence (as indicated

by GTKE) does not vary much. However, the sign flips repeatedly. This might be

due to the eddy viscosity becoming negative, which would signify the presence of

anti-diffusion. At the θ = 135o location, the profile seems to be getting damped. As

the magnitude of Rrθ decreases, the sign is observed to change repeatedly. Hence we

might be observing anti-diffusion in the compressive part of the vortex also. However,

Rrθ values at the two angular locations, at any particular time, do not have opposite

signs.

The evolution of Rθz during the fourth time period is shown in figure 3.181. At

θ = 45o we observe that the profiles seem to be getting damped as we move through

this time period. As the magnitude of Rθz decreases, the sign is observed to change

repeatedly. Note that similar behavior was observed for Rθz at the θ = 135o location.

The evolution of Rθz at the θ = 135o location is similar to that of Rrθ at θ = 45o. The

magnitude does not vary much while the sign flips repeatedly. Thus the behavior

of Rrθ in the stretched part of the vortex is similar to the behavior of Rθz in the

compressed part of the vortex, and vice versa. Although the evolution of Rrθ at

θ = 450 is similar to that of Rθz at θ = 135o in the above mentioned way, they have

opposite signs at any of the times considered during this time period.

Figure 3.182 shows the variation of Rzz during this time period. The level near

the centerline has increased again (we had observed a substantial decrease at the end

of the last time period). The profile shape is essentially the same as before. Rzz has

its peak at or near the centerline. It then decays rapidly to a very low value by the

time we reach the core radius. Rzz is contained closer to the centerline at the θ = 135o

location. Overall we do not observe significant variations in the level of Rzz. This

is in accord with the GTKE level staying nearly uniform through this time period.

There are some rises and falls though, particularly near the centerline.

The variation of Rrz during this time period is shown in figure 3.183. At the

θ = 45o location, the level stays about the same as we go through this time period.

This is consistent with the GTKE not showing much variation. However the sign
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repeatedly flips. This indicates that the eddy viscosity might be changing its sign

which would signify that both diffusive and anti-diffusive processes are present. At

the θ = 135o location, we observe a dampening of the profile. As the magnitude of Rrz

decreases, the sign is observed to change repeatedly. Hence we might be observing

anti-diffusion in the compressive part of the vortex also. Note that these observations

are similar to those made for Rrθ in this time period. The one difference is that

Rrz seems to have opposite signs at the two locations for the same plotting time,

especially during the early part of this time period.

Figure 3.184 shows the evolution of Rrr during this time period. The profile shape

is similar to that of TKE. The level of Rrr does not show significant rises and falls.

This is consistent with the almost uniform level of GTKE during this time period.

Note that the level is lower at the θ = 135o location.

Figure 3.185 shows the variation of enstrophy in this time period. The containment

of enstrophy within the core observed in the last time period continues here. Although

there are rises and falls, we notice that the enstrophy level stays within the same order

of magnitude. This is different from previous time periods, where there was a much

larger variation. This is consistent with the small variations of GTKE during this

time period.

3.7.3.5 Fifth Time Period

Although the GTKE rises in this time period, we do not observe a significant

increase in the peak value of TKE (see figure 3.186). The TKE peak stays at or near

the centerline while displaying small oscillations in its value. We also observe some

oscillation in how full the TKE profile is near the center. Note that at θ = 135o, there

is hardly any variation in how far away from the centerline the turbulence reaches.

The process of Vθ diffusion (see figure 3.187) (in terms of the peak decreasing in

value and moving outwards) continues. At θ = 45o, to the left of the peak value

(inside the core) there is a significant amount of diffusion by the time we reach the

end of this time period. However, it has not been a smooth diffusive process. On
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the contrary we observe rises and falls in the value of Vθ indicating the presence of

anti-diffusion at certain times. In fact we even observe the peak value increasing at

a certain stage before continuing to fall again. Towards the end of this time period,

we observe an instance of the value in the outer regions decreasing. At θ = 135o

we see rises and falls in the value of Vθ to the left of the peak. This is again an

indication that we may have the presence of anti-diffusion in our flow. In the interior

of the vortex, the mean axial velocity profile also varies significantly during this time

period (see figure 3.188). We observe that a significant amount of diffusion of Vz has

taken place by the end of this time period inside the core. Outside the core however,

the change is much lesser. Another feature of interest that the profile shape inside

the core is much different by the time we end this time period. The classical wake

like shape is not maintained anymore. At θ = 45o, the profile shape inside the core

actually resembles a jet. The profile seems to be tending to this shape at θ = 135o

also.

We once again observe the core region to be very active when we look at the

evolution of mean axial vorticity (see figure 3.189). The level of mean axial vorticity

close to the centerline has fallen dramatically by the time we reach the end of this time

period. The diffusion of Ωz reaches out further at θ = 45o. Note that at θ = 45o, the

profile shape of the mean tangential vorticity (see figure 3.190) changes significantly

inside the core. This is consistent with the change in profile shape for Vz.

The evolution of Rθθ during this time period is shown in figure 3.191. The trend

of Rθθ being contained closer to the centerline, while having larger values, at the

θ = 135o location continues in this time period. Also, the Rθθ profile at this location

does not show much variation as we move through this time period. While moving

from the 3rd to the 4th peak, we do observe an increase in the peak value, but this

value then falls again. However, the θ = 45o location is one of a higher amount of

activity. At this location, as we move into this time period, we observe the peak

of Rθθ to be near the centerline. Initially the profile does not show much variation.

As we reach the 3rd peak, we observe that the peak moves away from the centerline
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and increases in value. We then observe some thing rather interesting. The profile

changes its shape inside the core. Rθθ decreases in value as we move away from the

centerline and goes through an ebb at about the same location where the peak had

moved to earlier. The value then rises and after going through a peak at about the

core radius falls away gradually. At the end of this time period, we observe that the

profile has again changed its shape. We again have a peak some distance away from

the centerline. The value then gradually decays.

We now look at how Rrθ evolves during this time period (see figure 3.192). At the

θ = 45o location, Rrθ attains its minimum value at or near the centerline, increases as

we move outwards, becomes positive at about the core radius, and after going through

a small peak decays to zero as we approach the boundary. At θ = 135o we observe

exactly the opposite scenario. Rrθ at the two angular locations thus has opposite

signs while being similar in magnitude. Note that as we go through this time period,

Rrθ does not rise or fall significantly at either angular location.

The evolution of Rθz in the fifth time period is shown in figure 3.193. At θ = 45o,

the general trend exhibited by the Rθz profiles is to decrease from a near zero value

at the centerline as we move outward, go through a negative peak, become positive

again at about the core radius and then after going through a small positive peak

decay to zero as we approach the boundary. In some ways this is similar to the

general profile shape of Rrθ at this angular location. The main difference is in the

value of the negative peak. Rrθ has a more negative peak. Also, the negative peak

for Rrθ is closer to or at the centerline. At θ = 135o, the manner of evolution has

similarities to the last time period. Close to the centerline, there is a shifting in the

sign. However, instead of rapid flipping of the sign, we now see a gradual shift from

positive to negative values. At the end of the time period the sign has again become

positive in the interior of the vortex. A small positive peak develops just outside the

core radius.
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Figure 3.194 shows the evolution of Rzz during this time period. The profile shape

continues to be the same as the last period. We observe large fluctuations in the level

of Rzz inside the core region, particularly at the θ = 45o location.

The evolution of Rrz during this time period is presented in figure 3.195. Let us

look at the θ = 45o location first. In the early part of this time period, we observe a

near zero level of Rrz all the way from the centerline to the outer region. As we move

on, an ebb (negative peak) develops about halfway through the core. This flips over

and becomes a positive peak as we move further along. Note that the centerline value

repeatedly switches between being positive and negative. At the θ = 135o location,

the profile shape in the early stage of this time period starts from near zero values at

the centerline, goes through a small positive peak, decreases and becomes negative,

goes through a small negative peak, and then increases again to near zero values as

we move further out. Both the positive and negative peaks are within the core. As

we move further along, the profile shape changes into one that has a negative peak

about halfway through the core. At the end of the time period the profile reverts

back to the earlier shape with a positive peak and a negative peak inside the core.

Let us now look at how Rrr evolves during this time period (see figure 3.196). The

profile shape of Rrr is very similar to that of TKE. The peak value stays at or near

the center. We do observe significant fluctuations in the peak/centerline value. Note

that the levels at θ = 135o are lower. The centerline value at this location also does

not fluctuate as much as at θ = 45o.

The enstrophy is mostly contained within the core region (see figure 3.197). Let

us first look at the θ = 45o location. As the GTKE increases from the 3rd ebb to the

3rd peak, we observe an increase in the level of enstrophy (as expected). We start

with the peak being at the center and the value falling rapidly as we move away from

the centerline. At the 3rd peak, we have a much fuller profile, and instead of seeing a

peak at the centerline, we observe a near uniform level of enstrophy throughout the

core. This again changes as we move on from the 3rd peak, with the profile shape

reverting back to a quick decay as we move away from the centerline. We also have a



81

drop in the peak value. At the 4th peak however, we again have a near uniform level

of enstrophy within the core. The enstrophy level at the fourth peak is considerably

lesser than that at the 3rd peak. At θ = 135o the variation is not that much. Also,

at the 4th peak, instead of a near uniform level within the core, we have the peak at

the center with a decay as we move away.

3.7.3.6 Sixth Time Period

As the GTKE begins what we can consider to be its final ascent during this

simulation, the TKE profile at the θ = 45o location becomes fuller (see figure 3.198).

The peak value does not show an increase along with the increase in GTKE. It stays

almost constant for most of this time period. The fact that more and more of the

vortex is becoming turbulent (as can be see by the increasing fullness of the TKE

profile) is reflected in the increasing value of GTKE. In fact towards the end of this

time period, we notice that the peak value actually drops and there is a dramatic

increase in the fullness of the profile. The level of turbulence instead of decreasing

quickly as we move away from the centerline, now stays about the same for increasing

distances from the centerline. This behavior is not seen at the θ = 135o location.

Here the profile almost tends to maintain itself. It seems that more and more of the

vortex in direction of its stretching is getting turbulent, whereas in the direction of its

compression, turbulence is still staying confined to short distances from the center.

More of the vortex becoming turbulent would lead us to expect that our mean

velocity would diffuse in a larger portion of the vortex. This is indeed the case (see

figure 3.199). At the θ = 45o location, as we move through this time period, we

initially see a rapid diffusion inside the core. Towards the end of this time period,

significant diffusion is observed up to about 2 core radii from the center. In some

regions (particularly just to the left of the vortex peak) we observe increases in the

value of Vθ followed by a continuation of decrease in value. This could indicate

the presence of anti-diffusion. However, since the GTKE is increasing, we have the

flow becoming more and more turbulent. Anti-diffusion is not really expected when



82

we have increasing turbulence. In accordance with the turbulence being confined

to shorter distances from the center at the θ = 135o location, the mean tangential

velocity does not diffuse as rapidly and far-reachingly as at the θ = 45o location.

At the θ = 45o location, we also observe a significant variation in the profile shape

of Vz in the interior of the vortex (see figure 3.200). We had observed at the end of

the last time period that the profile was no longer of a classical wake shape. Instead

in the interior we had a jet shaped profile. During this period, the profile inside the

vortex core changes shape again. There does not seem to be a consistent shape it

adheres too. In fact near the end of this time period, we actually observe a wake like

shape to start with, and then as we move further away from the centerline, the we

observe a jet like bulge just outside the core and then again a continuation of the

wake like approach to free stream velocity. At the end of this time period though we

again have a proper wake like profile. Within the core region the value of Vz does

not change much as compared to the previous time period. However, variations in

Vz extend further away from the centerline now. Such dramatic variations in the Vz

profile shape are not observed at the θ = 135o location. Again, this is to be expected

since it is along the stretching direction that the vortex is becoming more turbulent.

By the end of this time period, we observe the mean axial vorticity to have reduced

considerably in the interior of the vortex (see figure 3.201). During the time period,

we observe fluctuations in the value of Ωz close to the centerline. Once again, in

accordance with the above observations, diffusion of Ωz extends further at the θ = 45o

location. Now let us look at the evolution of the mean tangential vorticity (see figure

3.202) during this time period. At the θ = 45o location, although the profile shape

in the outer regions corresponds to what would be expected for a wake like axial

velocity profile, in the interior the profile shape varies. This is expected since the

mean axial velocity profile was also varying. Also variations in the profile seem to

have extended further out than before. This corresponds to variations in mean axial

velocity extending further out. At the θ = 135o location, the profile shape does
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not depart much from the expected shape for a wake-like axial velocity profile (as

expected).

Figure 3.203 presents the evolution of Rθθ during this time period. At the θ = 45o

location the level of Rθθ in the interior of the vortex (close to the centerline) does

not vary much as we go through this time period. There is an increase in the level

as compared to the last time period though. In the region from about r/r0 = 1 to

r/r0 = 2, the profile is fuller. At the θ = 135o, the main difference as compared to

the last time period is an increase in the fullness of the profile.

Let us now take a look at how Rrθ evolves during this time period (see figure

3.204). The profiles at the two angular locations keep the shape they attained during

the last time period. During the later stages of this time period, the magnitude at the

centerline decreases. Also, as we go through this time period the small peak (positive

at θ = 45o and negative at θ = 135o) right outside the core radius is seen to change in

value and position. The net change observed at the end of this time period is these

peaks have moved outwards while increasing in value. This overall behavior of Rrθ

during this time period reflects an outward movement of turbulence in the vortex.

Figure 3.205 shows the evolution of Rθz in this time period. At the θ = 45o

location, the overall behavior observed is a dampening of the profile. Non zero values

of Rθz are observed for longer distances from the centerline though. At θ = 135o, we

see rises and falls in the peak value. The peak position also shifts between being close

to the centerline and being further out. However, Rθz stays positive (except for some

excursions into being negative very close to the centerline).

The evolution of Rzz during this time period is presented in figure 3.206. At the

θ = 45o location, the profile shape essentially remains unchanged. We observe rises

and falls in the levels. Also, significant levels of Rzz are observed further out from the

centerline as we go through this time period. The situation at the θ = 135o locations

is different though. The profile shape switches between two possibilities. One of these

is the shape maintained by the profile all the way from the second time period to the

end of the last time period. In the other shape, Rzz increases in value as we move
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away from the centerline, goes through a peak about halfway through the core and

then decays rapidly again till we reach about the core radius.

Figure 3.207 shows the evolution of Rrz during this time period. At the θ = 45o

location, we observe an oscillation of the profile about the Rrz = 0 axis. During the

initial stages of this period, a change in the sign of Rrz is observed all the way from

the centerline to about 2 times the core radius. Later on, Rrz starts with a near-zero

value at the centerline and decreases in value till a small negative peak is reached.

This trend gets well established and values beyond this small negative peak change

sign repeatedly. Repeated changing of sign is also observed at the θ = 135o location.

The evolution of Rrr during this time period is presented in figure 3.208. At the

θ = 45o the profile shape changes as we go through this period. The centerline value

drops while the peak moves outwards. At the θ = 135o location, this change in the

profile shape is not observed. Rrr at this location still peaks at or near the centerline

and decays as we move outwards. However this peak centerline value is higher than

the last time period. We do observe small rises and falls in the centerline value as

the GTKE grows through this time period.

Finally we look at the evolution of enstrophy during this final ascent of GTKE

(figure 3.209). The principal observation is the spreading out of enstrophy at θ = 45o

and the containment of enstrophy at θ = 135o. The level does not increase much (we

have observed variations over orders of magnitude before). At θ = 45o, the spreading

out starts with the peak moving away from the centerline. Once the peak reaches to

about the core radius, it drops in value. We don’t really observe the presence of a

definite peak after that - an almost uniform level is observed up till about r/r0 = 1.4

The value then drops steeply. This seems to correspond well with how much of the

vortex is turbulent.

3.7.3.7 Seventh Time Period

As we move into this time period, the GTKE is still increasing in value. Most

of the vortex is now turbulent (see figure 3.210). As we approach the sixth peak of
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GTKE, the TKE peak shows a sudden increase and moves away from the center. It

however returns to the centerline and falls in value again. Note that we now have a

significant level of turbulence near the boundary of the domain. This reflects the fact

that the computational domain size is now no longer large enough to give meaningful

results.

The diffusion of the mean tangential velocity is very rapid in this last period (see

figure 3.211). As always we are looking at the Vθ profiles at a series of different times

during this period. At the θ = 45o location, the variations in the profile, say in terms

of where the peak is located, from one such plotting time to the next is substantial.

This could be a reflection of the limitation is sampling space while computing the

mean quantities. Or maybe there is the presence of anti-diffusion. That has to be

checked by computing the eddy viscosity. The θ = 135o location does not show such

substantial oscillations. The process of diffusion seems to continue in a rather smooth

way. At the end of this time period, the peak has moved far out towards the boundary

and has dropped significantly in value. The peak value is now about 0.2 compared

to about 0.7 at the beginning of the simulation. We observe a significant amount of

diffusion in the axial velocity profile also (see figure 3.212). At the end of this time

period, the wake has all but dissapeared.

The noisiness of the mean axial vorticity profiles (see figure 3.213), due to limita-

tions in the sampling space, make it difficult to see how the profile changes from one

plotting time to the next. However it can be seen that areas of the vortex close to the

boundary are also beginning to have non-zero values. This corresponds well with the

extensive diffusion of mean tangential velocity. Non zero values of mean tangential

vorticity (see figure 3.214) near the boundary can also be observed. We also see that

Ωθ has reduced significantly in value (since the wake like axial flow is all but gone).

Non zero values of mean vorticity near the boundary is further indication that the

simulation has to be stopped. We would need a bigger computational domain to be

able to continue having meaningful simulation results.
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Figure 3.215 shows the evolution of Rθθ during this time period. The main dif-

ference from the last time period is the increased fullness of the profiles at both the

angular locations. As has been the case throughout this simulation, the spread of Rθθ

is further out the θ = 45o location. In fact towards the end of this time period, we

find a substantial level of Rθθ close to the boundary at this angular location.

Let us now take a look at the evolution of Rrθ during this time period (see figure

3.216). The profile shape observed during the last two periods is maintained. The

trend of Rrθ decreasing in magnitude in the inner regions of the vortex while spreading

further out and increasing in level in the outer regions continues through this time

period. At the θ = 45o location, a substantial level Rrθ is observed near the boundary

at the end of this time period.

Figure 3.217 shows the evolution of Rθz during this time period. At the θ = 45o

location, no particular pattern is observed. The profile has a noisy/oscillatory char-

acter. The main observation is that significant levels are observed near the boundary

as we approach the end of this time period. The situation at the θ = 135o location is

similar. The main difference observed is that Rθz is contained closer to the centerline.

The evolution of Rzz in this final time period is presented in figure 3.218. At the

θ = 45o location, the profile has departed from the shape it had maintained for the

last 5 time periods. Instead of seeing a peak at or near the centerline followed by a

decay as we move outwards, we now see a nearly uniform level till about twice the core

radius. The value then decays as we move further out. Note that we have significant

levels near the boundary. At θ = 135o, instead of the level being approximately

uniform as we move away from the centerline, we observe an increase. The level goes

through a peak and then decays again. The location of this peak shifts between being

just inside the core and being outside the core. Also, there are instances of multiple

peaks. The distance from the centerline till which a significant level of Rzz is observed

is lesser at this location as compared to the θ = 45o location.

Figure 3.219 shows the evolution of Rrz during this time period. The main ob-

servation is the presence of significant levels of Rrz in regions further away from the



87

Table 3.1 Case parameters for the strained vortex (Qin(1998))

Case r0/R e/e∗ β∗ ReΓ l∗/r0 Axial flow Domain size

STRN1 0.125 0.8967 0.0281 19268 0.942 wake R = 8.0r0

STRN2 0.15 0.8967 0.0404 29428 0.635 wake R = 6.67r0

STRN3 0.15 0.8967 0.0404 29428 0.635 none R = 6.67r0

STRN4 0.15 0.8967 0.0404 58836 0.449 none R = 6.67r0

centerline. This spreading of Rrz extends further out at the θ = 45o location. The

values are predominantly negative. There are occurances of changes in the sign.

The evolution of Rrr during this time period is presented in figure 3.220. At

θ = 45o the outward spreading of Rrr that started in the last time period continues.

No adherence to any particular profile shape is observed. Note that a significant level

of Rrr is now present close to the boundary. At the θ = 135o location, the general

profile shape still has a peak at or near the centerline. Rrr then decays as we move

outwards. However, the profiles have become much fuller in this time period. The

outward spread of Rrr corresponds well with outer regions of the vortex becoming

more turbulent.

The level of enstrophy does not vary much during this time period (see figure

3.221). At the θ = 45o location, we are seeing a substantial level of enstrophy near

the boundary. This is of course in conflict with our use of potential flow boundary

conditions.



88

r/r0

V
θ
/V

0
an

d
V

z/
V

0

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

<---- V
θ
/V0

<---- Vz/V0

Figure 3.1 The initial mean velocity profiles

r/r0

k/
V

02

0 1 2 3 4
0.0E+00

1.0E-04

2.0E-04

3.0E-04

Figure 3.2 A typical initial TKE profile at an arbitrary azimuthal location



89

Figure 3.3 Streamlines for a strained vortex - cross-sectional view (Qin (1998))
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Figure 3.13 Vorticity magnitude isosurfaces for STRN4 at t/T = 35.27; (a), (b), (c)
and (d) correspond to 0.1, 0.25, 0.5 and 0.75 times the peak vorticity magnitude

respectively
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Figure 3.16 Vorticity magnitude isosurfaces for STRN4 at t/T = 40; (a), (b), and
(c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude respectively
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(c)

Figure 3.17 2-D Energy spectra for STRN4 at t/T = 40; Contours of log10(E2D);
(a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.18 Vorticity magnitude isosurfaces for STRN4 at t/T = 42.98; (a), (b), and
(c) correspond to 0.1, 0.25, and 0.5 times the peak vorticity magnitude respectively
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(a) (b)

(c)

Figure 3.19 Vorticity magnitude isosurfaces for STRN4 at t/T = 45.12; (a), (b), and
(c) correspond to 0.1, 0.25, and 0.5 times the peak vorticity magnitude respectively
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(c)

Figure 3.20 2-D Energy spectra for STRN4 at t/T = 45.12; Contours of log10(E2D);
(a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.21 Vorticity magnitude isosurfaces for STRN4 at t/T = 49.01; (a), (b),
and (c) correspond to 0.1, 0.25, 0.5 times the peak vorticity magnitude respectively
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(a) (b)

(c)

Figure 3.22 Vorticity magnitude isosurfaces for STRN4 at t/T = 56.83; (a), (b), and
(c) correspond to 0.1, 0.25, and 0.5 times the peak vorticity magnitude respectively
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(c)

Figure 3.23 2-D Energy spectra for STRN4 at t/T = 56.83; Contours of log10(E2D);
(a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively



106

(a) (b)

(c)

Figure 3.24 Vorticity magnitude isosurfaces for STRN4 at t/T = 67.56; (a), (b), and
(c) correspond to 0.1, 0.25, and 0.5 times the peak vorticity magnitude respectively
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(c)

Figure 3.25 2-D Energy spectra for STRN4 at t/T = 67.56; Contours of log10(E2D);
(a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.26 Vorticity magnitude isosurfaces for STRN4 at t/T = 72.01; (a), (b), and
(c) correspond to 0.1, 0.25, and 0.5 times the peak vorticity magnitude respectively
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(c)

Figure 3.27 2-D Energy spectra for STRN4 at t/T = 72.01; Contours of log10(E2D);
(a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.28 Vorticity magnitude isosurfaces for STRN4 at t/T = 78.51; (a), (b), and
(c) correspond to 0.1, 0.25, and 0.5 times the peak vorticity magnitude respectively
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(a) (b)

(c)

Figure 3.29 Vorticity magnitude isosurfaces for STRN4 at t/T = 90.14; (a), (b), and
(c) correspond to 0.1, 0.25, and 0.5 times the peak vorticity magnitude respectively
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(c)

Figure 3.30 2-D Energy spectra for STRN4 at t/T = 90.14; Contours of log10(E2D);
(a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.31 Vorticity magnitude isosurfaces for STRN4 at t/T = 100.78; (a), (b),
and (c) correspond to 0.1, 0.25, and 0.5 times the peak vorticity magnitude

respectively
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(c)

Figure 3.32 2-D Energy spectra for STRN4 at t/T = 100.78; Contours of
log10(E2D); (a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.33 Vorticity magnitude isosurfaces for STRN4 at t/T = 104.37; (a), (b),
and (c) correspond to 0.1, 0.25, and 0.5 times the peak vorticity magnitude

respectively
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(c)

Figure 3.34 2-D Energy spectra for STRN4 at t/T = 104.37; Contours of
log10(E2D); (a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.35 Vorticity magnitude isosurfaces for STRN4 at t/T = 107.57; (a), (b),
and (c) correspond to 0.1, 0.25, and 0.5 times the peak vorticity magnitude

respectively
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(c)

Figure 3.36 2-D Energy spectra for STRN4 at t/T = 107.57; Contours of
log10(E2D); (a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.37 Vorticity magnitude isosurfaces for STRN4 at t/T = 127.08; (a), (b),
and (c) correspond to 0.1, 0.25, and 0.5 times the peak vorticity magnitude

respectively
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(c)

Figure 3.38 2-D Energy spectra for STRN4 at t/T = 127.08; Contours of
log10(E2D); (a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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Figure 3.39 Variation of turbulent kinetic energy for STRN4 in the first period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.40 Variation of mean tangential velocity for STRN4 in the first period at
(a) θ = 45o and (b) θ = 135o



122

r/r0

V
z

0 1 2 3 4 5
-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003 t/T

0
0.72
2.27
5.83
7.13

9.38

15.21

(a)

r/r0

V
z

0 1 2 3 4 5
-0.00015

-0.0001

-5E-05

0

5E-05

0.0001

0.00015 t/T

0
0.72
2.27
5.83
7.13

9.38

15.21

(b)

Figure 3.41 Variation of mean axial velocity for STRN4 in the first period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.42 Variation of mean radial velocity for STRN4 in the first period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.43 Variation of mean axial vorticity for STRN4 in the first period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.44 Variation of mean tangential vorticity for STRN4 in the first period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.45 Variation of mean radial vorticity for STRN4 in the first period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.46 Variation of Rθθ for STRN4 in the first period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.47 Variation of Rrθ for STRN4 in the first period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.48 Variation of Rθz for STRN4 in the first period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.49 Variation of Rzz for STRN4 in the first period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.50 Variation of Rrz for STRN4 in the first period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.51 Variation of Rrr for STRN4 in the first period at (a) θ = 45o and (b)
θ = 135o

r/r0

E
ns

tro
ph

y

0 1 2 3 4 5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t/T

2.27

5.83

7.13

9.38

15.21

(a)

r/r0

E
ns

tro
ph

y

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

t/T

2.27

5.83

7.13

9.38

15.21

(b)

Figure 3.52 Variation of enstrophy for STRN4 in the first period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.53 Variation of turbulent kinetic energy for STRN4 in the second period
at (a) θ = 45o and (b) θ = 135o
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Figure 3.54 Variation of mean tangential velocity for STRN4 in the second period
at (a) θ = 45o and (b) θ = 135o
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Figure 3.55 Variation of mean axial vorticity for STRN4 in the second period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.56 Variation of Rθθ for STRN4 in the second period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.57 Variation of Rrθ for STRN4 in the second period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.58 Variation of Rzz for STRN4 in the second period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.59 Variation of Rrr for STRN4 in the second period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.60 Variation of enstrophy for STRN4 in the second period at (a) θ = 45o

and (b) θ = 135o
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Figure 3.61 Variation of turbulent kinetic energy for STRN4 in the third period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.62 Variation of mean tangential velocity for STRN4 in the third period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.63 Variation of mean axial vorticity for STRN4 in the third period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.64 Variation of Rθθ for STRN4 in the third period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.65 Variation of Rrθ for STRN4 in the third period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.66 Variation of Rzz for STRN4 in the third period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.67 Variation of Rrr for STRN4 in the third period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.68 Variation of enstrophy for STRN4 in the third period at (a) θ = 45o

and (b) θ = 135o
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Figure 3.69 Variation of turbulent kinetic energy for STRN4 in the fourth period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.70 Variation of mean tangential velocity for STRN4 in the fourth period
at (a) θ = 45o and (b) θ = 135o
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Figure 3.71 Variation of mean axial vorticity for STRN4 in the fourth period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.72 Variation of Rθθ for STRN4 in the fourth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.73 Variation of Rrθ for STRN4 in the fourth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.74 Variation of Rzz for STRN4 in the fourth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.75 Variation of Rrr for STRN4 in the fourth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.76 Variation of enstrophy for STRN4 in the fourth period at (a) θ = 45o

and (b) θ = 135o
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Figure 3.77 1-D energy spectra for STRN2 at t/T = 4.79
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Figure 3.78 1-D energy spectra for STRN2 at t/T = 25.61
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Figure 3.79 1-D energy spectra for STRN2 at t/T = 104.3

k
θ

E
1D

100 101 10210-3

10-2

10-1

100

101

102

103

r/r0

0.5

1.0

2.0

Figure 3.80 1-D energy spectra for STRN2 at t/T = 111.27
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(a) (b)

(c) (d)

Figure 3.81 Vorticity magnitude isosurfaces for STRN2 at t/T = 2.53; (a), (b), (c)
and (d) correspond to 0.1, 0.25, 0.5 and 0.75 times the peak vorticity magnitude

respectively
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(c)

Figure 3.82 2-D Energy spectra for STRN2 at t/T = 2.53; Contours of log10(E2D);
(a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.83 Vorticity magnitude isosurfaces for STRN2 at t/T = 3.07; (a), (b) and
(c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude respectively
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(c)

Figure 3.84 2-D Energy spectra for STRN2 at t/T = 3.07; Contours of log10(E2D);
(a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.85 Vorticity magnitude isosurfaces for STRN2 at t/T = 3.91; (a), (b) and
(c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude respectively
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(c)

Figure 3.86 2-D Energy spectra for STRN2 at t/T = 3.91; Contours of log10(E2D);
(a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.87 Vorticity magnitude isosurfaces for STRN2 at t/T = 4.79; (a), (b) and
(c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude respectively
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(c)

Figure 3.88 2-D Energy spectra for STRN2 at t/T = 4.79; Contours of log10(E2D);
(a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.89 Vorticity magnitude isosurfaces for STRN2 at t/T = 7.61; (a), (b) and
(c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude respectively
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(c)

Figure 3.90 Vorticity magnitude isosurfaces for STRN2 at t/T = 11.43; (a), (b) and
(c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude respectively
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(a) (b)

(c)

Figure 3.91 Vorticity magnitude isosurfaces for STRN2 at t/T = 16.22; (a), (b) and
(c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude respectively
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(a) (b)

(c)

Figure 3.92 Vorticity magnitude isosurfaces for STRN2 at t/T = 18.46; (a), (b) and
(c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude respectively
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(c)

Figure 3.93 2-D Energy spectra for STRN2 at t/T = 18.46; Contours of log10(E2D);
(a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.94 Vorticity magnitude isosurfaces for STRN2 at t/T = 22.07; (a), (b) and
(c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude respectively
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(c)

Figure 3.95 2-D Energy spectra for STRN2 at t/T = 22.07; Contours of log10(E2D);
(a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.96 Vorticity magnitude isosurfaces for STRN2 at t/T = 23.58; (a), (b) and
(c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude respectively
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(c)

Figure 3.97 2-D Energy spectra for STRN2 at t/T = 23.58; Contours of log10(E2D);
(a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.98 Vorticity magnitude isosurfaces for STRN2 at t/T = 25.61; (a), (b) and
(c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude respectively
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(c)

Figure 3.99 2-D Energy spectra for STRN2 at t/T = 25.61; Contours of log10(E2D);
(a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.100 Vorticity magnitude isosurfaces for STRN2 at t/T = 32.01; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(a) (b)

(c)

Figure 3.101 Vorticity magnitude isosurfaces for STRN2 at t/T = 40.01; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively



163

(a) (b)

(c)

Figure 3.102 Vorticity magnitude isosurfaces for STRN2 at t/T = 51.53; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(c)

Figure 3.103 2-D Energy spectra for STRN2 at t/T = 51.53; Contours of
log10(E2D); (a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively



165

(a) (b)

(c)

Figure 3.104 Vorticity magnitude isosurfaces for STRN2 at t/T = 56.01; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(a) (b)

(c)

Figure 3.105 Vorticity magnitude isosurfaces for STRN2 at t/T = 62; (a), (b) and
(c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude respectively
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(a) (b)

(c)

Figure 3.106 Vorticity magnitude isosurfaces for STRN2 at t/T = 68.08; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(c)

Figure 3.107 2-D Energy spectra for STRN2 at t/T = 68.08; Contours of
log10(E2D); (a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.108 Vorticity magnitude isosurfaces for STRN2 at t/T = 74.04; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(a) (b)

(c)

Figure 3.109 Vorticity magnitude isosurfaces for STRN2 at t/T = 80.52; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(c)

Figure 3.110 2-D Energy spectra for STRN2 at t/T = 80.52; Contours of
log10(E2D); (a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.111 Vorticity magnitude isosurfaces for STRN2 at t/T = 83.51; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(a) (b)

(c)

Figure 3.112 Vorticity magnitude isosurfaces for STRN2 at t/T = 85.45; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(c)

Figure 3.113 2-D Energy spectra for STRN2 at t/T = 85.45; Contours of
log10(E2D); (a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.114 Vorticity magnitude isosurfaces for STRN2 at t/T = 87.66; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(c)

Figure 3.115 2-D Energy spectra for STRN2 at t/T = 87.66; Contours of
log10(E2D); (a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.116 Vorticity magnitude isosurfaces for STRN2 at t/T = 90.92; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively



178

(a) (b)

(c)

Figure 3.117 Vorticity magnitude isosurfaces for STRN2 at t/T = 94.12; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(c)

Figure 3.118 2-D Energy spectra for STRN2 at t/T = 94.12; Contours of
log10(E2D); (a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.119 Vorticity magnitude isosurfaces for STRN2 at t/T = 96.77; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(a) (b)

(c)

Figure 3.120 Vorticity magnitude isosurfaces for STRN2 at t/T = 98.45; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively



182

k
θ

k z

-10 -5 0 5 10
0

5

10

15

20

2.24
1.89
1.54
1.19
0.84
0.49
0.14

-0.21
-0.56
-0.90
-1.25
-1.60
-1.95
-2.30
-2.65

(a)

k
θ

k z

-10 -5 0 5 10
0

5

10

15

20

1.88
1.56
1.23
0.91
0.58
0.26

-0.07
-0.40
-0.72
-1.05
-1.37
-1.70
-2.02
-2.35
-2.67

(b)

k
θ

k z

-10 -5 0 5 10
0

5

10

15

20

1.40
1.11
0.82
0.52
0.23

-0.06
-0.36
-0.65
-0.95
-1.24
-1.53
-1.83
-2.12
-2.41
-2.71

(c)

Figure 3.121 2-D Energy spectra for STRN2 at t/T = 98.45; Contours of
log10(E2D); (a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.122 Vorticity magnitude isosurfaces for STRN2 at t/T = 100.29; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(a) (b)

(c)

Figure 3.123 Vorticity magnitude isosurfaces for STRN2 at t/T = 101.34; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(c)

Figure 3.124 2-D Energy spectra for STRN2 at t/T = 101.34; Contours of
log10(E2D); (a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.125 Vorticity magnitude isosurfaces for STRN2 at t/T = 103.05; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(a) (b)

(c)

Figure 3.126 Vorticity magnitude isosurfaces for STRN2 at t/T = 104.3; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(c)

Figure 3.127 2-D Energy spectra for STRN2 at t/T = 104.3; Contours of
log10(E2D); (a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.128 Vorticity magnitude isosurfaces for STRN2 at t/T = 106.41; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(a) (b)

(c)

Figure 3.129 Vorticity magnitude isosurfaces for STRN2 at t/T = 108.55; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(a) (b)

(c)

Figure 3.130 Vorticity magnitude isosurfaces for STRN2 at t/T = 109.52; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(a) (b)

(c)

Figure 3.131 Vorticity magnitude isosurfaces for STRN2 at t/T = 111.27; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(c)

Figure 3.132 2-D Energy spectra for STRN2 at t/T = 111.27; Contours of
log10(E2D); (a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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(a) (b)

(c)

Figure 3.133 Vorticity magnitude isosurfaces for STRN2 at t/T = 112.53; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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(a) (b)

(c)

Figure 3.134 Vorticity magnitude isosurfaces for STRN2 at t/T = 113.93; (a), (b)
and (c) correspond to 0.1, 0.25 and 0.5 times the peak vorticity magnitude

respectively
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Figure 3.135 2-D Energy spectra for STRN2 at t/T = 113.93; Contours of
log10(E2D); (a), (b) and (c) correspond to r/r0 = 0.5, 1.0 and 2.0 respectively
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Figure 3.136 Variation of turbulent kinetic energy for STRN2 in the first period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.137 Variation of mean tangential velocity for STRN2 in the first period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.138 Variation of mean axial velocity for STRN2 in the first period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.139 Variation of mean radial velocity for STRN2 in the first period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.140 Variation of mean axial vorticity for STRN2 in the first period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.141 Variation of mean tangential vorticity for STRN2 in the first period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.142 Variation of mean radial vorticity for STRN2 in the first period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.143 Variation of Rθθ for STRN2 in the first period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.144 Variation of Rrθ for STRN2 in the first period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.145 Variation of Rθz for STRN2 in the first period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.146 Variation of Rzz for STRN2 in the first period at (a) θ = 45o and (b)
θ = 135o

r/r0

R
rz

0 1 2 3 4 5
-0.015

-0.01

-0.005

0

0.005

0.01

t/T
0

0.58

2.14

2.53
2.77

3.07
3.46
3.91
4.79

(a)

r/r0

R
rz

0 1 2 3 4 5
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

t/T
0

0.58

2.14

2.53
2.77

3.07
3.46
3.91
4.79

(b)

Figure 3.147 Variation of Rrz for STRN2 in the first period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.148 Variation of Rrr for STRN2 in the first period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.149 Variation of enstrophy for STRN2 in the first period at (a) θ = 45o

and (b) θ = 135o
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Figure 3.150 Variation of turbulent kinetic energy for STRN2 in the second period
at (a) θ = 45o and (b) θ = 135o
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Figure 3.151 Variation of mean tangential velocity for STRN2 in the second period
at (a) θ = 45o and (b) θ = 135o
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Figure 3.152 Variation of mean axial velocity for STRN2 in the second period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.153 Variation of mean axial vorticity for STRN2 in the second period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.154 Variation of mean tangential vorticity for STRN2 in the second period
at (a) θ = 45o and (b) θ = 135o
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Figure 3.155 Variation of Rθθ for STRN2 in the second period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.156 Variation of Rrθ for STRN2 in the second period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.157 Variation of Rθz for STRN2 in the second period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.158 Variation of Rzz for STRN2 in the second period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.159 Variation of Rrz for STRN2 in the second period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.160 Variation of Rrr for STRN2 in the second period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.161 Variation of enstrophy for STRN2 in the second period at (a) θ = 45o

and (b) θ = 135o
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Figure 3.162 Variation of turbulent kinetic energy for STRN2 in the third period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.163 Variation of mean tangential velocity for STRN2 in the third period
at (a) θ = 45o and (b) θ = 135o
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Figure 3.164 Variation of mean axial velocity for STRN2 in the third period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.165 Variation of mean axial vorticity for STRN2 in the third period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.166 Variation of mean tangential vorticity for STRN2 in the third period
at (a) θ = 45o and (b) θ = 135o
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Figure 3.167 Variation of Rθθ for STRN2 in the third period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.168 Variation of Rrθ for STRN2 in the third period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.169 Variation of Rθz for STRN2 in the third period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.170 Variation of Rzz for STRN2 in the third period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.171 Variation of Rrz for STRN2 in the third period at (a) θ = 45o and (b)
θ = 135o



215

r/r0

R
rr

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

t/T
22.07

23.58

25.58

29.43
32.01

36.49
40.01
46.03
51.48

(a)

r/r0

R
rr

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

t/T
22.07

23.58

25.58

29.43
32.01

36.49
40.01
46.03
51.48

(b)

Figure 3.172 Variation of Rrr for STRN2 in the third period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.173 Variation of enstrophy for STRN2 in the third period at (a) θ = 45o

and (b) θ = 135o
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Figure 3.174 Variation of turbulent kinetic energy for STRN2 in the fourth period
at (a) θ = 45o and (b) θ = 135o
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Figure 3.175 Variation of mean tangential velocity for STRN2 in the fourth period
at (a) θ = 45o and (b) θ = 135o
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Figure 3.176 Variation of mean axial velocity for STRN2 in the fourth period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.177 Variation of mean axial vorticity for STRN2 in the fourth period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.178 Variation of mean tangential vorticity for STRN2 in the fourth period
at (a) θ = 45o and (b) θ = 135o
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Figure 3.179 Variation of Rθθ for STRN2 in the fourth period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.180 Variation of Rrθ for STRN2 in the fourth period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.181 Variation of Rθz for STRN2 in the fourth period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.182 Variation of Rzz for STRN2 in the fourth period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.183 Variation of Rrz for STRN2 in the fourth period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.184 Variation of Rrr for STRN2 in the fourth period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.185 Variation of enstrophy for STRN2 in the fourth period at (a) θ = 45o

and (b) θ = 135o
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Figure 3.186 Variation of turbulent kinetic energy for STRN2 in the fifth period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.187 Variation of mean tangential velocity for STRN2 in the fifth period at
(a) θ = 45o and (b) θ = 135o



223

r/r0

V
z

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t/T

85.45
87.63

90.92
94.12

83.51

(a)

r/r0

V
z

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

t/T

85.45
87.63

90.92
94.12

83.51

(b)

Figure 3.188 Variation of mean axial velocity for STRN2 in the fifth period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.189 Variation of mean axial vorticity for STRN2 in the fifth period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.190 Variation of mean tangential vorticity for STRN2 in the fifth period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.191 Variation of Rθθ for STRN2 in the fifth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.192 Variation of Rrθ for STRN2 in the fifth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.193 Variation of Rθz for STRN2 in the fifth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.194 Variation of Rzz for STRN2 in the fifth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.195 Variation of Rrz for STRN2 in the fifth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.196 Variation of Rrr for STRN2 in the fifth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.197 Variation of enstrophy for STRN2 in the fifth period at (a) θ = 45o

and (b) θ = 135o
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Figure 3.198 Variation of turbulent kinetic energy for STRN2 in the sixth period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.199 Variation of mean tangential velocity for STRN2 in the sixth period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.200 Variation of mean axial velocity for STRN2 in the sixth period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.201 Variation of mean axial vorticity for STRN2 in the sixth period at (a)
θ = 45o and (b) θ = 135o
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Figure 3.202 Variation of mean tangential vorticity for STRN2 in the sixth period
at (a) θ = 45o and (b) θ = 135o
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Figure 3.203 Variation of Rθθ for STRN2 in the sixth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.204 Variation of Rrθ for STRN2 in the sixth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.205 Variation of Rθz for STRN2 in the sixth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.206 Variation of Rzz for STRN2 in the sixth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.207 Variation of Rrz for STRN2 in the sixth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.208 Variation of Rrr for STRN2 in the sixth period at (a) θ = 45o and (b)
θ = 135o
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Figure 3.209 Variation of enstrophy for STRN2 in the sixth period at (a) θ = 45o

and (b) θ = 135o
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Figure 3.210 Variation of turbulent kinetic energy for STRN2 in the seventh period
at (a) θ = 45o and (b) θ = 135o
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Figure 3.211 Variation of mean tangential velocity for STRN2 in the seventh period
at (a) θ = 45o and (b) θ = 135o
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Figure 3.212 Variation of mean axial velocity for STRN2 in the seventh period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.213 Variation of mean axial vorticity for STRN2 in the seventh period at
(a) θ = 45o and (b) θ = 135o
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Figure 3.214 Variation of mean tangential vorticity for STRN2 in the seventh
period at (a) θ = 45o and (b) θ = 135o
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Figure 3.215 Variation of Rθθ for STRN2 in the seventh period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.216 Variation of Rrθ for STRN2 in the seventh period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.217 Variation of Rθz for STRN2 in the seventh period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.218 Variation of Rzz for STRN2 in the seventh period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.219 Variation of Rrz for STRN2 in the seventh period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.220 Variation of Rrr for STRN2 in the seventh period at (a) θ = 45o and
(b) θ = 135o
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Figure 3.221 Variation of enstrophy for STRN2 in the seventh period at (a) θ = 45o

and (b) θ = 135o
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4. CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

The overall aim of the research work presented in this thesis has been to enhance

our understanding of strained turbulent axial vortices. The approach taken is that of

direct numerical simulations (DNS). Two specific cases have been considered:

• An initially laminar vortex with no axial flow. This simulation is referred to as

STRN4.

• An initially laminar vortex with a wake like axial velocity profile. This simula-

tion is referred to as STRN2.

Both these simulations start with a random perturbation of the initially laminar

vortices. The evolution of the overall level of turbulence is studied by computing

the global turbulent kinetic energy (GTKE). One dimensional energy spectra are

computed at times when the vortex is highly turbulent. This gives us an idea of how

well the smaller length scales are being resolved in our simulations. Flow visualization

is performed by plotting isosurfaces of vorticity magnitude. In this manner we have

been able to study the evolution of the vortices in terms of their structure. Two

dimensional energy spectra are computed to study the distribution of turbulent kinetic

energy over different wavenumbers. This gives us information about the range of

length scales present (higher wavenumbers correspond to smaller length scales). Also,

we can pick out modes that are dominant and correlate this information with features

observed in the vortex structure. In addition to gaining a broad understanding of the

flow in this manner, the evolution of some mean and statistical quantities of interest
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(mean velocity and vorticity components, turbulent kinetic energy, Reynolds stresses

and enstrophy) has been looked at.

STRN4, the simulation without an axial flow, is studied in detail first so that

we may focus on the effect of the strain field exclusively. We observe an initial

decay of turbulence. This is followed by a period during which the turbulence grows

exponentially. During this period we can identify (kθ, kz) = (±1, 4) to be be the most

energetic modes. This corresponds to a sinusoidal bending along the vortex axis with

a wavenumber of 4 and the presence of left and right running helical waves. These

features can indeed be observed in the vortex structure. We also observe that the

instability is initiated inside the vortex core. These observations assure us that we

are indeed capturing the elliptical instability. As the level of turbulence grows, we

observe an increased presence of small scale structure. This can be seen in the flow

visualization pictures as well as in the 2-D energy spectra, where turbulent kinetic

energy is seen to be spread over a larger range of wavenumbers.

The turbulence then saturates and begins to decay. During this period the vortex

is seen to re-consolidate (meaning it has less fine scale structure). At the end of

this period of decay the dominant modes are observed to be shifting to (kθ, kz) =

(±1, 3). This shift is confirmed when (±1, 3) are observed to be the dominant modes

as the GTKE again grows exponentially, albeit with a lower growth rate than before.

The increase in wavelength of the sinusoidal bending of the vortex axis is reflected in

the flow visualization pictures. As the GTKE peaks again, we observe an increased

presence of small scale structure. As before this is reflected in the flow visualization

pictures and the 2-D energy spectra.

Once again the turbulence decays. This time as the GTKE approaches an ebb, we

do not observe a significant decrease in the presence of fine scale structure. However,

the level of turbulent kinetic energy in these small length scales (higher wavenumbers)

is seen to have decreased. This is as expected since the overall level of turbulence is

decreasing. The dominant modes are again observed to be shifting, now to (±1, 2).

This is confirmed as the GTKE begins its final ascent of the simulation. Turbulence
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again grows exponentially, with a still lower growth rate. In the inner regions of

the vortex the mode (0,1) is also seen to have a substantial level of energy. As the

turbulence keeps growing, the outer regions of the vortex start showing an increased

presence of fine scale structure. In the outer regions we also observe an increase in the

energy carried by the dominant modes (±1, 2). This corresponds well with the helical

waves being more pronounced in the vortex structure. In the inner regions however,

the energy contained by the dominant modes starts reducing. This trend of the

dominant modes carrying lower levels of energy is carried out into the outer regions

as the turbulence grows. The range of wavenumbers carrying a significant amount

of turbulent kinetic energy increases though. Eventually we see that a substantial

level of vorticity reaches out near the boundary. This is in conflict with our use of

potential flow boundary conditions. The simulation thus has to be stopped. Although

we cannot make a definite statement of what the vortex would do next, it seems that

we now have an unbounded growth of turbulence. This is reflected in the dominant

modes further moving to (±1, 1).

In addition to gaining the above broad vision of the flow physics, a close look has

also been taken at evolution of some mean and statistical quantities of interest (mean

velocity and vorticity components, turbulent kinetic energy, Reynolds stresses and

enstrophy). Some of the principal observations can be listed as follows:

• The turbulent kinetic energy (TKE) peak moves to the center early on in the

simulation. This is consistent with the fact that the elliptic instability gets

initiated inside the vortex core. The TKE peak stays established at the center

and increases and decreases in value as the overall level of turbulence rises and

falls during the simulation.

• The peak of the mean axial vorticity moves away from the centerline during the

first exponential growth of turbulence.

• The enstrophy peak also moves away from the centerline to the location estab-

lished by the mean axial vorticity above.
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• Rrθ values along the major and minor axes of the elliptical flow are of similar

magnitudes but opposite sign.

• During the first and third ascents of GTKE, Rθθ values along the major axis

are about twice as large as those along the minor axis. The opposite is observed

during the time between these two GTKE ascents.

• During the first and third ascents of GTKE, Rrr values along the minor axis are

about twice as large as those along the major axis. The opposite is observed

during the time between these two GTKE ascents.

STRN2, which included axial flow, was now looked at closely. In contrast to

STRN4, where the turbulence turbulence went through a brief period of decay before

growing exponentially, in STRN2 we observe an exponential growth of turbulence soon

after the simulation starts. Initially the unstable modes are found to be (kθ, kz) =

(1,1), (2,2), (3,3), (4,4) and (5,5). Helical waves are observed in the vortex structure.

These observations tell us that the instability caused by the wake-like axial flow is

dominating during this growth of turbulence. As the turbulence grows, we have

an increased presence of fine scale structure. This gets reflected in the vorticity

magnitude isosurfaces plots as well as in the 2-D spectra where turbulent kinetic

energy is seen to be spread over a wide range of wavenumbers (higher wavenumbers

correspond to smaller length scales). Also we see that the dominant modes are shifting

in terms of the kz component. This is reflected in the number of times the helical

waves are seen to twist around the vortex. The turbulence eventually saturates and

begins to decay. At the peak of GTKE, we observe (-1,1) to be one of the dominant

modes in the interior of the vortex. It is possible that we are now beginning to feel the

presence of the elliptical instability. Also, the presence of this dominant mode only

in the interior of the vortex could be a correspondence to the fact that the elliptical

instability gets initiated inside the vortex core.

As the GTKE decays, the vortex consolidates (meaning we have a reduced presence

of fine scale structure). We also identify the presence of both left and right running
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helical waves in the vortex structure. As this descent of GTKE culminates in an

ebb the dominant modes are observed to include the (0,1) mode. This corresponds

to variations in core area as we move along the vortex axis. Thus we are observing

the presence of dominant modes that correspond to different instability mechanisms.

This corresponds well with the varied set of features observed in the vortex structure.

We have sinusoidal bending of the vortex axis, variations in core area as we move

along the vortex axis and left and right running helical waves.

As the GTKE rises again, this time with a much lower growth rate, we continue to

see the presence of a varied set of features in the vortex structure. These correspond to

dominant modes that indicate the presence of multiple instability mechanisms. As the

GTKE peaks again we observe a tightening up of the vortex. Most of the vorticity is

now contained in a small region around the vortex axis. The vortex loosens up as the

GTKE decays again and approaches its next ebb. Upon reaching this ebb, we observe

that the turbulence maintains its level for an extended period of time. Although the

level of turbulence does not vary much during this period, we do observe a shift in

the dominant modes. This could indicate that the eventual instability mechanisms

are now getting selected. At the end of this period, which is marked by a lack of

significant variation in how turbulent the vortex is, the dominant modes are found to

be (±1, 1), (0,1) and (0,2).

The GTKE now begins its final ascent of this simulation with a still lower growth

rate. The dominant modes are consistently observed to be (±1, 1), (0,2) and (2,2).

The vortex is again found to be tightened up during this ascent. In the later phases

of this ascent, the vortex loosens up again. Sinusoidal bending along the vortex axis

and left and right running helical waves are prominent in the vortex structure. An

increased presence of small scale structure is observed as the vortex becomes more and

more turbulent. The GTKE peaks with (±1, 1) and (0,2) being the dominant modes.

Finally the GTKE plunges and we see (±1, 1) to be the only dominant modes. These

were also the eventual dominant modes in STRN4. The principal features of the

vortex structure in STRN4 were a sinusoidal bending along the vortex axis and left
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and right running helical waves. As noted above, these features are prominent in the

final stages of STRN2 also. The growth rates during the final GTKE ascents in both

the simulations are also comparable. It seems that the same instability mechanism

eventually dominates in both the cases.

We now observe that a significant level of vorticity is now present near the bound-

ary of the computational domain. As was the case in STRN4, this is in conflict with

our choice of potential flow boundary conditions. With our current computational

domain size, the simulation cannot be carried on meaningfully.

Following the trend set in STRN4, after obtaining the above broad understanding

of the flow physics, the evolution of some mean and statistical quantities of interest

was studied. Some of the principal observations are:

• In the early stages of the simulation, the turbulent kinetic energy (TKE) peak

moves to a location just near the core edge. As the GTKE keeps growing the

peak oscillates between moving inwards to the centerline and outwards to the

core edge. As the GTKE peaks, the peak is found to be moving inwards. The

peak moves to the centerline when the GTKE descends for the first time. It

then stays at or near the centerline. Right towards the end of the final ascent

of GTKE, the peak does move away from the centerline but then returns.

• Contrary to STRN4, the peak of the mean axial vorticity does not leave the

centerline.

• During the period when GTKE maintains an almost uniform level, Rrθ, Rθz

and Rrz flip signs repeatedly. This is a strong indicator towards the presence of

anti-diffusion.

• During the GTKE ascent after the “steady” state, Rrθ values along the major

and minor axes of the elliptical flow are of similar magnitudes but opposite sign.

This was observed throughout STRN4. This is an indication that in the final

stages of STRN2, turbulence might be behaving in a manner similar to STRN4.
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• During the final ascent of GTKE the mean axial velocity profile inside the core

shows variations in shape. The classical “wake-like” shape is distorted. This

gets reflected in the mean tangential vorticity attaining positive values inside

the core. Towards the end, the initial wake like axial flow profile is observed to

have almost completely decayed.

• Turbulent quantities show a general trend of extending further out (in terms of

having a substantial level) along the major axis.

4.2 Suggestions for Future Work

Although we have looked at how the Reynolds stresses evolve in time, we still do

not understand how they do so. This understanding can be obtained by performing

a Reynolds stress budget analysis. For example, we will understand the relative

importance of mechanisms of production, diffusion, dissipation, etc. However, on

several occasions we have noted that the sampling space available to compute the

mean and statistical quantities was not large enough. This might make it difficult to

obtain meaningful results while computing the budgets. Also, as discussed in chapter

two, the numerical formulation results in the pressure term dropping out from our

governing equations. It is of interest to compute the pressure field to get a more

complete understanding of the flow physics. This will involve writing a Poisson flow

solver. Once we have the pressure field, we will able to compute statistical quantities

like pressure strain.

As mentioned in chapter one, the Reynolds numbers for the DNS are about three

orders of magnitude smaller than those found in the wake vortices of large commercial

aircraft. While LES will not be able to reach full scale Reynolds numbers, it will allow

us to study the effects of varying Reynolds numbers. The LES methodology is covered

in detail in Appendix C, first in detail and then in the context of the current numerical

method. The DNS code used for the current study has been modified to be able to
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perform LES. This code needs to be validated and then used to study the vortex at

higher Reynolds numbers.

With particular reference to the wake hazard problem, it would be of interest to

simulate a pair of axial vortices (rather than accounting for the effect of one vortex

on the other via a strain field). This will include effects such as a variable strain rate,

cooperative instability, etc.
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Appendix A: B-splines : Construction and Properties

This appendix reviews briefly the construction and properties of B-splines. For

an in-depth treatise the reader is directed to de Boor (1978).

A.1 Construction

B-splines form a basis for the space of piecewise polynomial functions. de Boor

(1978) developed the following recursive method to construct the N splines of order

k for a given set of N + k knot points [η1, η1, η2, . . . , ηN+k]:

gk
l (r) =

(r − ηl)

(ηl+k−1 − ηl)
gk−1

l (r) +
(ηl+k − r)

(ηl+k − ηl+1)
gk−1

l+1 (r) (A.1)

where gk
l (r) is the lth B-spline of order k and ηl is the knot coordinate. The construc-

tion starts with the first order B-splines given by

g1
l (r) =





1, ηl ≤ r ≤ ηl+1

0, otherwise.
(A.2)

B-splines at the boundaries are constructed using multiple knots. k−1 multiple knots

are required at the boundaries for B-splines of order k. The first derivative of the

B-splines can be constructed as follows:

d

dr
gk

l =
(k − 1)gk−1

l

(ηl+k−1 − ηl)
− (k − 1)gk−1

l+1

(ηl+k − ηl+1)
. (A.3)

Repeated application of the above equation gives the higher derivatives.

A.2 Properties

1. B-splines have local support. In general, a B-spline of order k has support on

k + 1 intervals. Also, B-splines are positive.

gk
l (r) > 0 , for ηl < r < ηl+k ,

gk
l (r) = 0 , for r < ηl or r > ηl+k .

2. The B-splines satisfy the following equation:
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N∑

l=1

gk
l (r) = 1

3. At r = 0

gq
l (0) = 0 for l > q + 1; q = 0, 1, 2, ...., k − 1

and at the other boundary, r = 1

gq
l (1) = 0 for l < N − q; q = 0, 1, 2, ...., k − 1

4. Properties 2 and 3 can be combined to deduce the following:

gk
1(r)

∣∣∣
r=0

= gk
N(r)

∣∣∣
r=1

= 1 ,

d

dr

[
gk
1(r)

] ∣∣∣
r=0

= − d

dr

[
gk
2(r)

] ∣∣∣
r=0

,

d

dr

[
gk

N(r)
] ∣∣∣

r=1
= − d

dr

[
gk

N−1(r)
] ∣∣∣

r=1
.

A.3 Galerkin method

Consider the following model equation,

dn

drn
φ(r) = f(r) (A.4)

which is solved on the domain r ∈ [ri, rf ]. If n = 0, equation A.4 is a representation

problem. Let φ̃(r) be an approximation of φ in term of B-splines of order k on the

knot set that we have selected:

φ̃(r) =
∑

l

αlgl(r) (A.5)

The expansion coefficients in equation A.5 can be obtained by substituting the ex-

pansion equation A.5 into equation A.4 and applying the Galerkin projection

∫ rf

ri

gk(r)

N+k∑

l=1

dn

drn
[gl(r)]αlrdr =

∫ rf

ri

gk(r)f(r)rdr. (A.6)
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Evaluating the integrals in equation A.6, we obtain a system of linear equations for

α:

Aα = b (A.7)

where

A = {akl} =

∫ rf

ri

gk(r)
dn

drn
gl(r)rdr , (A.8)

and

b = {bk} =

∫ rf

ri

f(r)gk(r)rdr (A.9)

The matrix A a multidiagonal matrix. The bandwidth of matrix A in the Galerkin

method is equal to 2k + 1.
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Appendix B: B-spline Spectral Method

The formulation of the B-spline spectral method is presented in detail here. First

the mass and viscous matrices are presented. This is followed by expressions for the

velocity and vorticity components. And finally the details regarding the computation

of the non-linear term are presented.

B.1 Mass and Viscous Matrices

The following elemental matrices are used to assemble the mass and viscous ma-

trices as defined in equations (3.8) to (3.11). The Guass quadrature technique is used

to evaluate these elemental matrices at the beginning of the program. However, com-

puter memory limitations necessitate the assembly of the complete mass and viscous

matrices at every time step.

m1 =

∫ R

0

1

r
gk(r)gl(r)dr ,

m2 =

∫ R

0

g′

k(r)g
′

l(r)r dr ,

m3 =

∫ R

0

gk(r)gl(r)r dr ,

m4 =

∫ R

0

g′

k(r)g
′

l(r)r
3 dr + R2gl(R)gk(R) ,

m5 =

∫ R

0

gk(r)g
′

l(r)r
2 dr ,

m6 =

∫ R

0

g′

k(r)gl(r)r
2 dr ,

m7 =

∫ R

0

1

r3
gk(r)gl(r)dr − g′

k(0)g′

l(0) ,

m8 =

∫ R

0

1

r
g′

k(r)g
′

l(r) dr ,

m9 =

∫ R

0

g′′

k(r)g
′′

l (r)r dr − Rg′

k(R)g′′

l (R) ,
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m10 =

∫ R

0

g′′

k(r)g
′′

l (r)r
3 dr − R3g′

k(R)g′′

l (R) − R2gk(R)g′′

l (R) ,

m11 =

∫ R

0

gk(r)g
′

l(r) dr ,

m12 =

∫ R

0

g′

k(r)gl(r) dr ,

m13 =

∫ R

0

g′

k(r)g
′′

l (r)r
2 dr − R2gk(R)g′′

l (R) ,

m14 =

∫ R

0

g′′

k(r)g
′

l(r)r
2 dr − R2g′

k(R)g′

l(R) .

In addition to the above elemental matrices, the following boundary terms are also

necessary in assembling the mass and viscous matrices:

bt1 = gk(R)gl(R),

bt2 = Rgk(R)g′

l(R),

bt3 =
gk(R)gl(R)

R2
,

bt4 =
gk(R)g′

l(R)

R
+ gk(R)g′′

l (R),

bt5 =
gk(R)g′

l(R)

R
+

gk(R)gl(R)

R2
,

bt6 = R2gk(R)g′′

l (R).

B.1.1 Mass matrices

The mass matrices for Fourier modes (kθ, kz) are:

• kz = 0 and kθ = 0

A++ = m3 ,

A−− = m1 ,

A+− = 0 ,

A−+ = 0 .
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• kz 6= 0 and kθ = 0

A++ = kz
2m3 ,

A−− = 2kz
2m3 + m1 + m2 + bt1 ,

A+− = kz
2m3 ,

A−+ = kz
2m3 .

• kz = 0 and kθ 6= 0

A++ = (kθ
2 − 1)m3 + m4 + R2

2bt1 ,

A−− = (kθ − 1)2m1 + m2 + (1 − kθ)bt1 ,

A+− = 0 ,

A−+ = 0

• kz 6= 0 and kθ 6= 0

A++ = kz
2
[
(kθ

2 − 1)m3 + m4 + R2
2bt1

]
,

A−− = 2kz
2m3 + (kθ − 1)2m1 + m2 + (1 − kθ)bt1 ,

A+− = kz
2 [(kθ + 1)m3 + m5] ,

A−+ = kz
2 [(kθ + 1)m3 + m6] .

B.1.2 Viscous matrices

The mass matrices for Fourier modes (kθ, kz) are:

• kz = 0 and kθ = 0

B++ = − 1

Re
(m1 + m2 − bt2) ,

B−− = − 1

Re
(m8 − m7 − bt5 − bt3) ,

B+− = 0 ,

B−+ = 0 .
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• kz 6= 0 and kθ = 0

B++ = − k2
z

Re

[
k2

zm3 + m1 + m2 − bt2

]
,

B−− = − 1

Re

[
2k4

zm3 − 3(m7 − m8) + 3k2
z(m1 + m2) + m9+

k2
z(bt1 − 2bt2) − 2bt3 − bt4 − bt5

]
,

B+− = − k2
z

Re

[
k2

zm3 + m1 + m2 − bt2

]
,

B−+ = − k2
z

Re

[
k2

zm3 + m1 + m2 − bt2

]
.

• kz = 0 and kθ 6= 0

B++ = − 1

Re

[
(k2

θ − 1)2m1 + (2k2
θ + 1)m2+

m10 + (1 − k2
θ)bt1 − (2 + k2

θ)bt2

]
,

B−− = − 1

Re

[
(−3 + 4kθ + 2k2

θ − 4k3
θ + k4

θ)m7 + (3 − 4kθ + 2k2
θ)m8 + m9+

(−2 + 3kθ − k3
θ)bt3 + (kθ − 1)(bt4 − (kθ − 1)bt5)

]
,

B+− = 0 ,

B−+ = 0 .

• kz 6= 0 and kθ 6= 0

B++ = − k2
z

Re

[
k2

z((k
2
θ − 1)m3 + m4) + (k2

θ − 1)2m1 + (2k2
θ + 1)m2 + m10+

(1 − k2
θ)bt1 − (2 + k2

θ)bt2 + kz
2R2

2bt1 − bt6 ] ,

B−− = − 1

Re

[
2k4

zm3 + (−3 + 4kθ + 2k2
θ − 4k3

θ + k4
θ)m7+

3k2
z((kθ − 1)2m1 + m2) + (3 − 4kθ + 2k2

θ)m8 + m9 +

k2
z((1 − kθ)bt1 − 2bt2) + (−2 + 3kθ − k3

θ)bt3 +

(kθ − 1)(bt4 − (kθ − 1)bt5) ] ,

B+− = − k2
z

Re

[
k2

z((kθ + 1)m3 + m5) + (kθ − 1)2((kθ + 1)m1 + m11)+

(kθ + 2)m2 + m13 − (bt6 + (2 + kθ)bt2) ] ,

B−+ = − k2
z

Re

[
k2

z((kθ + 1)m3 + m6) + (kθ − 1)2((kθ + 1)m1 + m12)+

(kθ + 2)m2 + m14 − (1 + kθ)bt2] .
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B.2 Computing the velocity and vorticity components

Upon using the chosen basis expansion vectors for the velocity function, the fol-

lowing expressions are obtained for the velocity and vorticity components:

vr(r, θ, z, t) = Klgl(r) (B.1)

vθ(r, θ, z, t) = Jlrg
′

l(r) + Ilgl(r) (B.2)

vz(r, θ, z, t) = −Glg
′

l(r) − Fl
gl(r)

r
(B.3)

ωr(r, θ, z, t) = Algl(r) + Blrg
′

l(r) + Cl
gl(r)

r2
+ Dl

g′

l(r)

r
(B.4)

ωθ(r, θ, z, t) = Elgl(r) + Fl

(
g′

l(r)

r
− gl(r)

r2

)
+ Glg

′′

l (r) (B.5)

ωz(r, θ, z, t) = Hl
gl(r)

r
+ (Il + 2Jl)g

′

l(r) + Jlrg
′′

l (r) (B.6)

Here the summation convention, albl =
∑N

l albl, is used for repeated indices. Also

the following are defined:

Al(r, θ, z, t) =
∑

kθ

∑

kz

−ikz
2(α+

l + α−

l )ei(kθθ+kzz) (B.7)

Bl(r, θ, z, t) =





∑

kθ

∑

kz

−ikz
2α+

l ei(kθθ+kzz) , kθ 6= 0

0 , kθ = 0

(B.8)

Cl(r, θ, z, t) =
∑

kθ

∑

kz

−ikθ(kθ − 1)α−

l ei(kθθ+kzz) (B.9)

Dl(r, θ, z, t) =
∑

kθ

∑

kz

ikθα
−

l ei(kθθ+kzz) (B.10)

El(r, θ, z, t) =
∑

kθ

∑

kz

kz
2(kθα

+
l + α−

l )ei(kθθ+kzz) (B.11)

Fl(r, θ, z, t) =
∑

kθ

∑

kz

(kθ − 1)α−

l ei(kθθ+kzz) (B.12)

Gl(r, θ, z, t) =





∑

kθ

∑

kz

−α−

l ei(kθθ+kzz) , kθ 6= 0 or kz 6= 0

0 , kθ = kz = 0

(B.13)
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Hl(r, θ, z, t) =





∑

kθ

∑

kz

kz(1 − kθ)((1 + kθ)α
+
l + α−

l )ei(kθθ+kzz) , kz 6= 0

∑

kθ

∑

kz

(1 − kθ
2)α+

l ei(kθθ+kzz) , kz = 0
(B.14)

Il(r, θ, z, t) =





∑

kθ

∑

kz

kz(α
+
l + α−

l )ei(kθθ+kzz) , kz 6= 0

α+
l ei(kθθ+kzz) , kz = 0

(B.15)

Jl(r, θ, z, t) =





∑

kθ

∑

kz

kzα
+
l ei(kθθ+kzz) , kz 6= 0 and kθ 6= 0

∑

kθ

∑

kz

α+
l ei(kθθ+kzz) , kz = 0 and kθ 6= 0

0 , kθ = 0

(B.16)

Kl(r, θ, z, t) =





∑

kθ

∑

kz

−kz(kθα
+
l + α−

l )ei(kθθ+kzz) , kz 6= 0 and kθ 6= 0

∑

kθ

∑

kz

−ikθα
+
l , kz = 0 and kθ 6= 0

0 , kz = kθ = 0

(B.17)

B.3 Nonlinear Term

Now we can compute the product ω±

l′ · (v × ω) in physical space. As described

in section 3.2.6, a pseudo-spectral approach is used. The following three-dimensional

nonlinear matrices are defined:

f1 =

∫ R

0

gk(r)gl(r)gm(r)dr , f2 =

∫ R

0

gk(r)g
′

l(r)gm(r)dr

f3 =

∫ R

0

g′

k(r)gl(r)gm(r)dr , f4 =

∫ R

0

g′

k(r)g
′

l(r)gm(r)dr

f5 =

∫ R

0

gk(r)gl(r)g
′

m(r)dr , f6 =

∫ R

0

gk(r)g
′

l(r)g
′

m(r)dr

f7 =

∫ R

0

g′

k(r)gl(r)g
′

m(r)dr , f8 =

∫ R

0

g′

k(r)g
′

l(r)g
′

m(r)dr

f9 =

∫ R

0

gk(r)gl(r)g
′′

m(r)dr , f10 =

∫ R

0

gk(r)g
′

l(r)g
′′

m(r)dr

f11 =

∫ R

0

g′

k(r)gl(r)g
′′

m(r)dr .
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Now the following are defined in terms of these matrices and the expansion coefficients

Al to Kl:

γ+
k =

Nr∑

m=1

Nr∑

l=1

(EmFl + HmIl)f1 + (EmGl + HmJl)rf2 +

(Im + 2Jm)(Ilrf5 + Jlr
2f6) + Fm

[
Fl

(
f5

r
− f1

r2

)
+ Gl

(
f6 −

f2

r

)]
+

Gm(Flf9 + Glrf10) + Jm(Ilr
2f9 + Jlr

3f10)

β−

k =

Nr∑

m=1

Nr∑

l=1

(AmIl − EmKl)f1 + (CmIl + FmKl)
f1

r2
+ Jl

(
Amrf2 + Cm

f2

r

)
+

DmJlf6 − GmKlf9 + Bm(Ilrf5 + Jlr
2f6) + (DmIl − FmKl)

f5

r

Υ−

k =

Nr∑

m=1

Nr∑

l=1

(AmFl + HmKl)f1 + AmGlrf2 + Cm

(
Fl

f1

r2
+ Gl

f2

r

)
+ BmGlr

2f6 +

(BmFl + ImKl + 2JmKl)rf5 + Dm

(
Fl

f5

r
+ Glf6

)
+ JmKlr

2f9

Υ̃k =

Nr∑

m=1

Nr∑

l=1

(AmFl + HmKl)rf3 + AmGlr
2f4 + Cm

(
Fl

f3

r
+ Glf4

)
+ BmGlr

3f8 +

(BmFl + ImKl + 2JmKl)r
2f7 + Dm (Klf7 + Glrf8) + JmKlr

3f11

δ̃k =
Nr∑

m=1

Nr∑

l=1

(AmIl − EmKl)rf3 + (CmIl + FmKl)
f3

r
+ Jlf4(Cm + r2Am) +

(DmIl − FmKl)f7 + Bm(Ilr
2f7 + Jlr

3f8) + DmJlrf8 − GmKlrf11 .

Here all products of the form fir
n are under the integral sign, and summation is

carried out over the m and l indices, for example

BmGlr
2f6 =

Nr∑

m=1

Nr∑

l=1

BmGl

∫ R

0

gk(r)g
′

l(r)g
′

m(r)r2dr (B.18)

There are thus twenty four different integrals. These are computed at the beginning

of the program. After evaluating γ+
k , β−

k , Υ−

k , Υ̃k, and δ̃k in physical space, they are

transformed to Fourier space. The final answer is obtained as:

F+
k =

1

2πLz

∫ Lz

0

∫ 2π

0

∫ R

0

w+
k · (v × ω)e−i(kθθ+kzz) rdrdθdz

= I+(ikθγ
+
k − Υ−

k ) − J +Υ̃k , (B.19)
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F−

k =
1

2πLz

∫ Lz

0

∫ 2π

0

∫ R

0

w−

k · (v × ω)e−i(kθθ+kzz) rdrdθdz

= I−(iγ+
k − Υ−

k ) + F−β−

k − G−δ̃k , (B.20)

where

I+ =





kz, kz 6= 0

1, kz = 0
, J + =





kz, kz 6= 0 and kθ 6= 0

1, kz = 0 and kθ 6= 0

0, kθ = 0

, (B.21)

I− = kz, F− = kθ − 1, G− =





1, kθ 6= 0 or kθ 6= 0

0, otherwise
(B.22)
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Appendix C: Large Eddy Simulations

The Philosophy and Methodology

C.1 Some Basic Concepts

As explained in chapter 2, the turbulent flow simulation approach adopted in the

current study relies on the assumption that the dynamics of turbulence is represented

by a system of non-linear partial differential equations known as the Navier-Stokes

equations. The inherent non-linearities of these equations give rise to a very broad

range of spatial and temporal scales. The energy carrying large scale structures

are responsible for the major part of turbulent diffusion as they carry most of the

turbulent kinetic energy. These scales are directly affected by the boundary conditions

and their structure and behavior can vary greatly from one flow to another. The small

scales carry most of the vorticity and act as a sink of turbulent kinetic energy, thus

accounting for the kinetic energy dissipation. For any numerical simulation to give

physically meaningful results, it has to cover both diffusion and dissipation. The

disparity between the energy carrying and dissipative eddy length scales is a rapidly

growing function of the Reynolds number. This limits a direct numerical simulation

to low and moderate Reynolds numbers, since the number of grid points required is

proportional to the ratio of these scales.

Large eddy simulation bypasses the severe Reynolds number restriction of a direct

numerical simulation by filtering the Navier-Stokes equations to directly simulate the

large scales only, while using subgrid modeling to supply the effect of the missing

scales. It retains the full three dimensionality and time dependence of the turbulent

field. Large eddy simulation should resolve explicitly a range of turbulent scales

comprised of structures that contribute significantly to the transport of mass and

momentum and to the production of turbulent kinetic energy. However, although

large eddy simulation is more affordable compared to a direct numerical simulation,

it is a lot costlier than conventional turbulence modeling.
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C.2 The Basis for Large Eddy Simulations and its Consequences

Two fundamental presumptions form the basis for the large eddy simulation con-

cept. These are:

1. Most global features of turbulent flow, e.g. averaged mixing rates, averaged

losses, etc., are governed by the large scale dynamics and depend little on the small

scale turbulence. This qualitative difference between the characteristics of large and

small turbulent scales strongly supports the concept of large eddy simulation. Partic-

ular attention has to be given to clearly defining the resolved (grid scale) and unre-

solved (subgrid scale) motions, and then deriving the appropriate filtered governing

equations.

2. The small scale turbulence (large wave number range), particularly at high

Reynolds numbers, becomes independent of the strong inhomogeneities that are char-

acteristic of the energy containing eddies (short wave number range), thus tending to

local isotropy. A clear separation hence exists between the two bands and in between

there forms the so called inertial subrange in which there is a non-linear transfer of

energy to successively higher wave numbers at a rate prescribed by the largest scales.

If it is ensured that the smallest resolved motions fall within this part of the spec-

trum by using a fine enough numerical discretization, the subgrid modeling problem

is facilitated considerably, since the more universal nature of the small scales makes

them easier to model.

Under these idealized conditions, some significant differences can be observed be-

tween grid scale and subgrid scale turbulence. The grid scale turbulence is produced

by the mean flow and depends on the boundaries. It is ordered and requires a deter-

ministic description. Diffusive in nature, it lives long, and being inhomogeneous and

anisotropic it is difficult to model. Subgrid scale turbulence on the other hand is pro-

duced by the larger eddies. It is more universal, i.e. independent of the boundaries,

and can be modeled statistically due to its chaotic nature. Dissipative in nature, it is

short lived, and being nearly homogeneous and isotropic it is relatively easy to model.
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C.3 Scale Separation - The Filtering Concept

As mentioned before, dependent variables in large eddy simulations are broken

down into grid and subgrid scale parts. This is achieved by filtering out the high

wave number components of the variable (subgrid scale component). The numerical

scheme employed then solves for the grid scale components of the dependent variables

using a model for the effect of the subgrid scale (unresolved) components.

Consider the decomposition of a variable into its grid and subgrid scale compo-

nents as follows:

f(x1, x2, x3, t) = f(x1, x2, x3, t) + f ′(x1, x2, x3, t) (C.1)

where

f(x1, x2, x3, t) = is any dependent variable

f(x1, x2, x3, t) = is the grid scale part

f ′(x1, x2, x3, t) = is the sub grid scale part

Speaking in general, the part of the turbulent fluctuation which remains after some

smoothing has been applied to the field is represented by the grid scale component

f . The design of this smoothing process has to be carried out in such a way that an

accurate numerical treatment of the grid scale field is possible on the computational

mesh employed in the simulation.

Developing an appropriate numerical method depends on the splitting, thus re-

quiring a clear definition of the way in which the splitting is performed. Distinguish-

ing the effects due to smoothing from those due to the application of a particular

numerical scheme is very desirable from a theoretical standpoint. This introduces

the concept of filtering. It is a concept which allows in principle, the subgrid scale

turbulence to be examined without reference to a particular numerical method.
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This approach defines the grid scale turbulence by applying a spatial filtering

operation explicitly. The operation is based on a convolution integral extending over

the whole domain.

f(x1, x2, x3, t) =

∫

D

3∏

i=1

hi(xi − x′
i, ∆i)f(x′

1, x
′
2, x

′
3, t)dx′

1dx′
2dx′

3 (C.2)

where

hi = filter function in the ith direction

∆i = filter width in the ith direction

Here the filter width ∆i defines the size of the smallest resolved eddies.

The normalization condition

∫

D

3∏

i=1

hi(xi)dx1dx2dx3 = 1 (C.3)

is imposed to ensure that the filtering operation will reproduce any spatially uniform

and constant quantity.

The effect of the filtering operation is clearly seen if one takes the Fourier transform

of the filtered grid scale part. By definition, the spatial Fourier transform of f , f̂ s, is

f̂ s(~k, t) =

∞∫∫∫

−∞

f(~x, t)e−ikixidx1dx2dx3 (C.4)

where the repeated index summation notation has been used and ~k = (k1, k2, k3)

represents the wave number vector. Then by the convolution theorem

f̂
s

(~k, t) =

3∏

i=1

ĥxi

i f̂ s (C.5)

where

ĥxi

i =

∞∫

−∞

hi(xi)e
−ikixidxi (C.6)
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is the spatial Fourier transform of the filter function in the ith direction. Please note

that here kixi 6=
−→
k .−→x , i.e., the repeated index summation notation is not used.

Now if ĥxi

i = 0 for |ki| > kc, where kc is a “cut-off” wave number, all the high

wave number components of f are filtered out by convolving it with hi. A filter

with such characteristics is an “ideal low pass filter”. A cut-off wave number can

also be defined for all practical purposes if the filter function rapidly falls off in wave

space. The cut-off filter of course arises naturally if one employs spectral methods for

simulations.

An important difference between the filtering in large eddy simulation and Reynolds

averaging is fg′ 6= 0. Also in general, f 6= f and f ′ 6= 0. However, for a sharp cut-off

filter, these inequalities are replaced by equal signs since single filtered and double

filtered quantities are identical.

A filtering operation as defined above has the effect of eliminating components

rapidly varying in space from the filtered variables. Since in a turbulent flow, there is

usually a high correlation between the high temporal frequency and the high spatial

wave number components, application of a spatial low pass filtering eliminates high

frequency turbulence structures.

After a filter has been applied to smoothen the flow field, one can employ a

high order numerical discretization using grid sizes significantly smaller than the

filter width to keep further discretization errors negligible small. From a theoretical

viewpoint, we have a very attractive decoupling of physics and numerics. However

it is usually not feasible in practice, since to resolve as many turbulent structures as

possible with the available computational resources, the filter width usually cannot

be chosen to be much larger than the grid size. Since the physical truncation errors

associated with the unresolved scales are generally much larger than the truncation

errors of the numerical scheme, such a maximum resolution becomes essential in large

eddy simulation.

For the sharp cut-off filter, the grid and subgrid scales do not overlap in spectral

space, i.e. they are represented by disjoint bands in Fourier space. A clear distinction
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thus becomes possible between the two scales. Whenever a discrete approximation is

used to treat a continuous problem, a cut-off filtering is implicitly applied (Nyquist

theorem).

C.4 Filtered Equations Of Motion

We now apply the above filtering operation to our governing equations, i.e. the

incompressible Navier-Stokes equations. Upon applying a spatial filter to the equa-

tions 2.1 and 2.2 , assuming that the filter commutes with differentiation, we get the

governing equations for large eddy simulations.

−→∇.
−→
u = 0 (C.7)

∂
−→
u

∂t
+
−→
u .

−→∇−→
u +

−→∇p =
1

Re

−→∇.
−→∇−→

u +
−→
T , (C.8)

where the overbar denotes the filtering operation and
−→
T = −(−→u .

−→∇−→u − −→
u .

−→∇−→
u ) =

−−→∇ .(−→u −→u −−→
u
−→
u ) is minus the divergence of the sub-grid scale (SGS) stress.

As we can see, the SGS stress is not a function of only the filtered velocity field.

Computing the SGS stress also needs information about the unresolved part of the

velocity field, which is not available to us. We thus have a “closure problem”, i.e.

the system of equations along with prescribed boundary conditions is not sufficient

in itself. We need extra information to solve for the velocity field. This information

is supplied with the help of a model for the SGS stress, known as the SGS model.

C.5 Sub-Grid Scale Modeling

The task at hand is to model the subgrid scale tensor τij = uiuj − uiuj It is

important to note that independent of the subgrid model chosen, if the flow param-

eters in the subgrid scales are unknown at the start of the simulation, the large eddy

simulation problem is mathematically ill posed. Even if we have knowledge of the

subgrid scales to start with, numerical errors will creep in as the simulation pro-

gresses. Uncertainty in the small wavelengths of the motion will contaminate the
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larger scales through an “inverse error cascade” (Lesieur and Metais (1996)) up to

the energy-containing range. Flows that differ only in the subgrid scales at the start

of the simulation correspond to this error cascade. Hence, independent of the preci-

sion of the numerical scheme employed and the way in which the subgrid scales are

dealt with, there will be decorrelation from reality as the simulation progresses. How-

ever, it is believed that the dynamics of the turbulence and the statistical quantities

computed from the simulation are still representative of the true turbulence.

The meteorologist Smagorinski (1963) developed the first model for the SGS stress

tensor for incompressible flows. This is an eddy-viscosity type model based on the

assumption that the production and dissipation of small scale turbulent kinetic energy

are equal,

τij −
1

3
τkkδij = −2νtSij (C.9)

where the eddy viscosity, νt, is obtained algebraically from

νt = Cs∆
2SM (C.10)

The proportionality factor, Cs, is known as the Smagorinski constant, ∆ = (∆1∆2∆3)
1/3

is the effective filter width, and SM = (2SijSij)
1/2. Since the isotropic part of the SGS

stress tensor, 1
3
τkk, can be absorbed into the pressure term, we need only compute

τij = −2νtSij (C.11)

The Smagorinsky model, though easy to use, has some disadvantages. Firstly, the

model constant is not universal. Also, it has to be specified apriori. This leads to non-

robustness of the model. The model does not vanish for laminar flows, a requirement

for any turbulence model. A phenomenon of importance, particularly for transitional

flows, is backscatter of energy from small to large scales (Piomelli et al. (1991)).

Being strictly dissipative in nature, the Smagorinsky model cannot account for this

phenomenon.
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Germano et al. (1991) introduced the idea of dynamic SGS modeling. The model

constants are not specified apriori and do not remain the same throughout the simu-

lation. They vary in space and time, and are computed dynamically with the help of

information about the smaller resolved scales. This is accomplished by filtering the

resolved scales using a second filter. This filter is known as a test filter, and has a

filter width, △̂i, that is larger than the filter used to obtain the equations for LES.

Application of the test filter results in the splitting of the scales into test scales and

subtest scales (STS). The subtest scales include the unresolved subgrid scales (see

figure 4.1). This second filtering of the LES equations results in the subtest scale

stress given by

ζij = ûiuj − ûiûj (C.12)

Test filtering the subgrid scale stress tensor, τij = uiuj − uiuj, and subtracting it

from the above equation, we get the contribution of the smallest resolved scales to

the subtest scale (STS) stress tensor

ζij − τ̂ij = ûiuj − ûiûj (C.13)

If we assume that the energy transfer between the test and subtest scales happens

in a manner similar to that between the grid and subgrid scales, we can use the same

model to represent both the STS and SGS stresses. Hence we can write

ζij = −2(Cs∆̂
2ŜM)Ŝij (C.14)

τ̂ij = −2Cs∆
2SMSij (C.15)

Substituting equations (4.14) and (4.15) in equation (4.13) we get

Cs(−2∆̂2ŜM Ŝij + 2∆2SMSij) = ûiuj − ûiûj (C.16)

This simplifies to

Cs =
< (ûiuj − ûiûj)Aij >

< MijAij >
(C.17)
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where

Mij = −2∆̂2ŜM Ŝij + 2∆2SMSij (C.18)

In equation 4.17, <> represents an ad-hoc average. This ad-hoc averaging proce-

dure is performed on both sides of equation 4.16 to prevent any numerical difficulties

that might arise from the left hand side becoming zero (or near zero) at some grid

points. This procedure can be carried out only if we have at least one homogeneous

direction, along which we perform spatial averaging. In the current work, the vortex

is assumed to be homogeneous in the axial direction. Hence we can perform averag-

ing in the axial (z) direction. Also, before averaging we contract both sides with a

tensor Aij to ensure a unique solution for Cs. The current work uses the least squares

approach to determine Cs (Lilly (1992)). This results in choosing Aij = Mij. Hence

Cs =
< (ûiuj − ûiûj)Mij >

< MijMij >
(C.19)

Since averaging is carried out in the z direction, Cs is a function of r, θ and t (note

that we are working in the cylindrical coordinate system).

C.6 Numerical Method

Proceeding exactly as in section 2.2, we obtain the weak form of the filtered

Navier-Stokes equation

(
−→
ξ ,

∂
−→
v

∂t
) =

1

Re
(
−→
ξ , (

−→∇ .
−→∇−→

v )) + (
−→
ξ , (

−→
v ×−→

ω )) + (
−→
ξ ,

−→
T ), (C.20)

where
−→
v is the numerical approximation to

−→
u .

The formulation of the numerical method is exactly the same as in the Direct

Numerical Simulations, except for the sub-grid stress which introduces a new non-

linear term.

f±

nl2
=

1

2πLz

∫ Lz

0

∫ 2π

0

∫ R2

0

w±

k .
−→
T e−i(k′

θ
θ+k′

zz)rdrdθdz (C.21)
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This non-linear term, arising from using an SGS model as explained in section

4.5, cannot be evaluated in the same way as the non-linear term in the original DNS

formulation. The eddy viscosity cannot be expressed in terms of the expansion of the

velocity field as the vorticity can. One approach is to compute the eddy viscosity in

physical space using a pseudo-spectral approach. Once defined in physical space, the

eddy viscosity can be expanded in terms of b-spline functions, but with coefficients

that are not directly related to the velocity field. Unfortunately, this leads to a large

set of additional integrals involving triple products of b-spline functions, which would

greatly increase the cost of the simulation.

An alternate approach is to compute the entire SGS term,
−→
T , in physical space

and to express this quantity in terms of a b-spline expansion. This leads to four

integrals involving double products of b-splines. Two of these already are part of the

formulation of the other terms in the weak form of the Navier-Stokes equation and are

computed in the original code using Gaussian quadrature. This approach thus leads

to only two additional integrations. This is the approach chosen, and is implemented

in the following steps.

C.6.1 Step 1

We start by computing the resolved strain rate tensor. In cylindrical coordinates

this is given by

Srr =
∂vr

∂r
, Srθ =

1

2
(
1

r

∂vr

∂θ
+

∂vθ

∂r
− vθ

r
), Srz =

1

2
(
∂vz

∂r
+

∂vr

∂z
)

Sθθ = (
1

r

∂vθ

∂θ
+

vr

r
), Sθz =

1

2
(
∂vθ

∂z
+

1

r

∂vz

∂θ
), Szz =

∂vz

∂z
(C.22)

The velocity components are computed as

vr(r, θ, z, t) = Klgl(r)

vθ(r, θ, z, t) = Jlrg
′

l(r) + Ilgl(r) (C.23)

vz(r, θ, z, t) = −Glg
′

l(r) − Fl
gl(r)

r
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where gl are the b-spline polynomials (see figure 2.2) and the summation convention is

used for repeated indices. Kl, Jl, Il, Gl and Fl are functions of (θ, z, t), and expressions

for these are given in Appendix B. Expressions for the derivatives of the velocity

components can be obtained by explicitly differentiating the relations given in (4.23).

At the origin, a transformation to the Cartesian coordinate system is used to handle

the singularity problems as follows

vx = vr cos θ − vθ sin θ vr = vx cos θ + vy sin θ

vy = vr sin θ + vθ cos θ vθ = vy cos θ − vx sin θ (C.24)

Equations (4.24) along with the coordinate transformation x = r cos θ and y = r sin θ

allow us to express Srθ, Sθθ and Sθz in the Cartesian coordinate system

Srθ =
1

2
(cos 2θ(

∂vx

∂y
+

∂vy

∂x
) − sin 2θ(

∂vx

∂x
− ∂vy

∂y
))

Sθθ = (sin2 θ
∂vx

∂x
+ cos2θ

∂vy

∂y
− sin 2θ

2
(
∂vy

∂x
+

∂vx

∂y
))

Sθz =
1

2
(cos θ(

∂vy

∂z
+

∂vz

∂y
) − sin θ(

∂vx

∂z
+

∂vz

∂x
)) (C.25)

These expressions can be re-written in terms of the derivatives of the velocity com-

ponents in the cylindrical coordinates system, obtained by explicitly differentiating

(4.23), thus giving us the following expressions for Srθ, Sθθ and Sθz at the origin

Srθ =
1

2
(cos 2θ(−∂vθ

∂r
|θ=π/2 +

∂vθ

∂r
|θ=0) − sin 2θ(

∂vr

∂r
|θ=0 −

∂vr

∂r
|θ=π/2))

Sθθ = (sin2 θ
∂vr

∂r
|θ=0 + cos2 θ

∂vr

∂r
|θ=π/2 −

sin 2θ

2
(
∂vθ

∂r
|θ=0 −

∂vθ

∂r
|θ=π/2))

Sθz =
1

2
(cos θ(

∂vθ

∂z
|θ=0 +

∂vz

∂r
|θ=π/2) − sin θ(

∂vr

∂z
|θ=0 +

∂vz

∂r
|θ=0)) (C.26)

C.6.2 Step 2

Next the eddy viscosity, νT , is computed using the dynamic Smagorinsky model

as explained in section 4.5. The filter width, △, is chosen to be (r△θ△z)1/2 for

r 6= 0, while it is set to △z at the origin. Note that the filtering operation is carried

out only for the axial and azimuthal directions, thus resulting in a hybrid DNS-LES
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formulation, with all the scales being resolved in the radial direction. This approach

is analogous to large eddy simulations of channel flow, where the filtering operation

is performed only along the two directions parallel to the walls. The test filter width,

△̂, is chosen to be twice the filter width.

C.6.3 Step 3

The SGS stress tensor (here Tij = −τij) is computed as

Trr = 2νT Srr, Trθ = 2νT Srθ, Trz = 2νT Srz

Tθθ = 2νT Sθθ, Tθz = 2νT Sθz, Tzz = 2νT Szz (C.27)

where the resolved scale strain rates are given in equation (4.22) and νT is computed

from equation (4.10). The isotropic part of the SGS stress tensor is absorbed in the

modified pressure term.

C.6.4 Step 4

The SGS term
−→
T is now put together as

−→
T = [Tθ, Tr, Tz], (C.28)

where

Tθ =
∂(Tzθ)

∂z
+

1

r

∂(rTθr)

∂r
+

1

r

∂(Tθθ)

∂θ
+

1

r
(Trθ)

Tr =
∂(Tzr)

∂z
+

1

r

∂(rTrr)

∂r
+

1

r

∂(Trθ)

∂θ
− 1

r
(Tθθ)

Tz =
∂(Tzz)

∂z
+

1

r

∂(rTzr)

∂r
+

1

r

∂(Tzθ)

∂θ
(C.29)

Here derivatives in the θ and z directions are evaluated using FFTs. To evaluate

the derivative in the radial direction, the quantities of interest (rTθr, rTrr, and rTzr)

are first expressed in terms of b-splines. This is accomplished by solving a system of

linear equations, Ax = b, for each ray emitting from the origin. Here A is the b-spline

matrix (mth row corresponds to the mth grid point along the ray and nth column

corresponds to the value of the nth b-spline polynomial, gn(r), at the the mth grid
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point), while b is a column vector containing the values of the quantity of interest

along the ray. The solution, x, gives us the coefficients for the b-spline expansion of

the quantity along the ray. The derivative in the radial direction can then be obtained

by performing the operation Bx, where B is the b-spline derivative matrix (structure

similar to A).

At the origin, a transformation to the Cartesian coordinate system is used to

handle singularity problems. The approach is the same as that for the resolved strain

rate tensor (see section 4.6.1), and results in the following expressions for Tθ, Tr, and

Tz at the origin

Tθ = −
(

∂(Trr)

∂r

∣∣∣∣
θ=0

− ∂(Trθ)

∂r

∣∣∣∣
θ=π/2

+
∂(Trz)

∂z

∣∣∣∣
θ=0

)
sin θ

+

(
∂(Trθ)

∂r

∣∣∣∣
θ=0

+
∂(Trr)

∂r

∣∣∣∣
θ=π/2

+
∂(Trz)

∂z

∣∣∣∣
θ=π/2

)
cos θ

Tr =

(
∂(Trr)

∂r

∣∣∣∣
θ=0

− ∂(Trθ)

∂r

∣∣∣∣
θ=π/2

+
∂(Trz)

∂z

∣∣∣∣
θ=0

)
cos θ

+

(
∂(Trθ)

∂r

∣∣∣∣
θ=0

+
∂(Trr)

∂r

∣∣∣∣
θ=π/2

+
∂(Trz)

∂z

∣∣∣∣
θ=π/2

)
sin θ

Tz =
∂(Trz)

∂r

∣∣∣∣
θ=0

+
∂(Trz)

∂r

∣∣∣∣
θ=π/2

+
∂(Tzz)

∂z
(C.30)

C.6.5 Step 5

Using the approach described in Step 4 to express rTθr, rTrr, and rTzr in terms

of b-splines, the SGS term is expanded in terms of b-splines as

−→
T = [Tθ, Tr, Tz] =

Nr∑

k=1

[ak, bk, ck]gk(r) (C.31)

Here ak, bk and ck are functions of θ and z.
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C.6.6 Step 6

Upon performing the inner product operation on the b-spline representation of

the SGS stress (see equation 4.21), we get the nonlinear term f±

nl2
as

For kz = kθ = 0 :

f+
nl2

=
1

2πLz

∫ Lz

0

∫ 2π

0

[
Nr∑

k=1

bkm3

]
e−i(k′

θ
θ+k′

zz)dθdz

f−

nl2
=

1

2πLz

∫ Lz

0

∫ 2π

0

[
Nr∑

k=1

ckm15

]
e−i(k′

θ
θ+k′

zz)dθdz (C.32)

For kz = 0, kθ > 0 :

f+
nl2

= ikθ
1

2πLz

∫ Lz

0

∫ 2π

0

[
Nr∑

k=1

akm3

]
e−i(k′

θ
θ+k′

zz)dθdz

+
1

2πLz

∫ Lz

0

∫ 2π

0

[
Nr∑

k=1

bkm3

]
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For kz 6= 0, kθ = 0 :
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For kz 6= 0, kθ > 0 :
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Here m3, m6, m15 and m16 are elemental matrices defined as

m3 =

∫ R

0

glgkrdr, m6 =

∫ R

0

g′

lgkr
2dr

m15 =

∫ R

0

glgkdr, m16 =

∫ R

0

g′

lgkrdr (C.36)
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m3 are m6 are already being computed in the original code. m15 and m16 are the two

additional integrations added into the code. These integrals are computed to machine

accuracy using Gaussian quadrature. The following are computed in physical space

I1 =

Nr∑

k=1

akm3, I2 =

Nr∑

k=1

bkm3, I3 =

Nr∑

k=1

ckm15

I4 =

Nr∑

k=1

ckm16, I5 =

Nr∑

k=1

bkm6 (C.37)

Now, since 1
2πLz

∫ Lz

0

∫ 2π

0
(....)e−i(k′

θ
θ+k′

zz) is the definition of a Fourier transform, I1

through I5 are transformed to wave space using FFTs to obtain Î1(kθ, kz) through

Î5(kθ, kz) and f±

nl2
is obtained in wave space as

For kz = kθ = 0 :

f+
nl2

= Î2

f−

nl2
= Î3 (C.38)

For kz = 0, kθ > 0 :

f+
nl2

= ikθÎ1 + Î2 + Î5

f−

nl2
= Î4 + (1 − kθ)Î3 (C.39)

For kz 6= 0, kθ = 0 :

f+
nl2

= kzÎ2

f−

nl2
= ikz Î1 + kz Î2 + Î3 + Î4 (C.40)

For kz 6= 0, kθ > 0 :

f+
nl2

= ikθkzÎ1 + kzÎ2 + kz Î5

f−

nl2
= ikz Î1 + kz Î2 + Î4 + (1 − kθ)Î3 (C.41)

This completes the LES formulation. The DNS code has been appropriately modified

to perform LES. Once validated using the available DNS results, it shall be used to

perform LES of the strained vortex at higher Reynolds numbers.
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Figure C.1 Separation of scales for dynamic subgrid scale modeling (Spyropoulos
(1996)).
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