School of Aeronautics & Astronautics
2005-2006
Research Report
TABLE OF CONTENTS

1. **OUR MISSION** ..2
2. **ACADEMIC HIGHLIGHTS** ..2
3. **DEVELOPMENT HIGHLIGHTS** ...3
4. **ALUMNI HIGHLIGHTS** ..3
5. **PUBLICATIONS** ...3
6. **CO-OP PROGRAM** ...4
7. **OVERVIEW OF RESEARCH AREAS AND FACILITIES** ...6
8. **FACULTY SUMMARIES** ...11
9. **AERODYNAMICS** ..26
10. **DYNAMICS & CONTROL** ..26
11. **PROPULSION** ..41
12. **STRUCTURES & MATERIALS** ..53
13. **ADJUNCT FACULTY** ..77
14. **ACTIVE RESEARCH PROJECTS** ..80
15. **RESEARCH AND OTHER SCHOLARLY ACTIVITIES** ..81
16. **GRADUATE THESES** ..90
17. **COLLOQUIUM SERIES** ...96
18. **HIGHLIGHTS AND AWARDS** ..100
19. **FACULTY HIGHLIGHTS** ..101
20. **STUDENT HIGHLIGHTS** ..101
21. **OUTREACH HIGHLIGHTS** ...104
22. **CURRICULUM AND COURSE OFFERINGS** ...105
23. **STAFF FOR THE 2005-2006 ACADEMIC YEAR** ...111
OUR MISSION

Established as an independent school on July 1, 1945, the School of Aeronautics and Astronautics is committed to be a world-class leader in aerospace engineering education and fundamental and breakthrough research for aerospace vehicles and systems. Our mission of preparing men and women to be leaders in aerospace engineering by providing exceptional education and research programs for them is the focus of our life’s work.

ACADEMIC HIGHLIGHTS

Undergraduate enrollment was 432 for the Fall of 2005 Graduate enrollment of 215 was the largest graduate enrollment in the School’s history. During academic year 2005-06, 133 students earned their Bachelor of Science degree, 76 earned their Master of Science degree, and 14 earned their Doctor of Philosophy degrees. The US News and World Report ranked our graduate program 6th in the nation and our undergraduate program 4th amongst universities that award Ph.D.s. The School continues to appear on the list of “key schools” for the major US aerospace manufacturers.

<table>
<thead>
<tr>
<th>Year</th>
<th>00-01</th>
<th>01-02</th>
<th>02-03</th>
<th>03-04</th>
<th>04-05</th>
<th>05-06</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.S.</td>
<td>60</td>
<td>65</td>
<td>90</td>
<td>116</td>
<td>142</td>
<td>133</td>
</tr>
<tr>
<td>M.S.</td>
<td>23</td>
<td>34</td>
<td>24</td>
<td>47</td>
<td>42</td>
<td>76</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>17</td>
<td>14</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

Purdue University’s Program for Study Abroad Office currently offers more than 200 programs in over 45 countries around the world. The School of Aeronautics and Astronautics currently has active student exchanges: Bristol University, United Kingdom; Royal Melbourne Institute of Technology, Melbourne, Australia; University of New South Wales, Sydney, Australia; Ecole Superieure des Techniques Aeronautiques et de Construction Automobile (ESTACA), Paris, France.

The School of Aeronautics and Astronautics, through Purdue University’s Engineering Professional Education (EPE) Program, offers graduate level courses in aerospace engineering. This opportunity to reach students through distance education, along with our history of quality education, gives us confidence that our School’s participation with EPE will be a benefit to all participants. The School is developing its first M.S. in Aeronautics and Astronautics through EPE.
DEVELOPMENT HIGHLIGHTS

Ducommun, The Boeing Company, Lockheed-Martin, Northrop Grumman, and Rolls-Royce supported the Industrial Affiliates Program (IAP) this year. The School’s Industrial Advisory Council (IAC) continued its bi-annual meeting schedule, meeting both in April 2005 and September 2006. IAC members are: Mr. Frank Bauer, NASA Goddard Space Flight Center; Mr. Bradley Belcher, Rolls Royce; Dr. Paul Bevilaqua, Lockheed Corporation; Ms. Andrea Chavez, Ball Aerospace; Mr. Michael Corso, Henderson, Franklin, Starnes & Holt; Mr. Daniel Devitt, Vought Aircraft Industries, Inc; Mr. Darryl Davis, Boeing Integrated Defense Systems; Mr. Michael Dressen, Miltec Missiles & Space; Mr. John Gallman, Cessna Aircraft Co.; Dr. Carl Gran, The Aerospace Corp.; Mr. Joseph Gernand, Boeing; Dr. Andrew Kasowski, Cessa Aircraft Co.; Dr. Andrew King, Boeing; Mrs. Mary Kriebel, Northrop Grumman; Dr. Donald Lamberson, Major General, USAF (ret.); Mr. Thomas Maxwell, GE Aircraft; Mr. David McGrath, ATK Tactical Systems; Mr. G. Thomas McKane, A.M. Castle & Co.; Mr. James Renna, Sikorsky Aircraft; Mr. Charles Saff, Boeing; Mr. Randal Secor, Northrop Grumman Corp.; and Dr. Robert Strickler, Sangamon LLC.; Dr. Anthony Thornton, Sandia National Labs; and Mr. John Walsh, Ducommun Technologies.

As of June 30, 2006, the Campaign for Purdue has resulted in more than $16 million in gifts to AAE. We look forward to moving to Armstrong Hall during 2007.

ALUMNI HIGHLIGHTS

The following six Outstanding Aerospace Engineers (OAEs) were honored on October 9, 2006: Dr. Thomas C. Adamson, Jr... (B.S.A.E. 1949); Dr. Steven M. Ehlers (B.S.A.E. 1977, M.S.A.A.E. 1978, Ph.D. 1991); Mr. Jerry W. McElwee (B.S.E.S. 1968, M.S.I.A. 1970); Ms. Doris (Dodie) Hurt Powers (B.S.A.TR 1949); Mr. Richard B. Rivir (B.S.A.E. 1960); and Mr. Norman V. Scurria, Jr. (M.S.A.S.E. 1980).

Dr. Allen S. Novick (B.S.A.E. 1965, M.S.A.E. 1967, Ph.D. 1967) was awarded the College of Engineering 2006 Distinguished Engineering Alumnus (DEA) Award and an OAE in February. Dr. Novick is currently Vice President, Marketing Intelligence and Support, Rolls-Royce Corporation.

PUBLICATIONS

Listings of books, journal articles, and other printed conference papers and reports published in calendar year 2005 are given in the “Faculty Summary” section of this report. Only documents that actually appeared in print during 2005 are listed. Note that 62 journal articles or book chapters, and 113 conference papers or technical reports, were presented or published. In addition to the published technical reports listed, many other technical progress reports were submitted directly to project sponsors.
CO-OP PROGRAM

During the 2005-06 academic year, 33 students were enrolled in the Cooperative Engineering Program with the companies listed on the following page. This popular program is limited only by the number of industry positions available. About 10 of 92 new applicants in Spring 2006 received appointments this year. Many other students gain industrial experience through internships.

During the past academic year several new certificate programs have been initiated under the umbrella of the Co-op program, which has been renamed "Professional Practice" to reflect its expanded role. The new programs are generally shorter than the traditional 5 term Co-op, typically expecting three work sessions from students after their sophomore year. We hope that these new programs will bring in more employers and greatly expand the professional practice opportunities open to AAE students.
Co-Op Companies
School of Aeronautics and Astronautics
July 1, 2005-June 30, 2006

<table>
<thead>
<tr>
<th>Company</th>
<th>Location</th>
<th>Number of A&AE Co-op Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Corporation</td>
<td>Los Angeles, CA</td>
<td>0</td>
</tr>
<tr>
<td>American Trans Air</td>
<td>Indianapolis, IN</td>
<td>0</td>
</tr>
<tr>
<td>ATA Engineering Inc.</td>
<td>San Diego, CA</td>
<td>7</td>
</tr>
<tr>
<td>Atlantic Research Automotive Group</td>
<td>Knoxville, TN</td>
<td>0</td>
</tr>
<tr>
<td>BAE Systems Control</td>
<td>Ft. Wayne, IN</td>
<td>0</td>
</tr>
<tr>
<td>Ball Aerospace & Tech. Corp.</td>
<td>Boulder, CO</td>
<td>2</td>
</tr>
<tr>
<td>Boeing Satellite Systems</td>
<td>Long Beach, CA</td>
<td>0</td>
</tr>
<tr>
<td>Delta Air Lines</td>
<td>Atlanta, GA</td>
<td>0</td>
</tr>
<tr>
<td>General Electric GE Transportation/Aircraft Engines</td>
<td>Cincinnati, OH</td>
<td>10</td>
</tr>
<tr>
<td>International Truck and Engine Corp.</td>
<td>Fort Wayne, IN</td>
<td>0</td>
</tr>
<tr>
<td>Rockwell Collins</td>
<td>Cedar Rapids, IA</td>
<td>2</td>
</tr>
<tr>
<td>Rolls-Royce</td>
<td>Indianapolis, IN</td>
<td>0</td>
</tr>
<tr>
<td>Structural Analysis Engineering Corp.</td>
<td>Cincinnati, OH</td>
<td>2</td>
</tr>
<tr>
<td>U.S. Gov. Air Force Research Lab.</td>
<td>Edwards AFB, CA</td>
<td>0</td>
</tr>
<tr>
<td>U.S. Gov. NASA-Dryden Flight Research Center</td>
<td>Edwards, CA</td>
<td>1</td>
</tr>
<tr>
<td>U.S. Gov. NASA-Glenn Space Center</td>
<td>Cleveland, OH</td>
<td>0</td>
</tr>
<tr>
<td>U.S. Gov. NASA-Goddard Space Center</td>
<td>Greenbelt, MD</td>
<td>0</td>
</tr>
<tr>
<td>U.S. Gov. NASA-Johnson Space Center</td>
<td>Houston, TX</td>
<td>6</td>
</tr>
<tr>
<td>U.S. Gov. NASA-Kennedy Space Center</td>
<td>Kennedy Space Ctr., FL</td>
<td>0</td>
</tr>
<tr>
<td>U.S. NASA-Langley Research Center</td>
<td>Hampton, VA</td>
<td>0</td>
</tr>
<tr>
<td>U.S. Gov. National Air & Space Intelligence Center</td>
<td>Wright Patterson AFB, OH</td>
<td>0</td>
</tr>
<tr>
<td>U.S. Gov. Naval Research Laboratory</td>
<td>Washington, DC</td>
<td>0</td>
</tr>
<tr>
<td>U.S. Gov. Wright-Patterson AFB</td>
<td>Dayton, OH</td>
<td>1</td>
</tr>
<tr>
<td>United Parcel Service (Air Group)</td>
<td>Louisville, KY</td>
<td>1</td>
</tr>
<tr>
<td>United Technologies Pratt & Whitney</td>
<td>W. Palm Beach, FL</td>
<td>0</td>
</tr>
<tr>
<td>United Technologies Pratt & Whitney</td>
<td>East Hartford, CT</td>
<td>1</td>
</tr>
</tbody>
</table>
OVERVIEW OF RESEARCH AREAS AND FACILITIES

Purdue University has outstanding facilities, including several research facilities under construction in Purdue’s Discovery Park, as a part of Purdue’s strategic plan. Purdue has also excellent computing facilities. Purdue owns a 320-CPU IBM SP supercomputer and has just created a state-of-the-art visualization center.

The School of Aeronautics and Astronautics houses some of the nation’s top research labs for the study of evolving aerospace industry technologies. Both computational and experimental facilities are available for graduate student use. With the recent support of the Boeing Company and the Intel Corporation, the School was able to enhance the Design/Build/Test (DBT) Laboratory, which prepares students for integrated product teams in industry. In addition, many workstations and personal computers are located throughout the School. The High Performance Computing Cluster for Aerospace Applications consists of a 57 quad node cluster (228 total processors) for distributed and parallel processing.

AERODYNAMICS

Aerodynamics research is directed toward a better understanding of the fundamental laws governing the flow of fluids in aerospace systems. Research topics of recent interest include aerodynamic noise, low-gravity fluid mechanics, computational methods in aerodynamics and fluid mechanics, experimental measurements using optical systems, and laminar-turbulent transition in hypersonic boundary layers.

Experimental facilities include four low-speed wind tunnels located at the Aerospace Sciences Laboratory (ASL). The Boeing Wind Tunnel is a large subsonic wind tunnel with two test sections: a closed 4-by-6 foot section with a maximum speed of 250 miles per hour, and a long test section adapted for high-lift research. The first test section is equipped with a six-component motorized pitch-and-yaw balance system.

Three smaller low-speed wind tunnels are also located at ASL. One has an 18 inch diameter test section, and the other two have test sections of 12 by 18 inches. Several small calibration tunnels are also available, along with a 20-by-20-inch water tunnel and a small water table.

Four high-speed facilities are located in the Boeing Compressible-Flow Laboratory at ASL. The Boeing/AFOSR Mach-6 Quiet Tunnel is a large Ludwieg tube with a 9.5-inch Mach-6 test section. It is the only hypersonic wind tunnel in the world with low noise levels comparable to flight, for unit Reynolds numbers up to about 3.5 million per foot. It can also be operated under conventional noise to a unit Reynolds number of 6 million per foot. Instrumentation is specialized for study of laminar-turbulent instability and transition, and includes high-speed hot wires, fast-response pressure transducers, hot-film arrays and anemometers, a high-sensitivity laser-differential interferometer, a glow-discharge perturber, and a pulsed laser perturber.

The Boeing Compressible-Flow Laboratory also includes a smaller Ludwieg tube with a 4-inch Mach-4 test section that remains quiet to a length Reynolds number of
about 400,000. A 4-inch transonic test section, completed in 2004, can also be installed. A 3000-gal. air receiver supplies a 2-inch Mach-2.5 blowdown tunnel and a one-inch supersonic jet designed for nozzle-flow studies. Both can exhaust to a 500 cubic foot vacuum tank, and are used primarily for teaching. The jet apparatus also includes a heater and particle filter to enable supersonic hot-wire calibrations. A 4-inch shock tube is also available.

ASTRODYNAMICS AND SPACE APPLICATIONS

In the area of astrodynamics, the complex missions envisioned in the next few decades will demand innovative spacecraft trajectory concepts and efficient design tools for analysis and implementation. In support of such plans, current research efforts focus on spacecraft navigation and maneuver requirements, and mission planning, both in the neighborhood of the Earth and in interplanetary space. Some of the current research efforts focus on the following: 1) libration point orbits in the three- and four-body problems 2) trajectory design and optimization including optimal control strategies for out-of-plane motion in consideration of communication and other operational specifications 3) analyses of station-keeping requirements for such trajectories are also currently under study.

Current research efforts also include 1) analytic theory and control of spinning-up and thrusting vehicles, 2) mission design and trajectory design for interplanetary flight, 3) orbit decay and reentry problems, and 4) tethers in space 5) finding and developing new applications of the Global Positioning System (GPS). GPS has emerged as one of the most prevalent uses of satellite technology in people's everyday lives today. 6) Three dimensional reconstruction of biological structures obtained from serial electron microscope sections 7) computer applications to research and teaching of Microbiology 8) digital signal processing. 9) nonlinear dynamics and chaotic system analysis as applied to biological diversity. 10) satellite design 11) ground station design for acquisition satellite data.

AEROSPACE SYSTEMS DESIGN

The area of aerospace systems design involves the study of methods and techniques necessary for the design of aerospace systems and their components. The courses in this option provide opportunities to gain exposure to design methods and to gain experience through design projects. The topics addressed include requirements definition, functional decomposition, concept synthesis, application of design-oriented analysis methods, and optimization. Because aerospace systems are highly interdisciplinary, a systems perspective is encouraged to ensure that students are aware of how design decisions impact numerous features of the aerospace system.
DYNAMICS AND CONTROL

All modern aerospace vehicles rely upon an understanding of dynamics and control to improve system performance. Successful system design requires an understanding of the interactions of dynamic elements and the trade-offs between vehicle dynamic characteristics, control system properties, and system performance.

Current research is divided into the following areas: aircraft design for improved handling qualities, astrodynamics, robust and nonlinear control theory and applications, estimation theory and applications, dynamics and control of flexible spacecraft, mission design, modeling and control of aeroelastic aircraft, spacecraft maneuvers and trajectory analysis, and optimization.

Certain research projects and teaching activities require advanced and specialized laboratory facilities. The Control Systems Laboratory (CSL) contains high-end workstations. The mission of the CSL is to develop methods and tools (software) for the analysis and design of complex dynamical systems and to promote the availability and use of the methods by teaching relevant courses and interacting with industry. Experiments used for undergraduate instruction include a two-degree-of-freedom helicopter experiment, a three-degree-of freedom rotational system to emulate the attitude dynamics of a flexible spacecraft, and an inverted pendulum. The Remotely Piloted Vehicle, currently under development, represents a unique research facility upon which to perform many experiments in vehicle dynamics and control. Data communication with a computer based ground station is provided by a seven channel telemetry downlink.

PROPULSION

The Propulsion group has unique facilities, which are highly beneficial for the study of rocket propulsion and energy conversion. Laboratories are housed at two major remote campus facilities: the Maurice Zucrow Laboratory (MZL), and the Aerospace Sciences Laboratory (ASL).

The Advanced Propellants and Combustion Laboratory is housed at MZL, and is comprised of two test cells. The test cells are of poured, reinforced concrete design with containment steel doors and explosive rated viewing windows. These cells are classed for both Class 1.1 and 1.3 explosives and are equipped with a frangible blowout wall in case of major catastrophic events. Test Cell A currently contains a rocket thrust stand capable of handling thrust loads of up to 1000 lbf. Test Cell B is used for hybrid rocket combustion studies and vacuum ignition studies for a variety of new nontoxic hypergolic propellants. These cells are both equipped to handle advanced storable oxidizers with emphasis on high concentration hydrogen peroxide. In local proximity is a dedicated oxidizer storage building and a dedicated explosive/propellant storage bunker, rated for Class 1.1 materials.

The High Pressure Laboratory, also located at MZL, is a major new facility shared with Mechanical Engineering. This facility has two 500 square-foot test cells rated for propulsion testing up to 10,000 lbf thrust levels. The airbreathing propulsion
cell has a cyclic pulse detonation rig capable of simultaneous firing of up to four tubes. A 5 million sample-per-second high speed data system and associated pressure instrumentation is available in addition to a more standard suite of pressure/temperature/thrust instrumentation. A high-pressure gas turbine combustor experiment is also housed in this cell. The rocket propulsion cell has capabilities to test liquid oxygen/hydrocarbon thrust units at thrust levels up to 10,000 lbf and pressures up to 5,000 psi. Experiments in both the airbreathing and rocket propulsion cells are controlled remotely with a state-of-the-art data acquisition and control panel.

The **Fuel Thermal Management Laboratory** is housed at MZL, and includes a 15Kw power supply for electrically heating tubes containing flowing aviation fuels. The cell contains a fully temperature conditioned fuel tank, sparging system, nitrogen purging of test apparatus, and pressure/temperature/flow instrumentation for operation to roughly 1000 psi and 1200 deg. F operations. Data acquisition is achieved using LabView software and National Instruments acquisition cards in personal computers. Cameras are used for remote observation of the test cell.

The **Laboratory for Electric and Advanced Propulsion** is housed at the Aerospace Science Laboratory (ASL). There are two vacuum systems located at ASL to simulate operating conditions for electric propulsion devices. A smaller vacuum chamber (17-in diameter, 3-foot long cylindrical vessel) is primarily used for component testing. Depending on introduced gas flow, the vacuum system enables vacuum pressures between 10^{-2} to 10^{-6} Torr. A torsional thrust stand was designed and built capable of resolving forces below 1 mN. The recent addition of a large vacuum chamber substantially increases the testing capability of the Laboratory. The vacuum chamber features a 5–foot diameter, 9–foot long cylindrical vessel and various feedthroughs for power, diagnostics, and instrumentation. A 20,000–l diffusion pump in series with a 400–cfm mechanical pump establishes vacuum pressures below 10^{-6} Torr (2×10^{-8} psi). Both vacuum systems have their individual pumping systems, diagnostics, and propellant feed systems.

STRUCTURES AND MATERIALS

Structures and materials research includes work in composite materials, computational structural mechanics, damage tolerance analysis, experimental structural analysis, structural mechanics and aeroelasticity, dynamic behavior of advanced materials, tribology, manufacturing, wave propagation, smart materials and structures, and optimal design methods.

The **Fatigue and Fracture Laboratory** (http://roger.ecn.purdue.edu/~fslab/) is well-equipped to conduct structural integrity motivated research directed at evaluating the damage tolerant properties of materials and components. Two computer-controlled electro-hydraulic test machines (11 and 22 kip capacity), and associated equipment, are used to measure fracture loads and to study fatigue crack formation and propagation in test specimens subjected to simulated aircraft or spacecraft load histories. A scanning electron microscope is available to examine fracture surfaces.
The **Laboratory for Dynamic Response of Advanced Materials**, resided in Purdue’s new Bowen Large-scale Testing Laboratory, contains unique equipment and facilities for the characterization of engineering materials under high-rate conditions. A variety of split Hopkinson bars (Kolsky bars) have been developed and modified for testing materials ranging from a single Kevlar fiber and soft tissues to metals and armor ceramics at strain rates from intermediate to impact level. A high-speed optical digital camera with the frame rate of up to 2,000,000 frames per second is used to record the high-rate deformation and failure processes. High-rate experiments are also conducted at different temperatures and different stress states, in addition to different strain rates.

The **McDonnell Douglas Composite Materials Laboratory** contains equipment and facilities for general material testing and for fabrication of composite laminates. An autoclave specially designed for curing epoxy-matrix composites is available for laminate fabrication. A hot press is used for forming thermoplastic composites, and an EnTec filament winding machine is available for making cylindrical composite structures. A water jet cutting machine is used for specimen preparation. Four complete MTS material and fatigue testing machines (55 kip, 22 kip, 11 kip, and 1 kip capacity) and associated equipment are used to perform ultimate strength, stiffness, and fatigue tests on various composite materials. An Applied Test Systems creep machine is available for constant load creep tests at room temperature or elevated temperatures. Dynamic material testing equipment includes a compressed air gun capable for launching a 33 gram projectile to about 500m/s, a drop tower for low velocity impact test, and a Hopkinson pressure bar for high strain rate test. Nondestructive inspection equipment includes an x-ray machine and an ultrasonic C-scan system. Additional facilities for preparing nanocomposites and microscopic observations of materials are also available.

The **Structural Dynamics Laboratory** has the latest equipment for recording ultra-dynamic events. Major equipment includes Norland and Nicolet digital recorders, a one-million-frame-per-second dynamic camera, impact gun, and various computer peripherals for data acquisition. The primary research interest is in the impact of structures and the analysis of consequent stress waves.

The **Tribology and Materials Processing Laboratory**, maintained jointly with the **Center for Materials Processing and Tribology** contains tribological instrumentation as well as up-to-date machines for manufacturing processes. Equipment includes a 22 kip computer-controlled electro-hydraulic test machine and associated equipment for fretting fatigue testing at room and elevated temperatures, infrared sensors for full-field temperature measurements, a friction apparatus for both low and high speed sliding indentation, lapping and polishing equipment, a vibration isolation table, micropositioning stages, a sliding wear experiment, Talysurf profilometers, phase shift interferometric profilometer, an atomic force microscope, a nanoindenter, a talysurf instrument for measurements of form, cylindricity cuts and taper, and an SEM and optical microscopes. A piezo-electric based load frame has been constructed to perform high frequency fretting fatigue experiments related to HCF of aircraft engines. Also, access is available to a variety of machine tools: a precision high speed surface grinder, a centerless grinder, and a super finishing machine, as well as associated piezoelectric force transducers.
Aerodynamics

Faculty Members

G. A. Blaisdell, Associate Professor, Ph.D. Stanford, 1991, computational fluid mechanics, transition, and turbulence

S. H. Collicott, Professor, Ph.D., Stanford, 1991, experimental and low-gravity fluid dynamics, optical diagnostics, and applied optics

M. C. Jischke, University President, Ph.D., Massachusetts Institute of Technology, 1968

A. S. Lyrintzis, Professor, Ph.D., Cornell, 1988, computational aeroacoustics, aerodynamics for rotorcraft and jet flows
S. P. Schneider, Professor, Ph.D. Caltech, 1989, experimental fluid mechanics, and high-speed laminar-turbulent transition

J. P. Sullivan, Professor, Sc.D., MIT, 1973, experimental aerodynamics, propellers, and laser-doppler velocimetry

M. H. Williams, Professor and Associate Head, Ph.D., Princeton, 1975, aerodynamics and computational fluid mechanics
GREGORY A. BLAISDELL
1991
Associate Professor

Degrees
B. S., California Institute of Technology, Applied Mathematics, 1980
M. S., California Institute of Technology, Applied Mathematics, 1982
Ph.D., Stanford University, Mechanical Engineering, 1991

Interests
Computational fluid mechanics
Transition and turbulence

Awards and Major Appointments
NASA-ASEE Summer Faculty Fellowship, 1995-1996
W. A. Gustafson Teaching Award, Fall 1997

Research Areas
Current research interests involve the study of transitional and turbulent fluid flows using computational fluid dynamics (CFD) as an investigative tool. Most flows of engineering interest are turbulent and turbulence has a significant impact on the performance of engineering systems. The drag on a body is generally much greater if the boundary layer is turbulent. Turbulence also increases heat transfer between a fluid and a surface. In addition, turbulent mixing is important to combustion.

The physics of basic turbulent flows are studied using direct numerical simulations (DNS) and large-eddy simulations (LES). With LES, the motion of the largest eddies are solved for directly while the effects of the unresolved small scale eddies are modeled. In contrast, with DNS all the relevant length scales within the turbulence are resolved and no modeling is needed. The results of the simulations are used to increase our understanding of turbulence and to test and improve turbulence models.

Current research projects are described below. Many of these investigations are being carried out using parallel processing computers. Parallel computing and advanced numerical methods is another area of interest.
Development of Large Eddy Simulation Methodology and Application to a Turbulent Axial Vortex (Sponsored by Purdue Research Foundation; Student: Brijesh Eshpuniyani; Computer resources: PUCC (IBM SP 2))

Axial vortices form in many engineering systems but are of particular importance to the wake hazard problem for commercial aircraft. A previous study used direct numerical simulation (DNS) to investigate an isolated turbulent axial vortex. However, the DNS are limited to low Reynolds numbers—the DNS are at a Reynolds number that is three orders of magnitude lower than that of the wake vortices behind a typical large commercial airliner. Although LES on currently available computers will not be able to achieve full scale Reynolds numbers, it will allow the trends with increasing Reynolds numbers to be determined. This is important because Reynolds number is believed to have a significant effect on the development of turbulence within a vortex.

Development of Low Jet Noise Aircraft Engines (Project Leader: Anastasios Lyrintzis, G. Blaisdell, L. Mongeau, S. Bolton, and (W. Dalton of Rolls-Royce), Sponsored by Indiana 21st Century Research and Technology Fund)

The regional and corporate aircraft engine market’s rapid expansion will be severely compromised, unless jet noise is drastically reduced. Rolls-Royce, Indianapolis, with a commanding share of 37% in this sector of the world market, may lose business to out-of-state competitors if its engines fail to meet stringent airport noise regulations. In this project experts from Purdue University and Rolls-Royce will advance the science of jet noise reduction for turbofan engines by studying the noise of internally mixed engines, where the hot core flow is mixed with the cooler fan flow inside the exhaust nozzle by lobed mixers. The turbulent mixing of these two flows and their mixing with the atmosphere causes jet noise. Although empirical methods can be used to reduce noise, optimal engine design is not possible without deeper scientific understanding. Our team of experts will synthesize computational, theoretical, and experimental techniques to generate a new level of understanding of jet noise reduction. Rolls-Royce has a plan in place for the rapid commercialization of such scientific breakthroughs. Thus the accelerated technology transfer of our new science will impact about 1200 highly skilled employees at Rolls-Royce in Indiana and also its many local suppliers.

Conference Proceedings, Presentations, Invited Lectures

STEWN C. COLLCOTT
1991
Professor

Degrees
B. S., University of Michigan, Aerospace Engineering, magna cum laude, 1983
M. S., Stanford University, Aeronautics & Astronautics, 1984
Ph.D., Stanford University, Aeronautics & Astronautics, 1991

Interests
Experimental fluid mechanics
Low-gravity fluid dynamics
Optical diagnostics
Applied optics

Awards and Major Appointments
Presented the American Institute of Aeronautics and Astronautics “Special
Service Citation,” March 1997

Research Areas
Four topics are being researched: high-bypass turbofan duct-strut flow, cavitation
in spray orifices, low-gravity fluid dynamics, and optical methods for studying
hypersonic boundary layer transition.

A source of total pressure loss and non-uniform back pressure on the fan in
modern and proposed high bypass ratio turbofan engines is the strut-endwall flow in the
bypass duct. NASA-funded experiments, coordinated with advanced concepts research at
Pratt & Whitney, explore the flow structure at Reynolds numbers typical of full-scale
cruise conditions. The experiment is designed to also provide valuable checkpoints for
the integrated design codes being developed by Pratt & Whitney.

Spraying of a liquid is a common commercial operation, yet little attention has
been paid to the flow inside the spray orifice. Particularly in diesel fuel injectors, small-
scale non-equilibrium cavitation exists, the behavior of which cannot presently be
predicted to any useful extent. This research, funded by the NSF-Career Award, probes
the internal flow with specialized optics to uncover the physics of cavitation and
turbulence in these flows. Coordination with Professor Heister's simulations with a
pseudo-density model for non-equilibrium cavitating flows is crucial to the value of these
experiments.

Design of fuel tanks to control sloshing liquids during weightless space flight
requires incorporation of nonlinear contact-line dynamics into numerical models. Even
the determination of equilibrium interface topology requires considerable numerical work
in many situations. Validation and application of an existing model for determining
equilibrium interface topologies in main liquid helium tank of the Gravity Probe-B spacecraft has been performed for Lockheed and the GP-B project. Incorporation of physically important stick-slip contact line motion as non-linear boundary conditions in a Boundary Element Method (BEM) code for low-g large-amplitude fluid slosh prediction is being pursued with Professor Heister.

Hypersonic boundary layer transition is a critical event on high speed flight vehicles, including the Space Shuttle during re-entry. Professor Schneider's experiments involve an optical perturber and optical diagnostics, both under the responsibility of Professor Collicott. The perturber has been developed and is in regular use. High-sensitivity, high bandwidth Laser Differential Interferometry is being applied to detect and measure instability waves in millimeter and thinner boundary layers in flows at speeds in excess of one-half of a kilometer per second.

Publications

Conference Proceedings, Presentations, Invited Lectures

ANASTASIOS S. LYRINTZIS
1994
Professor

Degrees
Diploma, National Technical University, Athens Greece, Mechanical Engineering, 1981
M.S., Cornell University, Aerospace Engineering, 1985
Ph.D., Cornell University, Aerospace Engineering, 1988

Interests
Computational Aeroacoustics
Aerodynamics for rotorcraft and jet flows

Awards and Major Appointments
AHS (American Helicopter Society), Acoustics Committee
AIAA Aeroacoustics, Technical Committee; Awards Subcommittee
(Chairman 96-97)
ASME: coordinating group for CFD
Associate Fellow AIAA

Research Areas
Dr. Lyrintzis’ current research interests can be divided mainly into three areas:

a. The Use of Integral Techniques in Computational Aeroacoustics

Dr. Lyrintzis has made significant contributions in the use of integral techniques Computational Aeroacoustics (CAA). CAA is concerned with the prediction of the aerodynamic sound source and the transmission of the generated sound starting from the time-dependent governing equations. The goal is to improve the state-of-the-art predictive techniques, so that aircraft and rotorcraft noise can be reduced. Dr. Lyrintzis has pioneered the use of integral techniques, (i.e. the Kirchhoff method and the porous Ffowcs Williams Hawkings [FWH] equation) for describing noise propagation. The methods are attractive because they utilize surface integrals (over a source region) to determine far-field acoustics, as opposed to the memory intensive volume integrals found in traditional acoustic analogy methods. Dr. Lyrintzis’ research has demonstrated that a simple set of versatile portable Kirchhoff/Acoustic Analogy subroutines can be developed to analyze and reduce noise generation in a number of applications including fans, propellers, air-conditioning units etc. This work has been funded by NASA Langley Research Center, NASA Glenn Research Center, Sikorsky Aircraft Company and the Indiana 21st Research and Technology Fund, and the Aeroacoustics Research Consortium.
b. Aircraft Jet and Fan Noise for Supersonic Business Jet Engines (with Professor Blaisdell)

Operating behind a supersonic inlet the fan of an SSBJ engine will experience flow distortion characteristics quite different to those of a conventional turbofan installation. The effect of large inflow distortions will be addressed using a nonlinear CFD methodology. The study will investigate fan noise issues, including how inlet distortion may affect buzz saw noise from the fan, i.e. tones at multiples of fan rotation produced by non-uniform leading edge shock spacing on the fan leading edge. We are using the BASS code currently being developed at NASA Glenn as part of the QAT (Quiet Aircraft Technology) program. The code has been designed for aeroacoustic applications and has several high-order schemes.

The noise emissions of nozzles with internal mixers and ejectors employing geometry and conditions used for the new Rolls-Royce engine of the proposed supersonic business jet is being studied. The main objectives are to examine the effects of forced mixer and ejector design on the noise generation mechanisms, and to develop novel noise attenuation concepts. In our previous studies (in collaboration with Rolls-Royce and ISVR researchers), the noise from internal mixers was investigated based on a RANS approach coupled with semi-empirical models (i.e., the two-source model). We have analyzed experimental results obtained at NASA Glenn. We have also developed a high-order LES code for jet noise prediction and integral acoustics techniques for the computation of the noise signal. We are studying the flow with mixers and ejectors. The ejector will add additional dipolar noise sources; thus the existing two-source model will be extended to a multi-source model to capture the emissions from various nozzle components. This project is being funded by Rolls-Royce.

c. Shock Boundary Layer Interactions Modeling Enhancements (with Professor G. Blaisdell)

The purpose of this study is to evaluate current turbulence models and to test new turbulence modeling ideas for shock boundary layer interactions using the OVERFLOW code. The OVERFLOW code will be used because it is currently the dominant computational fluid dynamics (CFD) tool for Space Shuttle ascent aerodynamics and it is being considered for future use in aerothermal analyses. We are evaluating the standard turbulence models currently available within OVERFLOW to determine their performance on a variety of high-speed boundary layer flows by comparing results with experimental data. We will then determine the behavior of modifications to the near wall scaling and added compressibility corrections. The test cases to be considered will include simple boundary layer flows, shock-boundary layer interactions, and the Space Shuttle during ascent. This work has been funded by NASA Johnson Space Center.
Conference Proceedings, Presentations, Invited Lectures

STEVEN P. SCHNEIDER
1989
Professor

Degrees
B. S., California Institute of Technology, Engineering & Applied Science, with Honors, 1981
M. S., California Institute of Technology, Aeronautics, 1984
Ph.D., California Institute of Technology, Aeronautics, 1989

Interests
Laminar-turbulent transition at hypersonic and supersonic speeds
Experimental fluid mechanics

Research Areas
High-speed laminar-turbulent transition is critical for applications including scramjet-powered cruise vehicles, gliding and ballistic re-entry vehicles, supersonic transports, and some types of interceptor missiles. Unfortunately, nearly all existing high-speed experimental results are contaminated by facility noise, such as that radiating from the turbulent boundary layers normally present on the test-section walls of supersonic and hypersonic tunnels. Just as at low speeds, reliable experimental progress requires low-turbulence wind tunnels with noise levels comparable to those in flight.

Sponsored Research Summaries
Quiet supersonic tunnels with low noise levels comparable to flight were developed at NASA Langley during the 1970’s and 1980’s to address problems such as laminar-turbulent transition that are strongly affected by noise level. Detailed measurements of the mechanisms of transition are needed, under low noise conditions, in order to develop computational models that are based on the correct flow physics. To perform these measurements, quiet Ludwieg tubes have been developed at Purdue, for operation at Mach 4 and Mach 6.

The Boeing/AFOSR Mach-6 Quiet Tunnel at Purdue is the only hypersonic quiet tunnel presently in operation. Quiet flow operation to a unit Reynolds number of 3.5 million per foot has been demonstrated in the 9.5-inch diameter nozzle. Modern digital and optical instrumentation enables efficient use of the 7-second run-time, and the short duration keeps operating costs low. Measurements are made on various models using hot wires, temperature-sensitive paints, high-sensitivity laser differential interferometry, high-frequency pressure transducers, and arrays of surface hot films. Instability waves can be generated in a controlled manner using a glow-discharge perturber at the model surface or using a laser-induced hot spot in the freestream.
Publications

Conference Proceedings, Presentations and Invited Lectures

Schneider, S. P., invited speaker, Workshop on Hypersonics: Requirements, Current Capabilities, and Future Research Directions, organized by AFOSR and the University of Minnesota, September 14-15, 2005.
JOHN P. SULLIVAN
1975
Professor

Degrees
B. S., University of Rochester, Mechanical & Aerospace Sciences
(with honors), 1967
M. S., Massachusetts Institute of Technology, Aeronautical Engineering,
1969
Sc.D., Massachusetts Institute of Technology, Aeronautical Engineering,
1973

Interests
Experimental aerodynamics
Laser instrumentation
Luminescent sensors for temperature and pressure measurements

Research Areas
Current research interest is in the area of experimental aerodynamics with
particular emphasis on comparison of experimental data with computational analysis.
Current programs include:
1. High lift systems
2. Suction/blowing airfoils

In addition to the above programs, work also continues on developing laser
instrumentation (laser Doppler velocimeter, particle image velocimeter, laser sheet
concentration, etc.) and pressure and temperature paint for:
1. Wind tunnels - low speed to hypersonic
2. Gas turbine engines
3. Flight tests

Conference Proceedings, Presentations and Invited Lectures
Frequency Fluidic Oscillator Driven by Piezoelectric Devices,”AIAA paper 2005-0108,
MARC H. WILLIAMS
1981
Professor and Associate Head

Degrees
- B. S., University of Pittsburgh, Aeronautical Engineering, magna cum laude, 1969
- M. A., Princeton University, Aerospace & Mechanical Sciences, 1971
- Ph.D., Princeton University, Aerospace & Mechanical Sciences, 1975

Interests
- Aerodynamics
- Computational fluid Mechanics

Research Areas
The determination of aeroelastic stability and forced response characteristics of flight vehicles requires methods for predicting the unsteady aerodynamic loads that are induced by structural deformation and/or free stream disturbances. Current research is directed at developing such methods for transonic flight and for rotating machinery.

Much of this work has been done for advanced propfan applications. These engines are intended for use on medium range commercial transports, which operate at low transonic Mach numbers. In order to maintain high operating efficiency and low noise, the blades are very thin and flexible. Therefore, they are subject to substantial static and dynamic deformations which alter the aerodynamic loads on the blades. Computational methods have been developed to predict these loads, both for single and counter rotating systems. Flutter boundaries and forced vibration amplitudes have been successfully predicted for a variety of current propfan designs. The most successful schemes developed so far have been based on linearized aerodynamic models. Work is under way on including nonlinear transonic effects through three-dimensional potential formulation with moving grids.
DYNAMICS AND CONTROL

Faculty Members

D. Andrisani II, Associate Professor, Ph.D., SUNY at Buffalo, 1979, estimation, control, and dynamics

M. J. Corless, Professor, Ph.D., Berkeley, 1984, dynamics, systems, and control

D. DeLaurentis, Assistant Professor, Ph.D., Georgia Institute of Technology, 1998, design methods, and aerospace systems and flight vehicles

A. E. Frazho, Professor, Ph.D., Michigan, 1977, control systems
DOMINICK ANDRISANI II
1980
Associate Professor

Degrees

B. S., Rensselaer Polytechnic Institute, Aeronautical Engineering, 1970
M. S., State University of New York at Buffalo, Electrical Engineering, 1975
Ph.D., State University of New York at Buffalo, Electrical Engineering, 1979

Interests

Estimation
Control
Dynamics
Flight Aircraft Flying Qualities

Research Areas

Extensive experience in experimental methods in the study of vehicle dynamics and control has focused teaching and research on practical and important aerospace problems in four areas. First is the area of estimation theory, where new estimation algorithms have been developed using the partitioning approach. The second area involves the application of estimation theory to aerospace problems. Here estimation theory has been used to develop a new class of target trackers. These trackers incorporate knowledge of the aerodynamic and thrust vectors to help improve the trackers ability to estimate target acceleration. The third area involves research towards the development of design specifications for helicopter flight control systems, i.e., helicopter flying qualities. The fourth area involves analysis and detection of pilot-in-the-loop oscillations.

Conference Proceedings, Presentations, Invited Lectures

MARTIN CORLESS
1984
Professor

Degrees
B. E., University College, Dublin, Ireland, Mechanical Engineering,
(1st honors), 1977
Ph.D., University of California, Berkeley, Mechanical Engineering, 1984

Interests
Dynamics
Systems
Control

Research Areas
Most of the research is concerned with obtaining tools, which are useful in the
analysis and control of systems containing significant uncertainty. These uncertainties
are characterized deterministically, rather than stochastically. The systems treated can be
linear or nonlinear and continuous-time or discrete-time. The major application of the
research is in the analysis and control of aerospace and mechanical systems. In these
applications, some of the research focuses on the effect of flexible elements.

Publications
for the Hybrid Control of a Diesel Engine Using VGT/EGR,” ASME Journal of Dynamic

Corless, M., “Discussion on Uniform Parametric Convergence in the Adaptive Control

Conference Proceedings, Presentations, Invited Lectures and Reports
Ackimese, A. B., and Corless, M. J., “Observers for Systems with Non-linearities Satisfying an Incremental Quadratic Inequality,” 2005 American Control Conference,
Portland, Oregon, 2005.

International Workshop on Dynamics & Control, DaimlerChrysler Training Center,
Wiesensteig, Germany, 2005.
DANIEL DELAURENTIS
2004
Assistant Professor

Degrees
M.S., Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, August 1993.

Research Interests

Design Methods:
1. Mathematical modeling and object-oriented frameworks for the design of system-of-systems, especially those for which air vehicles are a main element (transportation and mobility networks, uninhabited air vehicle networks, etc.)
2. Approaches for robust design, including robust control analogies and uncertainty modeling/management in multidisciplinary design

Aerospace Systems and Flight Vehicles:
3. Sizing/Synthesis algorithms for design & performance estimation of revolutionary flight vehicles
4. Exploration of Personal Air Vehicle designs and concept of operations
5. Aircraft flight stability and control, especially as an integral part of conceptual design

Conference Proceedings, Presentations, Invited Lectures and Reports

ARTHUR E. FRAZHO
Professor
1980

Degrees
B.S.E., The University of Michigan, Ann Arbor, Computer Engineering, 1973
M.S.E., The University of Michigan, Ann Arbor, Computer Information and Control Engineering, 1974
Ph.D., The University of Michigan, Ann Arbor, Computer Information and Control Engineering, 1977

Interests
Control systems

Research Areas
This research develops and applies operator theory to problems in deterministic and stochastic control systems. These techniques are used to design models for both linear and nonlinear control systems. We also obtain fast recursive algorithms for computing reduced order models. This also yields a theory of H^∞ controller reduction and pole placement with applications to large space structure control. Finally, these techniques are used to solve problems in signal processing and inverse scattering theory.

Publications

JAMES L. GARRISON
Associate Professor
2000

Degrees
B.S. Rensselaer Polytechnic Institute, Troy, NY, Aeronautical Engineering, 1988
M.S. Stanford University, Stanford, CA, Aeronautics and Astronautics 1990
Ph.D. The University of Colorado, Aerospace Engineering Sciences, 1997

Interests
Satellite navigation
GPS
Remote sensing

Awards and Major Appointments
Institute of Navigation, Early Achievement Award, June 2002.

Publications

Conference Proceedings, Presentations, Invited Lectures

KATHLEEN C. HOWELL
1982
Hsu Lo Professor of Aeronautical & Astronautical Engineering

Degrees
B. S., Iowa State University, Aerospace Engineering, 1973
M. S., Stanford University, Aeronautical & Astronautical Engineering, 1977
Ph.D., Stanford University, Aeronautical & Astronautical Sciences, 1983

Interests
Orbit mechanics
Spacecraft dynamics, control
Trajectory optimization

Research Areas
In the area of astrodynamics, the complex missions envisioned in the next few decades will demand innovative spacecraft trajectory concepts and efficient design tools for analysis and implementation. In support of such plans, current research efforts focus on spacecraft navigation and maneuver requirements, and mission planning, both in the neighborhood of the Earth and in interplanetary space. Some sample projects are mentioned below.

Much recent research activity has involved libration point orbits in the three- and four-body problems. The \(n \)-body problem in orbital mechanics generally considers trajectory solutions when \((n-1)\) gravity fields are significant. Spacecraft in the vicinity of libration points thus operate in an environment in which gravity forces due to two or three (or more) celestial bodies may result in trajectories that appear as three-dimensional, quasi-periodic Lissajous paths. Such three-dimensional trajectories are of considerable interest in connection with any future lunar operations. In the near term, missions involving libration point satellites are included in a number of programs that the U. S. is planning with international partners. Technical studies involve trajectory design and optimization including optimal control strategies for out-of-plane motion in consideration of communication and other operational specifications. Analyses of station-keeping requirements for such trajectories are also currently under study.

The subject of optimal transfer trajectories is of considerable importance and rapidly growing in complexity as well. New types of problems now facing mission designers render standard optimization strategies inadequate, particularly for application in the \(n \)-body problem. Nominal transfer trajectory determination and optimization is the focus of an expanding investigation. Various projects range from development of new computational techniques to application of geometric nonlinear dynamical systems theory to these problems.
A related problem of interest involves Earth orbiting vehicles that repeatedly pass close to the Moon. Such trajectories use lunar gravity to effect trajectory changes. Not only can such a swingby aid in minimizing mission fuel requirements, it also creates trajectory options that may otherwise be impossible. Analysis is complicated, however, by the strong solar perturbation. Multi-conic analysis has proven promising and work is continuing to develop tools to make optimal trajectory design efficient and accurate. Design strategies can also be extended to other multi-body systems. Such applications are under considerations as well.

Publications

Conference Proceedings, Presentations, Invited Lectures

INSEOK HWANG
2004
Assistant Professor

Degrees
B. S. - Department of Aerospace Engineering, Seoul National University, Seoul, Korea, February 1992.

M. S. - Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Taejeon, Korea, February 1994.

Ph.D. - Department of Aeronautics and Astronautics, Stanford University, January 8, 2004

Research Interests
- Hybrid Systems/Nonlinear Systems
- Applications to Air Traffic Control
- Other applications

Book Chapter

Conference Proceedings, Presentations, Invited Lectures and Reports

Yepes, J. L., Hwang, I., and Rotea, M., Pilot's Intent Inference and Aircraft Trajectory Prediction with Applications to Air Traffic Control, Proceedings of the UKC Aerospace Science and Technology Symposium, Irvine, CA, August 2005

Hwang, I., Control in Information Rich World: Application to Air Traffic Control, Korea Aerospace Research Institute (KARI), Taejon, Korea, August 2005.

Hwang, I., Control in Information Rich World: Application to Air Traffic Control, Division of Aerospace Engineering in the School of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Taejon, Korea, August 2005.
Hwang, I., Control in Information Rich World: Application to Air Traffic Control, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea, July 2005.
JAMES M. LONGUSKI
1988
Professor

Degrees
B.S.E., The University of Michigan, Aerospace Engineering, cum laude, 1973
M.S.E., The University of Michigan, Aerospace Engineering, 1975
Ph.D., The University of Michigan, Aerospace Engineering, 1979

Interests
Spacecraft Dynamics
Orbit Mechanics
Control
Orbit decay and reentry

Awards and Major Appointments
NOVA (Notable Organizational Value-Added) Award from Jet Propulsion Laboratory

Research Areas
Current research efforts include 1) analytic theory and control of spinning-up and thrusting vehicles, 2) mission design and trajectory design for interplanetary flight, 3) orbit decay and reentry problems, and 4) tethers in space.

In 1) the current goal is to develop a general analytic theory (which provides solutions for angular velocity, the attitude, the angular momentum vector and the translational velocity of rigid and elastic bodies subject to arbitrary body-fixed torques and forces) and to develop control laws based on the analytic theory.

In 2) mission design tools developed at the Jet Propulsion Laboratory have been acquired for research use at Purdue. Both theoretical and computational techniques are being employed to analyze the gravity-assist problem in terms of identifying potential trajectories (such as the Voyager Grand Tour, the Galileo VEEGA, and the Europa Orbiter Tour) and optimizing the launch energy and propellant requirements for these missions.

In 3) analytic solutions have been obtained for the probability of immediate reentry and of orbit decay, as well as escape, in the event of misdirected interplanetary injection maneuvers occurring at low earth orbit. The solutions have relevance to safety issues involving nuclear power plants aboard deep space probes.

In 4) the feasibility of using tethers for aerobraking has been demonstrated. The basic idea is to connect an orbiter and a probe together by a long tether, for missions to planets with atmospheres. The probe enters the atmosphere and is used to reduce the
hyperbolic speed of the orbiter to capture speed, thus eliminating the large retro maneuver normally required. New issues being addressed include analysis of the flexible tether, tether guidance and control, and spacecraft (endpoint) attitude control.

Publications

MARIO A. ROTEA
1990
Professor

Degrees
Electronic Engineering Degree, Universidad Nacional de Rosario, Argentina, 1983
M.S.E.E., University of Minnesota, Electrical Engineering, 1988
Ph.D., University of Minnesota, Control Science & Dynamical Systems, 1990

Interests
- Algorithms for estimation and control under uncertainty
- Algorithms for large-scale optimization and on-line optimization
- Modeling, optimization, and control of mechanical and aerospace systems

Awards and Major Appointments
- NSF Young Investigator Award
- Center for Satellite Engineering, Co-Director

Publications

Conference Proceedings, Presentations, Invited Lectures

W. E. Anderson, Assistant Professor, Ph.D., 1996, Pennsylvania State University, combustor design, combustion stability, atomization, & combined cycle propulsion

S. D. Heister, Professor, UCLA, 1988, rocket propulsion & liquid propellant injection systems

I. Hrbud, Assistant Professor; Ph.D., Auburn University, 1997; Electric propulsion, space power, advanced in-space propulsion

J. P. Gore, by courtesy) Vincent P. Reilly Professor in Mechanical Engineering, Ph.D., 1986; Pennsylvania State University, 1986, Combustion, turbulent reacting flows & pollutant reduction, radiation heat transfer, biomedical heat transfer & fluid flows

C. L. Merkle, joint appointment with Mechanical Engineering, Reilly Professor of Engineering, Ph.D., Princeton Univ., 1969; Computational fluid dynamics & mechanics, two phase flows, propulsion components and systems

S. Meyer, Senior Engineer, MSAE 1991, Purdue Univ.
Degrees
B. S., Arizona State Univ., Chemistry, 1979
M. S., Univ. of Arizona, Chemical Engrg., 1984
Ph.D., The Pennsylvania State University, Mechanical Engrg., 1996

Interests
Combustor design
Combustion stability
Atomization
Combined cycle propulsion

Sponsored Research Summaries
Rocket Combustor Design – The a priori analysis of rocket combustor performance, heat transfer, and life are difficult because the extreme environments of the combustor make direct measurements and prediction difficult. Improved methodologies for preliminary injector design analysis and combustor life prediction are being developed using subscale approaches combined with relatively simple analysis. The injector design projects emphasize measurements in representative high-pressure rocket combustors (>1000 psia) and concurrent determination of one-dimensional energy release profiles. The life prediction work looks to develop innovative subscale test approaches for life cycle testing, including the acquisition of validation data for thermostructural models, life data on advanced materials in prototypical combustor configurations, identification of failure modes, and definition of long-life design concepts. This work is sponsored by NASA Marshall Space Flight Center.

Rocket-Based Combined Cycle Combustors – Combined cycle systems offer potential cost and performance benefits over all-rocket systems, yet they present design challenges due to added system complexities. Work is underway to develop a prototype thruster that will be used in a flight experiment to develop an operational baseline for future flight tests of RBCC systems. This work is sponsored by NASA Dryden Flight Center.

Non-Toxic Propellants – It is imperative to find safe replacements for highly toxic storable propellants. Before new propellant combinations can be used, reliable design databases must be developed. Experimental combustion data are being generated for hydrogen peroxide and dimethylethylamidoazide, two propellants that are significantly less toxic than storable propellants currently in use. The experiments include both realistic combustor conditions and geometries and measurements of propellant drop vaporization and chemical reaction in optically accessible chambers. Work is also underway to develop improved field test methods for the determination of the stability

Publications

Conference Proceedings, Presentations, Invited Lectures

JAY P. GORE
2006 (by courtesy)
Vincent P. Reilly Professor in Mechanical Engineering

Degrees
Ph.D., Penn State, 1986
M.S., Penn State, 1982
B.E., University of Poona, 1978

Interests
- Combustion, Turbulent reacting flows and pollutant reduction
- Radiation Heat Transfer
- Biomedical heat transfer and fluid flows

Other Information
Dr. Jay P. Gore is the interim Director of the Energy Center in Discovery Park and the Associate Dean of Engineering for Research and Entrepreneurship in the College of Engineering. He is also the Vincent P. Reilly Professor in Mechanical Engineering. He served as a Research Fellow in Aerospace Engineering at the University of Michigan and as an Assistant Professor of Mechanical Engineering at the University of Maryland prior to joining Purdue as an Associate Professor. Dr. Gore received early promotions to the rank of Professor of Mechanical Engineering and to the Chair Professorship. Jay is a past Chairman of the Central States Section of the International Combustion Institute and the ASME K11 Committee on Heat Transfer in Fire and Combustion. He has served as an Associate Editor of the ASME Journal of Heat Transfer. He was the U.S. Editor of the 28th International Combustion Symposium. Dr. Gore currently serves as an Associate Editor of the AIAA Journal. He has received the Best Paper in Heat Transfer Literature Award from ASME and a Presidential Young Investigator Award. He has also received Faculty Fellowships from the Japanese Ministry of Education and the U. S. Department of Energy.

Jay's research is in the area of combustion and radiation heat transfer with applications to pollutant reduction, efficiency enhancements, fire safety, and improved fundamental understanding. He has received over $10M in research funding and is currently serving as the PI for grants over $1M in gas turbine combustion and radiation heat transfer applications. He is applying infrared radiation sensing knowledge to a wide range of problems including Bio Heat Transfer, Food Science, and Optical Biopsy in collaboration with a large group of multidisciplinary scientists and physicians. He has authored or coauthored over 100 archival papers, 4 book chapters, and 175 conference papers. Jay has developed/revised 2 courses (Combustion and Advanced Combustion) at Purdue University and three courses in heat transfer and thermodynamics at the University of Maryland.
STEPHEN D. HEISTER
1990
Professor

Degrees
B.S.E., The University of Michigan, Aerospace Engineering, 1981
M.S.E., The University of Michigan, Aerospace Engineering, 1983
Ph.D., University of California at Los Angeles, Aerospace Engineering, 1988

Interests
Rocket propulsion
Liquid propellant injection systems
Two-phase and capillary flows

Sponsored Research Summaries
1. Atomization modeling - Under AFOSR sponsorship, a number of atomization models have been developed to study the unsteady evolution of liquid jets and droplets. These simulations utilize boundary element methods to provide high-resolution of very large surface distortions and atomization processes. In fact, a number of the models can carry out calculations beyond atomization events. Currently, we are developing a more comprehensive model to treat the entire spray formed by a high-speed injection process. This model incorporates detailed drop dynamics including collisions and secondary atomization of droplets in the spray. Current models track upwards of 2,000,000 droplets simultaneously in a parallel-processing approach.

2. Rocket Combustion Experiments - This effort involves the use of the Purdue University Rocket Propulsion and Power Lab (PURPPL); a facility housed at the Maurice Zucrow Labs. Lab scale motors have been fired to assess basic combustion phenomena in hybrid rockets. Over 100 firings of a hydrogen peroxide/polyethylene propellant combination have been conducted during the past four years. Due to the high level of interest in the clean burning, safe handling aspects of hydrogen peroxide, numerous other opportunities are being investigated for potential application in the PURPPL facility. These efforts are heavily coupled with Professor Rusek’s present research group.

3. Diesel Engine Injector Modeling - This project, funded by Cummins Engine Company, NSF, and ARO is aimed at developing computational tools for use in simulating internal flows in diesel injector passageways. Due to the high injection pressures, cavitation is a crucial feature, which must be incorporated in the modeling. To this end, we have developed a new cavitation treatment capable of addressing hydrodynamic nonequilibrium effects in a fully viscous calculation. Two-dimensional simulations have been compared to experimental measurements from Professor Collicott’s research group with favorable results. A full 3-D model has recently been
developed making use of advanced parallel processing schemes in a LINUX computing environment. The model shows complex unsteady flow behavior under cavitating conditions. Presently, a turbulence model is being incorporated in the 2-D codes.

Publications

Conference Proceedings, Presentations, Invited Lectures
IVANA HRBUD
2003
Assistant Professor

Degrees
M.S. (Diplom Ingineur), Stuttgart Univ., Germany, Aerospace Engineering, 1993
Ph.D, Auburn University, Aerospace Engineering, 1997

Interests
Electric and Advanced Space Propulsion
Power Systems
Nuclear/Electric Propulsion Spacecraft Concepts

Research Summaries

1. RF Plasma Thruster Experiments – To ease the impact of severe constraints on power, mass, volume and lifetime of small-satellite propulsion system, the RF plasma thruster concept considers capacitive RF discharge between co-axial electrodes. Operating conditions of this concept are dictated by mass flow rate, electrode separation, RF frequency and power input. To investigate this concept’s propulsive capability and plasma characteristics, two laboratory-scale test articles have been designed and built. Both devices have been operated with various propellants in DC and RF power modes. A torsional thrust stand was designed, which is currently undergoing calibration and validation.

2. RF Plasma Thruster Modeling – A preliminary effort involved an analytical study incorporating generalized 1-d flow theory and plasma dynamics. The goal of this study is to assess the thruster’s propulsive characteristics as a function of mass flow rate, electrode separation, RF frequency and power input.

3. Coil Geometries for Inductively Coupled Plasmas – The main objective of this research is to explore new geometries for a pulsed inductive plasma accelerator by which it can take advantage of innovative powertrain concepts and propellant injection. In general, inductively-coupled thrusters are appealing for high-power electric propulsion applications due to the electrodeless nature of the acceleration process. In addition, this concept operates with a wide variety of propellants, and provides variable specific impulse by varying propellant flow rate into the coupling area. A preliminary study involves Faraday’s Law to calculate induced azimuthal electric field for a given geometry and current waveform. Then an RLC circuit analysis is conducted to assess the behavior of the system.
Conference Proceedings, Presentations, Invited Lectures and Reports

CHARLES L. MERKLE
2003
Reilly Professor of Engineering

Degrees
B.S., Case Institute of Technology, Engineering Science, 1962
M.S., Rensselaer Polytechnic Institute, Mechanical Engineering, 1966
Ph.D., Princeton University, Aerospace & Mechanical Sciences, 1969

Interests
Computational fluid dynamics and mechanics
Two phase flows
Propulsion components and systems

Publications

Conference Proceedings, Presentations, Invited Lectures and Reports

SCOTT MEYER
2001
Sr. Engineer

Degrees
B.S.A.A.E., Purdue University, School of Aeronautics & Astronautics, 1990
M.S.A.A.E., Purdue University, School of Aeronautics & Astronautics, 1992

Scott Meyer is a Senior Propulsion Engineer at Purdue University for the Departments of Mechanical Engineering and Aeronautics and Astronautics. He joined the Purdue staff in 2001 to direct propulsion testing operations and to develop the test facilities for the Indiana Propulsion and Power Center of Excellence.

From 1998 to 2001, Mr. Meyer worked at Beal Aerospace in Frisco, Texas as a senior propulsion engineer. In this role, he defined test programs to support the development of the BA2-C launch vehicle stages and rocket engines. He wrote test plans and coordinated test planning with the engine test facilities including mechanical and fluid system interfaces and instrumentation and control requirements. He directed the procurement, manufacture, and assembly activities for the construction of rocket engines and wrote engine assembly and catalyst preparation procedures. He directed testing operations, wrote test procedures, supervised the installation of test hardware, defined requirements for and performed system calibrations, and performed rocket engine tests. Following testing he wrote test and analysis reports and was responsible for the validation and analysis of test data including engine and stage performance and data reduction methodologies.

From 1993 to 1998 Mr. Meyer worked at Arnold Engineering Development Center in Tullahoma, Tennessee as a project engineer in the Propulsion Wind Tunnel Facility. There he directed multi-million dollar propulsion integration wind tunnel tests for contractors on the F-22 and F/A-18 fighter aircraft and the X-33 SSTO launch vehicle. As such his responsibilities included providing instrumentation specifications and hardware design requirements, managing testing operations, and performing project cost estimation and fiscal management.

Mr. Meyer is a co-patent holder for a hybrid rocket engine ignition device.
Faculty Members

W. Chen, joint appointment in MSE, Professor, Ph.D., California Institute of Technology, 1995, experimental solid and structural mechanics

W. A. Crossley, Associate Professor, Ph.D., Arizona State, 1995, optimization, rotorcraft and aircraft design, and structure design

J. F. Doyle, Professor, Ph.D., Illinois, 1977, structural dynamics, experimental mechanics, photomechanics, and wave propagation

T. N. Farris, Professor and Head, Ph.D., Northwestern, 1986, tribology, manufacturing processes, fatigue and fracture
A. F. Grandt, Jr., Professor, Ph.D., Illinois, 1971, damage-tolerant structures and materials, fatigue and fracture, and aging aircraft

H. Kim, Assistant Professor, Ph.D., University of California-Santa Barbara, 1998, composites, impact, stability, and adhesive joining

C. T. Sun, Neil A. Armstrong Distinguished Professor; Ph.D., Northwestern, 1967, composites, fracture and fatigue, and structural dynamics

P. K. Imbrie, Associate Professor, Engineering, Education, Ph.D., Texas A&M, 2000, educational research, solid mechanics, experimental mechanics, and nonlinear materials characterization

R. B. Pipes, joint appointment in Chem. Engrg. and MSE, John L. Bray Distinguished Professor of Engineering; Ph.D., Univ. of Texas, 1972, application of nanotechnology to engineering disciplines including aerospace, composite materials and polymer science and engineering

Terrence A. Weissshaar, Professor, Ph.D., Stanford, 1971, aircraft structural mechanics, aeroelasticity, integrated design
WEINONG WAYNE CHEN
2005
Professor

Degrees
B.S., Beijing University of Aeronautics and Astronautics, Beijing China, Aircraft Structure Design, 1982
M.S., Beijing University of Aeronautics and Astronautics, Aircraft System Engineering, Beijing China, 1985
Ph.D., California Institute of Technology, Aeronautics, minor in Materials Science, 1995

Interests
Experimental Solid and Structural Mechanics
Mechanical Response of Solids at High Strain Rates
Fatigue Behavior of Engineering Materials
Microstructural Effects on Mechanical Behavior
Dynamic Response of Advanced Materials

Awards and Major Appointments
Fellow, American Society of Mechanical Engineers 2005
University Faculty Scholar, Purdue University 2005

Research Areas
Dr. Chen's research activities mainly involve the development of novel dynamic material characterization techniques and the determination of dynamic responses of engineering materials at high loading rates. He built dynamic material characterization laboratories at California Institute of Technology, University of Arizona, and Purdue University. He also assisted the development of such laboratories at Sandia National Laboratories in Albuquerque, NM and Livermore, CA; Army Research Laboratory in Aberdeen Proving Ground, MD; U.S. Army Waterway Experiment Station in Vicksburg, MS; National Institute of Standard and Technology in Gaithersburg MD; and a number of university and industrial laboratories. The techniques he developed are focused on ensuring valid testing conditions during dynamic experiments to obtain accurate material properties at high rates of loading. These techniques, summarized in over 15 journal articles, have been well accepted in the research community. Two of top five, four of top ten "most cited papers of Experimental Mechanics" are from Dr. Chen's group.

Using the novel techniques, Dr. Chen and his students have obtained accurate and reliable material behavior at high rates for soft rubbers, glassy polymers, polymeric foams, gelatins, glass/epoxy composites, soy-bean based clay nanocomposites, biological tissues (muscles, skins, bones), shape memory alloys, high-strength steels, geomaterial, masonry materials, textile materials, and armor ceramics. For each class of the materials under dynamic tension, compression, or multiaxial compression, at various temperatures, his group examined the valid dynamic testing conditions to obtain valid experimental
results. Microstructural characterization was carried on some of the materials. Based on the experimental results and microstructural observations, material constitutive models were developed to describe the recorded material behavior. Over forty journal articles have been published based on the results from these research programs.

The research accomplishments demonstrate that Dr. Chen has established himself with unique contributions in the field of experimental solid mechanics. He has developed an independent and well funded research program investigating the dynamic mechanical behavior of materials and the necessary experimental techniques, and has established a national and international reputation in his field.

Publications

Conference Proceedings, Presentations, Invited Lectures

WILLIAM A. CROSSLEY
1995
Associate Professor

Degrees
B.S.E. University of Michigan, Aerospace Engineering, 1990
M. S. Arizona State University, Aerospace Engineering, 1992
Ph.D. Arizona State University, Aerospace Engineering, 1995

Interests
Optimization
Rotorcraft and aircraft design
Structure design

Research Areas
Professor Crossley’s major research interests are in the area of design methodologies and optimization, with emphasis on techniques like the GA that will allow optimization-like methods to be applied in the conceptual design phase, which traditionally has been dominated by qualitative or subjective decision making. Significant contributions have been made in applications to discrete actuator placement, topology design, and satellite constellation design.

Sponsored Research Summaries
Topology Design of Rotor Blades for Aerodynamic and Structural Concerns. This computational research effort strives to develop a rotor blade design strategy with the potential to improve the aerodynamic, structural, and dynamic performance of advanced rotorcraft. This work investigates the Genetic Algorithm (GA) as a means to combine aerodynamic and structural concerns for topology design of rotor blades. Inverse airfoil design and optimal airfoil design are receiving much attention in both industry and academia; the same holds true for structural optimization. The combination of the two concerns for topology design has not been fully addressed. A multi-disciplinary approach combining structural and aerodynamic concerns for optimal topology design of rotor blades provides potential benefit to the rotorcraft design process. The aerodynamic optimization portion of this research was cited in the technical research highlights of the NASA Ames Research Center, Rotor Aeromechanics Branch for 1999. Contributions in the structural portion of the research have demonstrated capabilities for discrete (on/off) topology; most notably handling connectivity issues and performing design of sections under combinations of bending and torsion that several authors had previously claimed were not possible.

Genetic Algorithm Issues for Optimal Smart Actuator Placement. This research is investigating approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supports many of the goals of the Multidisciplinary Design Optimization focus efforts in NASA’s Aircraft
Morphing program. Computational studies are being conducted to allow comparison and selection of appropriate techniques for posing and solving an actuator placement problem. The work began with a geometrically simple wing model, but the approaches identified during this research have been applied to complete aircraft configurations. The problem statement and algorithm application are being used at NASA Langley by researchers working on the Aircraft Morphing Program. Research in this area has been cited twice as technical highlights for the NASA Langley Multidisciplinary Optimization Branch; once in 1998 and again in 1999.

Improved Satellite Constellation Design and Optimization. Improving satellite constellation design is of great interest to any users of satellite communication (e.g. cellular phones, television), location (e.g. global positioning system) and/or observation (e.g. weather). Many of today’s satellite constellation designs rely on the “Walker Constellations,” a series of designs developed in 1970, which have rarely been improved upon. These constellations make use of symmetric constellations with circular orbits. Using the genetic algorithm to search the constellation design space has begun to yield constellation designs not previously envisioned but with performance equal to or greater than comparable Walker or “streets of coverage” constellations. Research is ongoing for sparse coverage constellations, constellation build-up problems, multiobjective constellation concerns and elliptic orbit constellations. The Aerospace Corporation performs satellite constellation design for its US Air Force customers using the design techniques developed as part of this research. In one of these studies, a multiobjective GA approach was able to generate constellation designs that outperformed constellations that had been under development for several months. The GA was able to do this in a matter of days.

Development of a Genetic Algorithm for Conceptual Design of Aircraft. Air vehicle conceptual design appears to be a promising area for application of the genetic algorithm as an approach to help automate part of the design process. Because the GA-based approach to conceptual design helps to reduce the number of qualitative decisions needed from the design team, this appears to have great potential for application to aircraft design. Work has been extensively conducted for helicopters, some additional work has been conducted for high-speed VTOL rotorcraft (e.g. tilt-rotor and tilt-wing aircraft), and work is currently underway for fixed-wing aircraft. The Systems Analysis Branch at NASA Langley Research Center supports this research.

Methods to Assess Commercial Aircraft Technologies. Increasing competition in the commercial aircraft industry requires that airframe manufacturers be judicious with technology research and development efforts. Currently, technology development strategies for commercial aircraft appear to be lacking; this research presents a methodology to assess new technologies in terms of both cost and performance. This methodology encompasses technologies that can be applied to the aircraft design and technologies that improve the development, manufacturing, and testing of the aircraft. This differs from past studies that focused upon a small number of performance-based technologies. The method is divided into two phases. The first phase evaluates technologies based on cost measures alone. The second phase redesigns an aircraft with
new technologies, assesses the relative importance of performance-based technologies, and recognizes technology interactions using Taguchi’s Design of Experiments. For a wide-body transport aircraft example, the methodology identifies promising technologies for further study. Recommendations and conclusions about the methodology are made based on the results. This work was done in collaboration with the Configuration Engineering and Analysis group at Boeing Commercial Aircraft.

Response Surface Methods as Approximation Models for Optimization. Approximation techniques, particularly the use of response surfaces (RS), have achieved wide popularity in engineering design optimization, especially for problems with computationally expensive analyses. The chief aims of using RS is to lower the cost of optimization and to smooth out the problem (e.g., for analyses solved iteratively, with a convergence tolerance). In one part of this research effort, an investigation of RS methods to minimize drag of a turbofan nacelle is being pursued in conjunction with engineers at Allison Advanced Development Company. This approach can improve the nacelle design practices at AADC by providing a formalized optimization framework for this CFD-based design exercise. The use of RS raises practical questions about the solution accuracy and computational expense. In particular, building response surfaces may involve a prohibitively large number of high-fidelity function evaluations, depending on problem dimensionality. In another part of this research effort, a computational study to address questions of expense and accuracy was undertaken with researchers in the Multidisciplinary Optimization Branch at NASA Langley Research Center. Important observations about the impact of constructing and using response surfaces for moderately high-dimensional problems were made. NASA researchers are using the RS models constructed during this portion of the research to further investigate techniques to manage approximation models in engineering optimization.

Conference Proceedings, Presentations, Invited Lectures

JAMES F. DOYLE
1977
Professor

Degrees
Dipl. Eng., Dublin Institute of Technology, Ireland, 1972
M.Sc., University of Saskatchewan, Canada, 1974
Ph.D., University of Illinois, 1977

Interests
Structural dynamics
Experimental Mechanics
Inverse Problems
Wave propagation

Research Areas
Wave Motion in Structures
Because of their size and low stiffness, large space structures are susceptible to wave motions due to transients. New, spectrally formulated, elements are being developed that are suitable for dynamic problems and have the following advantages:

Single elements can extend from joint to joint thus giving a remarkable reduction in the size of the system to be solved (with no loss of resolution).

Inverse problems can be solved conveniently, thus making it useful for experimental systems identification studies.

Experimentally characterized substructures (such as joints) may be easily incorporated in the modeling.

Spectral elements have already been developed for rods, beams and shafts, and their implementation in a general 3-D structural analysis computer program accomplished.

Impact and Damage of Structures
A very important aspect of structural performance is the ability to withstand impact and minimize the amount of damage caused. Impact had two effects on damage: (1) Generation if new damage near the impact site or at a stress concentrator. (2) Increased damage at pre-existing flaws caused by the propagated energy. Current investigations involve wave interactions with delamination flaws. This has direct application to damage in composite materials. Other aspects of the problem include:

FORCE IDENTIFICATION: from measurements made on the structure being able to determine the impact of force history.
REMOTE SENSING: from analysis of the reflected and transmitted waves being able to locate flaws and estimate their size.

LOCAL/GLOBAL ANALYSIS: separate the global structural dynamics from the local behavior near the flaw, thus leading to computational efficiencies. A novel layered spectral element has been developed for use with composite materials.

Whole Field Image Characterization

An alternative to strain gages and accelerometers in dynamic measurements is to use ultra-high speed photography coupled with such methods as photoelasticity; and moiré. The question being investigated is: Under what circumstances is a single (or a limited number) of photographs capable of completely characterizing the wave information? This touches on some fundamental aspects of transform theory coupled with measurement theory. The payoff is that photographs combined with digital imaging techniques offer unique possibilities for recording and post-processing the data. This is essentially an experimental problem because experimental data is always incomplete, so questions of quality of the data, the amount of data, etc. must be confronted, as well as the following aspects: (1) High-Speed photography and photoelasticity (2) Digital imaging techniques (3) 2-D Fast Fourier Transforms.
THOMAS N. FARRIS
1986
Professor and Head

Degrees
B. S., Rice University, Mechanical Engineering, cum laude, 1982
M. S., Northwestern University, Theoretical and Applied Mechanics, 1984
Ph.D., Northwestern University, Theoretical and Applied Mechanics, 1986

Interests
Tribology
Manufacturing processes
Fatigue and fracture

Awards and Major Appointments

Research Areas
In tribology, a major research effort is underway in the experimental and analytical characterization of fretting fatigue. The experimental work uses a unique fixture design that allows independent control of the applied clamping and tangential forces. Analytical work combines boundary and finite element analysis of the effect of forces, microslip, and geometry on subsurface stresses. Multiaxial fatigue theories are used to correlate these stresses with experimentally observed crack nucleation and fracture mechanics is used to predict growth of these cracks. The calculations have been used to predict the effect of fretting on multi-site damage nucleation and growth in the aging aircraft problem. The approach is being used to address fretting fatigue in jet engines as part of the Air Force High Cycle Fatigue initiative. Recent effort includes the capability to perform fretting fatigue experiments at high temperatures.

Manufacturing process research includes experimental and analytical work on grinding, turning, and super finishing of hardened steels and ceramics for precision components. The focus is on understanding the mechanics of the material removal process so that the effect of process parameters on component performance can be predicted. To this end, deformation induced during the controlled static and sliding microindentation is being studied. An example of the results of this research is a recently established relationship between grinding temperatures and near surface residual stress and microstructure of the ground component. A model of free abrasive machining that predicts statistical properties of the load/particle relationship has been developed. The model can be used to predict finished surface roughness. A new effort in the area of form generation in centerless grinding is underway. The use of high pressure fracture to produce smooth defect free ceramic surfaces is also being pursued.

Additional work in the area of manufacturing processes is directed at modeling of the heat treatment process. A commercial finite element package has been adapted to
predict the microstructure, deformation, and stress induced by quenching and tempering of steel structures. The model includes the effects of latent heat and volumetric strains induced by phase changes. Industrial collaborators are providing requisite material properties as a function of temperature as well as assistance with experimental validation of the modeling.

Publications

Conference Proceedings, Presentations, Invited Lectures and Reports

Farris, T. N., “Fretting Fatigue of Aerospace Structures,” Northwestern University, January 2005

ALTEN F. GRANDT, JR.
1979
Raisbeck Engineering Distinguished Professor for Engineering and Technology Integration

Degrees
B. S., University of Illinois at Urbana-Champaign, General Engineering, 1968
M. S., University of Illinois at Urbana-Champaign, Theoretical and Applied Mechanics, 1969
Ph.D., University of Illinois at Urbana-Champaign, Theoretical and Applied Mechanics, 1971

Interests
Damage-tolerant structures and materials
Fatigue and fracture
Aging aircraft
Nondestructive inspection

Research Areas
General technical interests deal with assuring the safe operation of aerospace and other complex structures through damage tolerance analyses and nondestructive inspection. Particular emphasis is on basic research to predict critical and subcritical crack growth under static and cyclic loads (i.e. fracture and fatigue). The influence of corrosion on structural integrity is also of interest. This research may be characterized by several overlapping categories.

Aging aircraft research is aimed at determining and/or extending the remaining life of structures that have seen extended periods of service, and focuses on determining the effect of multiple site damage on residual strength, and on evaluating the influence of corrosion on fatigue life.

Evaluation of new materials and manufacturing processes includes characterization of new materials in simple coupon or mechanical joint scenarios, analysis of fatigue resistant fastening systems, and evaluation of damage tolerant aspects of unitized construction. Research in this category also includes development of devices to monitor the severity of aircraft loading and has led to one patent.

Crack growth research is directed at predicting crack formation by fretting, corrosion, or cyclic loading, and as well as characterization of fatigue crack growth under complex variable amplitude and/or elevated temperature load histories.
Stress intensity factor analyses are aimed at obtaining solutions to evaluate complex two- and three-dimensional crack configurations common to aerospace structures (e.g. cracked fastener holes, dovetail joints, etc.).

Publications

Conference Proceedings, Presentations, Invited Lectures and Reports

PETER K. IMBRIE
Engineering Education
Associate Professor

Degrees
- B.S.A.E., Texas A&M University, May 1980
- M.S.A.E., Texas A&M University, May 1985
- Ph.D., Texas A & M University, August 2000

Interests
- Solid mechanics
- Experimental mechanics
- Nonlinear materials characterization
- Microstructural evaluation of materials
- Mechanics of composites
- Engineering materials
- Constitutive modeling
- Experiment and instrument design
- Educational research

Research Areas
Current research interests include, educational research, solid mechanics, experimental mechanics, nonlinear materials characterization, microstructural evaluation of materials, and experiment and instrument design. He has been involved with various research projects sponsored by NSF, NASA, and AFOSR, ranging from education related issues to traditional research topics in the areas of elevated temperature constitutive modeling of monolithic super alloys and environmental effects on titanium based metal matrix composites.
HYONNY KIM
2001
Assistant Professor

Degrees
B. S., University of California, Santa Barbara, Mechanical Engineering, 1993
M. S., Stanford University, Mechanical Engineering, 1994
Ph.D., University of California, Santa Barbara, Mechanical Engineering, 1998

Interests
Composites
Impact
Stability
Adhesive Joining

Research Areas
Adhesive Joining

Current research projects in adhesive joining are focused on (i) buckling stability driven disbonding of bonded composite structures, and (ii) developing nonlinear analysis techniques to predict failure in lap joints.

There exists features in high-performance structures of bonded composite construction that are of minimum gage thickness, or that rely on adhesive bonds to maintain structural stability. When these features develop partial disbands, they become susceptible to buckling if compressive and/or shear loads are applied. Henceforth they are critical safety concerns, particularly if additional disbonding ensues. Conditions for which buckling initiates, and for which further disbond growth can occur are being investigated. Theoretical models have been developed to predict buckling initiation and the threshold for disbond growth. These models identify which are the critical parameters governing these phenomena. Sub-element level experiments of partially-disbonded splice-jointed sandwich panels are being used to validate the capabilities of these models, and to observe the interplay between buckling and disbond growth. This research addresses important safety issues related to the tolerance of bonded composite airframes to disbands, particularly if these disbands are not easily detected by pre-flight ground checks or basic maintenance inspections.

Theoretical models predicting the complex nonlinear behavior, and ultimately failure, of adhesively bonded joints are being developed. In order to predict failure, these models incorporate the highly nonlinear constitutive behavior of adhesives. A current focus is to understand the phenomena of plastic strain localization which develops in a highly concentrated zone at the outer overlap-ends of a bonded joint, near the interface between the adhesive and the adherend. These zones are where fracture initiates, and cracks propagating inwards from these zones ultimately result in failure of the joint.
Impact Simulation

A research project is underway investigating the numerical simulation of high-velocity hailstone impacts on composite structures. Hail ice ingestion in aero-engines is a realistic concern for engines having composite, as well as metallic, fan blades. A key component of this project is the material response of the ice projectile during the impact event: the ice transitions between an elastic-like solid into a fluid-like powder. A material model that accounts for various parameters, principally strain rate and hydrostatic pressure, on the rupture of ice projectiles is being developed based on available experimental data.

Publications

Conference Proceedings, Presentations, Invited Lectures

R. BYRON PIPES
1972
John L. Bray Distinguished Professor of Engineering

Degrees
B. S., Louisiana Polytechnic Institute, 1964
M. S., Princeton University, 1969
Ph.D., University of Texas at Arlington, 1972

Interests
Application of Nanotechnology to engineering disciplines including:
Aerospace
Composite materials and polymer science
Engineering

Research Areas
Dr. Pipes is a distinguished researcher, currently working on the application of nanotechnology to engineering disciplines including aerospace, composite materials and polymer science and engineering. He has active programs in the study of the advanced manufacturing science for composite materials. He is also engaged in the development of Internet-based collaborative research wherein scientific instruments are shared by research groups located in academic, corporate and government scientific centers worldwide.

Publications

C. T. SUN
1968
Neil A. Armstrong Distinguished Professor
of Aeronautical & Astronautical Engineering

Degrees
B. S., National Taiwan University, Taiwan, Civil Engineering, 1962
M. S., Northwestern University, Theoretical & Applied Mechanics, 1965
Ph.D., Northwestern University, 1967

Interests
Composites
Fracture and Fatigue
Structural Dynamics
Smart Materials and Structures
Nano-structured Materials

Research Areas
Current research interests include the following areas:
Composite Materials and Structures – Advanced fiber composites have gained wide applications in aircraft and aerospace structures. Our research programs cover a broad spectrum in mechanics and design of various composite materials and structures. Research topics include developing methods for testing and modeling high strain rate and fracture behavior of polymeric composites, unconventional modeling of heterogeneous solids, exploring the use of nano particles in reinforcing composites, developing self-assembly methods for processing nanocomposites, improving methods for joining composite structures using adhesives, and developing multifunctional composite materials and structures.

Fracture Mechanics – Fracture mechanics is an important tool in analyzing failure in materials and structures. Our current research focuses on fracture of highly ductile metals and cohesive zone fracture modeling. We have successfully demonstrated that the crack tip opening angle (CTOA) as a crack growth criterion is independent of specimen size and can be used for predicting fracture failure in ductile materials. The CTOA approach is being investigated for use in predicting failure in metallic structures with widespread damage. Our effort in the subject of cohesive zone models is centered on the cohesive law: its physical meaning and conditions it must satisfy.

Smart Materials – The use of piezoelectric materials as actuators and sensors in adaptive structures demands these materials to perform under increasingly high electrical and mechanical loads. Durability and reliability of actuators have become important issues. Our current research aims at solving a number of fundamental problems involving cracks in piezoceramics subjected to combined electrical and mechanical loads.

Nanomaterials – Many nanostructured materials possess highly desired physical and mechanical properties and offer tremendous potentials in many applications. Our research
is concentrated on developing multiscale modeling techniques for nanomaterials and their composites and on the use of molecular mechanics to study the behavior of nanomaterials including nanocomposites.

Publications

Conference Proceedings, Presentations, Invited Lectures

TERRENCE A. WEISSHAAR
1980
Professor

Degrees
B. S., Northwestern University, Mechanical Engineering, (highest distinction), 1965
M. S., Massachusetts Institute of Technology, Aeronautics & Astronautics, 1966
Ph.D., Stanford University, Aeronautics & Astronautics, 1971

Interests
Aircraft structural mechanics
Aeroelasticity
Integrated Design

Research Areas
Primary research areas include optimization of structural concepts for smart aeroelastic structures and efficient multidisciplinary design. Currently, two primary areas are of interest:

• Aeroelastic tailoring and active flexible wings. This includes using conventional articulated surfaces such as ailerons and leading edge devices for roll control, as well as using smart materials to change the camber of advanced wing concepts for aircraft control. Objectives also include aeroelastic design for reduced drag and optimization of smart wing flutter suppression systems for micro-air vehicles. We are also developing innovative techniques with advanced composite structure design to find optimal designs and reduce time to develop new concepts.

• Design methodology – developing new methods and algorithms to improve the ability of a design team to generate innovative, creative concepts for aerospace vehicles. This includes examining how the external aerodynamic and internal structural topology of lifting surfaces can be addressed simultaneously in the design process. This also includes introducing manufacturing concerns and decisions early in the design process and creating, through the early use of finite element models, more feed-forward/feed-back paths.

We have been examining how to use new modeling software to generate and present accurate, useful information to designers by displaying load paths and theoretically optimal designs. This leads to an improved conceptual design process for airplane structures that begins with a few participants and quickly proceeds to a high level with diverse technical groups represented. We are involved in the creation of an object-oriented system, using Adaptive Modeling Language (AML), to provide a natural, integrated, virtual environment for modeling, linking and simulating the aircraft design process from its earliest conceptual phase into preliminary design. When completed, this system will allow an integrated product team access to a virtual environment that scientifically simulates the iterative, collaborative process required to design an airplane in a short amount of time.
ADJUNCT FACULTY

D.L. Filmer, Adjunct Professor of Aeronautics & Astronautics, Ph.D., Univ. of Wisconsin, 1961, satellite design, ground station design for acquisition satellite data

J. J. Rusek, Adjunct Assistant Professor, Ph.D., Case Western Reserve, 1983, experimental energy conversion and rocket propulsion
DAVID L. FILMER
2002
Adjunct Professor

Degrees
A.B., Youngstown University (Biology) 1954
M.S., University of Wisconsin (Bacteriology) 1958
Ph.D., University of Wisconsin (Biochemistry, Biophysics) 1961
Postdoctoral Studies, Brookhaven National Lab, 1961-65

Research Areas
- Digital signal processing
- Nonlinear dynamics and chaotic systems
- CubeSat design
- Software design for acquisition of satellite data
- LabView software applications
JOHN J. RUSEK
1998
Adjunct Assistant Professor

Degrees
B. S., Case Western Reserve University, Chemical Engineering, 1976
M. S., Case Western Reserve University, Chemical Engineering, 1981
Ph.D., Case Western Reserve University, Chemical Engineering, 1983

Interests
Energy Conversion
Chemical and Physical Propulsion
Power Generation

Awards and Major Appointments
- Who’s Who in the World
- Who’s Who in America

Research Areas
Current research is directed towards obtaining a fundamental understanding of hydrogen peroxide decomposition via heterogeneous and homogeneous catalysis for use in rocket propulsion and power generation. Major focus concerns the synthesis, characterization, and testing of these novel catalysts in rocket propulsion, turbine, and fuel cell applications. Areas of interest include the experimental and analytical understanding of catalytic reaction kinetics and thermodynamics.

Another major research direction is the fundamental understanding of aerospace materials, specifically in the safe containment of exotic propellant ingredients. International collaboration with government, academic and industrial research centers is playing an important part in this research.
ACTIVE RESEARCH PROJECTS

July 2005 to June 2006
RESEARCH AND OTHER SCHOLARLY ACTIVITIES

Between July 1, 2005 and June 30, 2006, approximately $6.8 million in external research expenditures were realized in the areas of Aerodynamics, Dynamics and Controls, Propulsion, and Structures and Materials. This represents a growth of more than 30%. Several faculty were recognized for research as is detailed in the “Faculty Highlights” section. The research expenditure for the 2005-2006 year was attributed to the following sources.

<table>
<thead>
<tr>
<th>Source</th>
<th>Percentage of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Energy</td>
<td>1.75</td>
</tr>
<tr>
<td>Department of Defense</td>
<td>39.62</td>
</tr>
<tr>
<td>NASA</td>
<td>24.12</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>8.69</td>
</tr>
<tr>
<td>FAA</td>
<td>1.21</td>
</tr>
<tr>
<td>Industry</td>
<td>14.66</td>
</tr>
<tr>
<td>Indiana 21st Century R & D</td>
<td>5.38</td>
</tr>
<tr>
<td>Other</td>
<td>4.57</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
</tr>
<tr>
<td>Sponsor Name</td>
<td>Title</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>In Space, LLC</td>
<td>A Generalized Model For Combustion Instability</td>
</tr>
<tr>
<td>National Aeronautics And Space Admin</td>
<td>Advanced Measurement Techniques For High Pressure Rocket Combustors</td>
</tr>
<tr>
<td>In Space, LLC</td>
<td>Development Of A Combustion Response Model For Advanced Afterburners, Part II</td>
</tr>
<tr>
<td>In Space, LLC</td>
<td>Innovative Ignition System For Non-Toxic Storable Propellants Phase 2 - Experimental Design</td>
</tr>
<tr>
<td>Sierra Engineering Inc.</td>
<td>Optical Diagnostic Of Unstable Combustion</td>
</tr>
<tr>
<td>Sierra Engineering Inc.</td>
<td>Pulsator Devices For Combustion Stability Assessment</td>
</tr>
<tr>
<td>Sierra Engineering Inc.</td>
<td>Rocket Combustor Heat Transfer Measurements</td>
</tr>
<tr>
<td>ATK Thiokol, Inc</td>
<td>Single-Phase Nozzle Flow With Contour Step-Down</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sierra Engineering Inc.</td>
<td>Transpiration Cooled Chamber Tests</td>
</tr>
<tr>
<td>Sierra Engineering Inc.</td>
<td>Transpiration Cooled Thrust Chamber Tests</td>
</tr>
<tr>
<td>Sierra Engineering Inc.</td>
<td>Variable Length Combustion Stability Tests</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Metron Aviation Inc</td>
<td>Automatic Dependent Surveillance - Broadcast Verification And Validation</td>
</tr>
<tr>
<td>United Negro College Fund, Inc.</td>
<td>Gm Sullivan Faculty Fellowship</td>
</tr>
<tr>
<td>Rockwell Collins</td>
<td>Portable Data Acquisition And Control System</td>
</tr>
<tr>
<td>Rockwell Collins</td>
<td>Remotely Piloted Giant-Scale Aircraft</td>
</tr>
<tr>
<td>United Negro College Fund, Inc.</td>
<td>United Negro College Fund, Inc.</td>
</tr>
<tr>
<td>Institution</td>
<td>Project Description</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Lyndon B. Johnson Space Center</td>
<td>Heat Transfer Computations For Space Shuttle Applications</td>
</tr>
<tr>
<td>National Aeronautics And Space Admin</td>
<td>Turbulence Model Calculations Of Hypersonic Boundary Layer Flows Using The Overflow Code</td>
</tr>
<tr>
<td>Army Research Office</td>
<td>Ceramics Of Vehicle And Transparent Armor Under Compression And Compression Shear</td>
</tr>
<tr>
<td>Sandia National Laboratories</td>
<td>Controlled Shock Testing Of Fuse Components</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>Determination Of Dynamic Delamination Fracture Toughness In Graphite-Epoxy Unidirectional Tape Composites</td>
</tr>
<tr>
<td>Sandia National Laboratories</td>
<td>Dynamic Behavior Of Porous Ceramics</td>
</tr>
<tr>
<td>Sandia National Laboratories</td>
<td>Dynamic Material And Structural Testing</td>
</tr>
<tr>
<td>Sandia National Laboratories</td>
<td>Dynamic Response Of Geo-Materials</td>
</tr>
<tr>
<td>University Of Washington</td>
<td>Dynamic Testing Of Shape-Memory Alloys</td>
</tr>
<tr>
<td>Sandia National Laboratories</td>
<td>High Temperature Metal Testing And High Rate Foam Testing</td>
</tr>
<tr>
<td>Karagozian & Case</td>
<td>Masonry Material Impact Failure</td>
</tr>
<tr>
<td>Army Research Office</td>
<td>Rate-Dependent Deformation And Failure Behavior Of Soft Materials And Biological Tissues</td>
</tr>
<tr>
<td>Semiconductor Research Corporation</td>
<td>Valid Constitutive-And Relevant-Failure Models For Snagcu Solder Alloys</td>
</tr>
<tr>
<td>Rolls-Royce Corporation</td>
<td>Dynamics Of Advanced Engine Oil Sumps And Drains</td>
</tr>
<tr>
<td>Rolls-Royce Corporation</td>
<td>Dynamics Of Engine Oil Sumps And Drains</td>
</tr>
<tr>
<td>Rolls-Royce North Amer. Tech. Inc</td>
<td>Purdue University Water Spray Development Project</td>
</tr>
<tr>
<td>National Aeronautics And Space Admin</td>
<td>Three-Dimensional Capillary Interface Topologies And Stability</td>
</tr>
<tr>
<td>Cessna Aircraft Company</td>
<td>Air Taxi Operations As A System-Of-Systems Problem</td>
</tr>
<tr>
<td>Funding Source</td>
<td>Project Title</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>National Aeronautics And Space Admin</td>
<td>Modeling And Optimization For Morphing Wing Concept Generation</td>
</tr>
<tr>
<td>Cessna Aircraft Company</td>
<td>System Of Systems Approaches For Corporate And Business Aviation</td>
</tr>
<tr>
<td>California Space Grant Foundation</td>
<td>Uav Alliance, Research And Curriculum Development Partnership Project</td>
</tr>
<tr>
<td>National Aeronautics And Space Admin</td>
<td>A Robust, Scalable Transportation System Concept</td>
</tr>
<tr>
<td>United Space Alliance llc</td>
<td>Constellation Concept Of Ground Operations Study</td>
</tr>
<tr>
<td>National Institute Of Aerospace</td>
<td>Methodological Needs For Assessing Future Transportation Architectures</td>
</tr>
<tr>
<td>Pratt & Whitney Group</td>
<td>Analysis Of Fretting Fatigue Of Turbine Materials</td>
</tr>
<tr>
<td>General Electric Aircraft Engines</td>
<td>F110 Experimental Evaluation Of Fretting Fatigue For Turbine Disk - Airfoil Attachments</td>
</tr>
<tr>
<td>General Electric Aircraft Engines</td>
<td>Fretting Fatigue Of Turbine Materials For Propulsion System Prognosis</td>
</tr>
<tr>
<td>General Electric Aircraft Engines</td>
<td>Fretting Fatigue On Rene ’95 And Rene’88dt</td>
</tr>
<tr>
<td>LSP Technologies Incorporated</td>
<td>Fretting Fatigue Testing For Lsp Technologies Inc</td>
</tr>
<tr>
<td>Wright-Patterson Air Force Base</td>
<td>Fundamentals Of Fretting Applied To Anisotropic Material</td>
</tr>
<tr>
<td>General Motors Corp</td>
<td>Machining Of Ceramics Project</td>
</tr>
<tr>
<td>Caterpillar Inc.</td>
<td>Materials Processing And Tribology Research Group</td>
</tr>
<tr>
<td>Rolls-Royce Corporation</td>
<td>Materials Processing And Tribology Research Group</td>
</tr>
<tr>
<td>Caterpillar Inc.</td>
<td>Materials Processing Tribology Research</td>
</tr>
<tr>
<td>General Electric Aircraft Engines</td>
<td>Mechanics Of Blade/Disk Contacts</td>
</tr>
<tr>
<td>Pratt & Whitney Group</td>
<td>Multi-Sponsored</td>
</tr>
<tr>
<td>Timken Company</td>
<td>Multi-Sponsored</td>
</tr>
<tr>
<td>General Motors Corp</td>
<td>Multi-Sponsored, Materials Processing Tribology Research</td>
</tr>
<tr>
<td>21st Century Research & Technology Fund</td>
<td>Sustainable Manufacturing Systems For Discrete Products Sector</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>Three-Dimensional Effects In Fretting Fatigue Of Turbine Materials For Propulsion System Prognosis</td>
</tr>
<tr>
<td>Project Title</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Analysis And Design Of Multivariable Extremum Seeking Algorithms</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>Collaborative Research: Gps Multistatic And Occulation Instrument For Atmospheric, Oceanographic And Land Remoted Sensing From Hiaper</td>
<td>University Corp For Atmospheric Research</td>
</tr>
<tr>
<td>Investigation Of The Fundamental Properties Of Forward Scattered Gps Signals For Oceanographic Remote Sensing</td>
<td>National Aeronautics And Space Admin</td>
</tr>
<tr>
<td>Investigation Of Transient Ionospheric Perturbation In The Gps Signal</td>
<td>National Aeronautics And Space Admin</td>
</tr>
<tr>
<td>Investigation Of Transient Ionospheric Perturbations Observed In The Gps Signal</td>
<td>National Aeronautics And Space Admin</td>
</tr>
<tr>
<td>Model Function Development For The Retrieval Of Ocean Surface Properties From Scattered Gps Signals</td>
<td>National Aeronautics And Space Admin</td>
</tr>
<tr>
<td>Nasa Earth System Sciences (Ess) Fellowship</td>
<td>National Aeronautics And Space Admin</td>
</tr>
<tr>
<td>Analysis Of Fatigue Crack Growth From Countersunk Fastener Holes</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>Fuselage Panel Fatigue Crack Growth And Residual Strength Test Program</td>
<td>Alcoa Inc</td>
</tr>
<tr>
<td>Study To Compare Predicted Versus Experimental Crack Shape Changes As Crack Progresses Through Structure</td>
<td>Boeing Company</td>
</tr>
<tr>
<td>Altitude Compensation Using Combustible Nozzle Liners</td>
<td>National Reconnaissance Office</td>
</tr>
<tr>
<td>Altitude Compensation Using Combustible Nozzle Liners</td>
<td>Aerospace Corporation</td>
</tr>
<tr>
<td>Combustion Instability And Film Cooling Studies For Hydrocarbon Engines</td>
<td>University Of Alabama Huntsville</td>
</tr>
<tr>
<td>Expansion Of Propulsion & Power Center Of Excellence With High Mach Turbine-Based Combined Cycle Vehicles And Constant Volume Combustors</td>
<td>Rolls-Royce North Amer. Technologie, Inc</td>
</tr>
<tr>
<td>Organization / Co-PI</td>
<td>Project Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Naval Surface Warfare Ctr Indian Hd Div</td>
<td>Ignition And Combustion Characterization For Advanced Storable Bipropellant Engines</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Force Office Of Scientific Research</td>
<td>Modeling Liquid Rocket Engine Atomization And Swirl/Coaxial Injectors</td>
</tr>
<tr>
<td>Spacedev</td>
<td>Nitrous Oxide As A Regenerative Nozzle Coolant</td>
</tr>
<tr>
<td>Sandia National Laboratories</td>
<td>Nonlinear Modeling Of Droplet Splashing</td>
</tr>
<tr>
<td>Allison Advanced Development Company</td>
<td>Rolls-Royce University Technology Center In High Mach Propulsion</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>In Space, llc</td>
<td>Torch Ignition Model Development</td>
</tr>
<tr>
<td>Allison Advanced Development Company</td>
<td>University Technology Center In High Mach Propulsion At Purdue University</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>University Of Alabama Huntsville</td>
<td>Uttapps</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>National Aeronautics And Space Admin</td>
<td>Design And Analysis In Support Of Mission Architectures In Nasa's Vision For Space Exploration</td>
</tr>
<tr>
<td>Jet Propulsion Laboratory</td>
<td>Encore And End-Of-Life Options For The Cassini Spacecraft</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>National Aeronautics And Space Admin</td>
<td>Investigation Of The Vertical Orbits For Nasa's Vision For Space Exploration Communications Architecture</td>
</tr>
<tr>
<td>National Aeronautics And Space Admin</td>
<td>Strategies For Trajectory Design And Mission Analysis: Multiple Three-Body And Four-Body Systems Including Sun-Earth-Moon</td>
</tr>
<tr>
<td>Radiance Technologies, Inc</td>
<td>Development Of New Generation Components For Pulsed Plasma Accelerators</td>
</tr>
<tr>
<td>Organization</td>
<td>Project Description</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Indiana Space Grant Consortium</td>
<td>Purdue Fall Space Day 2005</td>
</tr>
<tr>
<td>Indiana Space Grant Consortium</td>
<td>Spring Space Forum</td>
</tr>
<tr>
<td>National Aeronautics And Space Admin</td>
<td>Buckling-Driven Disbond Growth In Composite Structures</td>
</tr>
<tr>
<td>Federal Aviation Administration</td>
<td>Damage Tolerance And Durability Of Adhesively Bonded Composite Structure</td>
</tr>
<tr>
<td>RANDTRON Antenna Systems</td>
<td>Failure Threshold Energy Measurement For Hail Ice Impacts Onto Composite Random Materials</td>
</tr>
<tr>
<td>Boeing Company</td>
<td>Hall Ice Impact Investigation</td>
</tr>
<tr>
<td>Odyssian Technology</td>
<td>Multifunctional Composite Structure</td>
</tr>
<tr>
<td>Jet Propulsion Laboratory</td>
<td>Analysis Of Aerogravity Assist For Interplanetary Missions</td>
</tr>
<tr>
<td>National Aeronautics And Space Admin</td>
<td>Dual-Use Ballute For Aerocapture And Descent During Planetary Missions</td>
</tr>
<tr>
<td>National Aeronautics And Space Admin</td>
<td>Low-Thrust Gravity-Assist Trajectory Design And Optimization</td>
</tr>
<tr>
<td>Ohio Aerospace Institute</td>
<td>An Integrated Cfd Based Methodology For Understanding And Predicting Lobed Mixer Jet Noise</td>
</tr>
<tr>
<td>Education, U.S. Department Of</td>
<td>Interdisciplinary Fellowship Program For Computational Science And Engineering</td>
</tr>
<tr>
<td>Ohio Aerospace Institute</td>
<td>Understanding Of The Prediction Of Lobed Mixer Noise</td>
</tr>
<tr>
<td>University Of Tennessee Space Institute</td>
<td>Magneto Hydro Dynamics Generator Modeling</td>
</tr>
<tr>
<td>Boeing Company</td>
<td>Additional Boeing Pulsejet Testing</td>
</tr>
<tr>
<td>Organization Name</td>
<td>Project Title</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Boeing Company</td>
<td>Boeing Pulsejet Testing: Task 4-Peta Fabrication And Testing</td>
</tr>
<tr>
<td>Kt Engineering</td>
<td>Kt Engineering Cev Igniter Testing</td>
</tr>
<tr>
<td>Boeing Company</td>
<td>Pulsejet Hardware For Boeing</td>
</tr>
<tr>
<td>Boeing Company</td>
<td>Pulsejet Testing For Boeing</td>
</tr>
<tr>
<td>In Univ Purdue</td>
<td>Purdue University Wave Rotor Combustion Rig Test Facility Design</td>
</tr>
<tr>
<td>National Science</td>
<td>Ip1 Agreement</td>
</tr>
<tr>
<td>United Technologies Research Center</td>
<td>Robust Control Analysis And Synthesis</td>
</tr>
<tr>
<td>Xerox Corp</td>
<td>Xerox Corporation/Rotea</td>
</tr>
<tr>
<td>P.C. Krause & Assoc. Inc/AFRL</td>
<td>Security of Large Scale Systems/Task 03-07</td>
</tr>
<tr>
<td>Sandia National Laboratories</td>
<td>Collaborative Research: Mechanisms Of Hypersonic Boundary-Layer Transition On Reentry Vehicles</td>
</tr>
<tr>
<td>National Aeronautics And Space Admin</td>
<td>Mechanisms Of Boundary-Layer Transition On Reusable Launch Vehicles: A Proposed Fy04 Supplement For Nasa Grant-1-02047</td>
</tr>
<tr>
<td>Air Force Office Of Scientific Research</td>
<td>Mechanisms Of Hypersonic Boundary Layer Transition On Two Generic Vehicle Geometries</td>
</tr>
<tr>
<td>Air Force Office Of Scientific Research</td>
<td>Request For Afosr Fy06 Supplemental Funds To Support A Stability And Transition Analysis For Reentry (Star)</td>
</tr>
<tr>
<td>Air Force Office Of Scientific Research</td>
<td>Request For Fy05 Supplemental Funds For Afosr Grant F49620-03-1-0030 To Support A Stability And Transition Analysis For Reentry (Star)</td>
</tr>
<tr>
<td>Air Force Office Of Scientific Research</td>
<td>Towards High-Reynolds-Number Quiet Flow In Hypersonic Wind Tunnels</td>
</tr>
<tr>
<td>National Aeronautics And Space Admin</td>
<td>Towards Mechanism-Based Models For Laminar-Turbulent Transition On Blunt Reentry Vehicles: Request For Fy06 Supplemental Funds</td>
</tr>
<tr>
<td>Institution</td>
<td>Project Description</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>National Aeronautics And Space Admin</td>
<td>Towards Mechanism-Based Models For Laminar- Turbulent Transition On Blunt Reentry Vehicles</td>
</tr>
<tr>
<td>Tekla Research Inc.</td>
<td>Aim Point Biasing</td>
</tr>
<tr>
<td>A. T. C. Incorporated</td>
<td>Ate, Inc.</td>
</tr>
<tr>
<td>Raisbeck Engineering</td>
<td>Design/Build/Test Laboratory</td>
</tr>
<tr>
<td>National Aeronautics And Space Admin</td>
<td>Unsteady Pressure Measurement In Turbomachinery Using Porous Pressure-Sensitive Paint</td>
</tr>
<tr>
<td>Office Of Naval Research</td>
<td>Development Of Toughened And Multifunctional Nanocomposites For Ship Structures</td>
</tr>
<tr>
<td>Ball Aerospace & Technologies Corp</td>
<td>High Energy Laser Vulnerability Assessments</td>
</tr>
<tr>
<td>Ball Aerospace & Technologies Corp</td>
<td>High Energy Laser Vulnerability Assessments Modeling Program (Helvamp)</td>
</tr>
<tr>
<td>Tuskegee University</td>
<td>Modeling Of Nanocomposites</td>
</tr>
<tr>
<td>Defense Advanced Res Projects Agency</td>
<td>Ip Agreement</td>
</tr>
<tr>
<td>Stanford University</td>
<td>Itr: Data Driven Environment For Multiphysics Applications</td>
</tr>
</tbody>
</table>
MASTER’S THESES

<table>
<thead>
<tr>
<th>Student/ Major Professor</th>
<th>Thesis Title</th>
<th>Degree Date Granted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamberson, Jr., Steven E. W. A. Crossley</td>
<td>“Composite Laminate Optimization Techniques Applied to Load-Bearing Circuit Board Design”</td>
<td>M.S. August 2005</td>
</tr>
<tr>
<td>Lee, See-Chen J. L. Garrison</td>
<td>“Investigation of Transient Zonospheric Perturbation Observed in the GPS Signal”</td>
<td>M.S. August 2005</td>
</tr>
<tr>
<td>Nankani, Kamlesh W. A. Crossley</td>
<td>“Optimization Approaches for Morphine Airfoils Using Drag and Strain Energy as Objectives”</td>
<td>M.S. August 2005</td>
</tr>
<tr>
<td>Nehrbass, Jonathan W. A. Crossley</td>
<td>“Drag Benefits of Formation Flight and Morphing on Transatlantic Point to Point Commercial Aircraft Service”</td>
<td>M.S. August 2005</td>
</tr>
<tr>
<td>Rausch, Raoul K. C. Howell</td>
<td>“Earth to Halo Orbit Transfer Trajectories”</td>
<td>M.S. August 2005</td>
</tr>
<tr>
<td>Robarge, Tyler W. S. P. Schneider</td>
<td>“Laminar Boundary-Layer Instabilities on Hypersonic Cones: Computations for Benchmark Experiments”</td>
<td>M.S. August 2005</td>
</tr>
<tr>
<td>Tanner, Travis N. C. T. Sun</td>
<td>“Applications of Crack Tip Opening Angle for Ductile Fracture Analysis”</td>
<td>M.S. August 2005</td>
</tr>
<tr>
<td>Yu, Yen Ching W. E. Anderson</td>
<td>“Swirl Liquid Film Cooling of a Modeled Combustor”</td>
<td>M.S. August 2005</td>
</tr>
<tr>
<td>Bies, Christopher S. D. Heister</td>
<td>“Analysis of an Advanced Aero-Engine Bearing Chamber”</td>
<td>M.S. December 2005</td>
</tr>
<tr>
<td>Name</td>
<td>Advisor</td>
<td>Title</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Eichel, Brenda</td>
<td>J. L. Garrison</td>
<td>“Model-Based Compression of GPS Ephemeris”</td>
</tr>
<tr>
<td>Habrel, Christopher</td>
<td>W. A. Crossley</td>
<td>“Addressing Uncertainty in Aircraft Sizing During Conceptual Design”</td>
</tr>
<tr>
<td>Lovera-Yepes, Javier A.</td>
<td>M. A. Rotea</td>
<td>“Pilot’s Intent Inference and Aircraft Trajectory Prediction with Applications to Air Traffic Control”</td>
</tr>
<tr>
<td>Merrill, Marriner H.</td>
<td>C. T. Sun</td>
<td>“Development of a Simple and Inexpensive Method for Manufacturing High Quality Nanoparticle/Polymer Nanocomposites”</td>
</tr>
<tr>
<td>Smajlovic, Dino</td>
<td>J. L. Garrison</td>
<td>“Obtaining Ocean Roughness Statistics from Reflected GPS Signals”</td>
</tr>
<tr>
<td>Chen, Jit-Tat</td>
<td>D. Andrisani</td>
<td>“Use of a PID Control Structure to Design an Autopilot for an Autonomous Aircraft”</td>
</tr>
<tr>
<td>Churchfield, Matthew</td>
<td>G. A. Blaisdell</td>
<td>“Numerical Computations of a Wingtip Vortex in the Near Field”</td>
</tr>
<tr>
<td>Deitemeyer, Adam</td>
<td>C. T. Sun</td>
<td>“Three-Dimensional Characteristics of the Plastic Zone and Necking in the Crack Tip Region”</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Degree</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>W. Chen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hsieh, Kelli</td>
<td>“Study of Fatigue Behavior of Embedded Copper in Multi-functional Composite Material”</td>
<td>M. S.</td>
</tr>
<tr>
<td>H. Kim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McDonald, Seth</td>
<td>“Design Methodology for Airships of Non-Axisymmetric Cross-Section Geometry”</td>
<td>M. S.</td>
</tr>
<tr>
<td>H. Kim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller, Christopher</td>
<td>“High Altitude Airship Simulation and Control”</td>
<td>M. S.</td>
</tr>
<tr>
<td>J. P. Sullivan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyle, Nicholas</td>
<td>“Experimental Determination of the Model I Stress Intensity Factor for a Corner Cracked Lug using a Marker Banding Technique”</td>
<td>M. S.</td>
</tr>
<tr>
<td>A. F. Grandt, Jr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mseis, George</td>
<td>“Mechanical Characterization of an Electrodeposited Nanocrystalline Copper”</td>
<td>M. S.</td>
</tr>
<tr>
<td>T. N. Farris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pan, Yi</td>
<td>“The Upper Limit of Constant Strain Rate in a SHPB Experiment for a Linearly Elastic Material”</td>
<td>M. S.</td>
</tr>
<tr>
<td>W. Chen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Hwun</td>
<td>“Resistance of Adhesively Bonded Composite Lap Joints to Damage by Transverse Ice Impact”</td>
<td>M. S.</td>
</tr>
<tr>
<td>H. Kim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sardeshmukh, Swanand</td>
<td>“Performance Analysis of Coupled and Segregated CFD Methods”</td>
<td>M. S.</td>
</tr>
<tr>
<td>C. L. Merkle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventre, Brian</td>
<td>“Open-Loop Tracking of an Occulting GNSS Signal”</td>
<td>M. S.</td>
</tr>
<tr>
<td>J. L. Garrison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student/Major Professor</td>
<td>Thesis Title</td>
<td>Degree</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Bartha, Bence/ T. N. Farris</td>
<td>“Modeling of Geometry Effects in Fretting Fatigue”</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Garcia, Daniel/A. F. Grandt, Jr.</td>
<td>“Crack Propagation Analysis of Surface Enhanced Titanium Alloys with Fretting Induced Damage”</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Gao, Guofeng/T. N. Farris</td>
<td>“Fretting Induced Plasticity in Blade/Disk Contacts”</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Suh, Jungjun/A. F. Grandt, Jr.</td>
<td>“Analysis of Fatigue Crack Growth from Countersunk Fastener Hole”</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Namgoong, Howoong/W. A. Crossley</td>
<td>“Airfoil Optimization for Morphing Aircraft”</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Rufer, Shann/S. P. Schneider</td>
<td>“Hot-wire Measurements of Instability Waves on Sharp and Blunt Cones at Mach-6”</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Degree</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Skoch, Craig</td>
<td>“Disturbances from Shock/Boundary Layer Interactions Affecting Upstream Hypersonic Flow”</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>S. P. Schneider</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Lyrintzis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. N. Farris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang, Chihyung</td>
<td>“Molecular Sensors for MEMS”</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>J. P. Sullivan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Kim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tseng, Kuotung</td>
<td>“Fluidic Spray Control”</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>S. H. Collicott</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COLLOQUIUM SERIES

July 2005 to June 2006
Colloquium Series – Fall 2005

<table>
<thead>
<tr>
<th>DATE/TIME</th>
<th>TOPIC</th>
<th>SPEAKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 8, 2005</td>
<td>“NASA Kepler Project”</td>
<td>Dr. Janice Voss</td>
</tr>
<tr>
<td>3:00 p.m.</td>
<td></td>
<td>NASA Astronaut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kepler Science Director</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NASA Ames Res. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moffett Field, CA</td>
</tr>
<tr>
<td>September 15, 2005</td>
<td>“ARO/ARL Research Opportunities in Applied Mechanics”</td>
<td>Dr. A. M. Rajendran</td>
</tr>
<tr>
<td>3:00 p.m.</td>
<td></td>
<td>Senior Scientist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Directorate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Army Research Office</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTP, NC</td>
</tr>
<tr>
<td>September 30, 2005*</td>
<td>“Turbulent Pipe Flow and Why Moody Was Wrong”</td>
<td>Prof. Alexander J. Smits</td>
</tr>
<tr>
<td>4:00 p.m.</td>
<td></td>
<td>Dept. of Mechanical and Aerospace Engrg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Princeton University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Princeton, NJ</td>
</tr>
<tr>
<td>October 6, 2005</td>
<td>“Robust Stability Analysis of Uncertain Dynamic Systems with Applications”</td>
<td>Dr. Rama K. Yedavalli</td>
</tr>
<tr>
<td>3:00 p.m.</td>
<td></td>
<td>Dept. of Aerospace Engrg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ohio State University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Columbus, OH</td>
</tr>
<tr>
<td>October 13, 2005</td>
<td>“NASA’s In-Space Propulsion Program”</td>
<td>John Dankanich</td>
</tr>
<tr>
<td>3:00 p.m.</td>
<td></td>
<td>Gray Research Inc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NASA/Inspace Propulsion Program</td>
</tr>
<tr>
<td>October 21, 2005</td>
<td>“Results of NASA’s Exploration Systems Architecture Study”</td>
<td>Robert Sackheim</td>
</tr>
<tr>
<td>4:00 p.m.</td>
<td></td>
<td>Chief Engr. Space Propulsion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NASA Marshall Space Flight Center</td>
</tr>
<tr>
<td>October 27, 2005</td>
<td>“Detonation Structure”</td>
<td>Prof. Joanna M. Austin</td>
</tr>
<tr>
<td>3:00 p.m.</td>
<td></td>
<td>Dept. of Aerospace Engrg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Univ. of Illinois @ Champaign Urbana</td>
</tr>
</tbody>
</table>
November 3, 2005
3:00 p.m.
GRIS 180
“The Columbia Accident Investigation”
R.S. Piasecki
NASA Engineering & Safety Center
NASA Langley Research Center
Hampton, VA

November 10, 2005
3:00 p.m.
GRIS 180
“Challenges that Continuum Theory Faces in the Age of Nanotechnology”
C. T. Sun
Neil A. Armstrong Distinguished Professor
School of Aeronautics & Astronautics
Purdue University

November 17, 2005
3:00 pm.
GRIS 180
“Coverage Control for Mobile Sensing Networks”
Dr. Islam I. Hussein
Coordinated Systems Lab
Univ. of Illinois @ Urbana-Champaign

December 8, 2005
3:00 p.m.
GRIS 180
“Hydrodynamic Models of Projectile Penetration into Elastic-plastic Targets Including a Description of Fragmentation and Vulnerability”
Dr. Ilia Roisman
Chair of Fluid Mech. & Aerodyn.
Darmstadt Univ. of Tech.

*Jointly sponsored by the School of Aeronautics & Astronautics and the Student American Institute of Aeronautics and Astronautics Chapter

**Jointly sponsored by the School of Aeronautics & Astronautics and the Mechanical Engineering Dept.; Midwest Mechanics Seminar

***William E. Boeing Distinguished Lecture sponsored by the School of Aeronautics and Astronautics Department

****Jointly sponsored by the School of Aeronautics & Astronautics and Sigma Xi
Colloquium Series – Spring 2006

<table>
<thead>
<tr>
<th>DATE/TIME</th>
<th>TOPIC</th>
<th>SPEAKER</th>
</tr>
</thead>
</table>
| February 16, 2006 3:00 p.m. | “Changing the Shape of Aircraft-New Frontiers in Aerospace Design” | Dr. Terry Weisshaar
DARPA Morphing Prog.Mgr. & Purdue Professor,
School of Aero. & Astro. |
| February 23, 2006 3:00 p.m. | “Paths to Transition and their Implications for Transition Prediction and Control” | Dr. Eli Reshotko
Kent H. Smith Professor
Case Western Reserve Univ. |
| March 9, 2006 3:00 p.m. | “High Cycle Fatigue of Metals” | Dr. Ted Nicholas
Air Force Institute of Tech. |
| April 6, 2006 3:00 p.m. | “Control and Optimization of Multi-Agent Systems” | Dr. Dusan Stipanovic
Univ. of Illinois @ Urbana Champaign |
| April 13, 2006 3:00 p.m. | “The Intriguing Structure of a Sunspot” | Professor John H. Thomas
Dept. of Mech. Engrg.
Univ. of Rochester |
| April 20, 2006 3:00 p.m. | “Turbulent Hypersonic Flows: Physics and Simulation” | Dr. Pino Martin
Princeton University
Princeton, NJ |
| April 26, 2006** 3:30 p.m. | “A Quiet Free Shear Flow” | Dr. Jon Freund
Univ. of Illinois @ Urbana/Champaign |
| April 27, 2006 3:00 p.m. | “The Cassini/Huygens Project” | Mr. Robert T. Mitchell
Cassini Project Manager
Jet Propulsion Lab
California Inst. Tech. |

*Jointly sponsored by the School of Aeronautics & Astronautics and the Student American Institute of Aeronautics and Astronautics Chapter

**Jointly sponsored by the School of Aeronautics & Astronautics and the Mechanical Engineering Dept.; Midwest Mechanics Seminar

***William E. Boeing Distinguished Lecture sponsored by the School of Aeronautics and Astronautics Department

****Jointly sponsored by the School of Aeronautics & Astronautics and Sigma Xi
Highlights & Awards

July 2005 to June 2006
FACULTY HIGHLIGHTS

Several faculty continue their visible service as editors and on various visiting committees.

Other highlights include:

• Professors William Anderson and Stephen Heister were recipients of the C. T. Sun School of Aeronautics and Astronautics Research Award.
• Professor William Anderson again received the AIAA Liquid Propulsion Committee Best Paper Award
• Professor Weinong Wayne Chen has been named College of Engineering University Faculty Scholar.
• Professor William Crossley received the School’s Gustafson Outstanding Teacher Award.
• Professor James Longuski received the School’s Elmer F. Bruhn Excellence in Teaching Award and had his book published “The Seven Secrets on how to Think like a Rocket Scientist.”
• Professor C. T. Sun was the recipient of the Sigma Xi Faculty Award and had the 2nd edition of his book “Mechanics of Aircraft Structures” published.
• Professor Marc Williams received the College of Engineering Outstanding Advisor Award.

STUDENT HIGHLIGHTS

There are several student organizations with a relationship with the School. They are the Aeronautics and Astronautics Engineering Student Advisory Council (AAESAC); American Institute of Aeronautics and Astronautics (AIAA); Students for the Exploration and Development of Space (SEDS); and Sigma Gamma Tau (SGT). SEDS coordinated the annual Spring Space Forum, and is parent organization for the 10th annual Fall Space Day. AAESAC hosted “Professor Pizzas,” an opportunity for students to interact one-on-one with AAE professors and visiting dignitaries; and. “Aero Social Night” a program aimed to provide a social event for professors, students and staff to interact on an informal level. Several student groups continue to perform well in national design competitions.

The SEDS Spring Space Forum was held on April 20, 2006 which was organized by SEDS and sponsored by the Indiana Space Grant Consortium. This is an educational community-driven event geared toward generating interest in both students and the public on issues concerning space exploration. Four VIP’s took part in the forum and talked about the possibility of returning to the Moon and the potential research that can be done there.
Student Awards

Congratulations to the following students who have earned top honors during the 2005-06 academic year.

Purdue Engineering Foundation Outstanding Senior Student Award –
May 2006 – Gregory Wilson

Purdue Engineering Foundation Outstanding Graduate Student Award
May 2006 – James Canino

Outstanding Senior Award – Phillip Boettcher

Magoon Graduate Teaching Award – Mohammad Ayoubi; Erik Dambach; Jit-Tat Chen; Geraldine Fritsch; Daniel Grebow; Masaki Kakoi

Outstanding Graduate Teaching Assistant – Mohammad Ayoubi

Astronaut Scholar (Hall of Fame Induction)– Jayleen Guttromson

Elmer F. Bruhn Undergraduate Research Assistantship – Joshua Dais, Fabien Klussendorf, Ross Spoonire

Russell O. Cedars Scholarship – Pritesh Mody

Amelia Earhart Scholarship – Laura Brower

David L. Filmer Scholarship – Laura Brower

Koerner Scholarships – Sophomore: Pritesh Mody and Courtney Rogge; Junior: Andrew Mundell and Breanne Wooten; Senior: Phillip Boettcher and Ariane Chepko

Gary and Sue Payton Scholarship – Poorvi Kalaria

Purdue Forever Fellowship – James Canino, Jeremy Corpening, Loren Garrison, Raymond Joshua, James Sisco

John and Patricia Rich Scholarship – Jayleen Guttromson

Herbert F. Rogers Scholarship – Nick Chachor

David and Linda Schimmel Swain Scholarship – Freshman: George Samuel; Sophomore: Daniel Kipfer; Junior: Timothy Rebold

Marc Weaver Memorial Scholarship – Alan Schwing

Society of Women Engineers Awards – Jasmine Cashbaugh, Ball Aerospace & Technologies Corp.; Dawn Gordon, Outstanding Sr., Corning, Inc.; Kathryn Mitchell, Shirley McCarty Award; Courtney Rogge, Lockheed Martin; Christine Troy, Women in Engineering Award; Elisabeth Wahl, Rockwell Collins; Elizabeth Wolfe, Vought Aircraft; Danielle Yaple, The Boeing Company.
Winners of the AAE 251 ATK Thiokol Propulsion S.P.A.C.E. Awards

Fall 2005 First Place Team: Levi Brown, Nicole Bryan, Albert Chaney, Kyle Donahue, Andrew Mundell

Spring 2006 First Place Team: Molly Kane, Pritesh Moody, Stephanie Morris, Kyle Noth, Jessica Schoenbauer, Jeff Stuart
OUTREACH HIGHLIGHTS

The School’s 10th annual Fall Space Day held on October 22, 2005, with Colonel Mark N. Brown as guest VIP Astronaut, was shared with over 380 third through eighth graders from 91 schools in three states, Illinois, Indiana, and Ohio to Purdue, with a strong volunteer crew of over 150 Purdue students from 22 majors. Additionally, the children participated in many interactive lessons that reinforced basic science and math principles. Purdue Fall Space Day was hosted by Students for the Exploration and Development of Space (SEDS) and sponsored by: the Indiana Space Grant Consortium; School of Aeronautics and Astronautics; Purdue Engineering Student Council (PESC); Daimler Chrysler, Eli Lilly & Co., and Office Max.

Several faculty gave presentations to local schools. Many students of the School take time to interact with students in K-12 and share their excitement of space exploration. The inherent excitement of aerospace leads to these invitations and generates great responses from the students.
Curriculum & Course Offerings

July 2005 to June 2006
CURRICULUM AND COURSE OFFERINGS

Course enrollments and summarized class enrollment statistics are listed below:

Course Enrollments
School of Aeronautics and Astronautics
2005-2006 Academic Year

<table>
<thead>
<tr>
<th>A&AE Course</th>
<th>Most Recent Title</th>
<th>Cr.</th>
<th>Fall 2005 Enrollment</th>
<th>Fall 2005 Instructor</th>
<th>Spring 2006 Enrollment</th>
<th>Spring 2006 Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>203</td>
<td>Aeromechanics I</td>
<td>3</td>
<td>114</td>
<td>Garrison</td>
<td>61</td>
<td>Corless</td>
</tr>
<tr>
<td>204</td>
<td>Aeromechanics II</td>
<td>3</td>
<td>36</td>
<td>Farris</td>
<td>87</td>
<td>Chen</td>
</tr>
<tr>
<td>204L</td>
<td>Aeromechanics II Lab.</td>
<td>1</td>
<td>38</td>
<td>Doyle</td>
<td>89</td>
<td>Doyle</td>
</tr>
<tr>
<td>241</td>
<td>Industrial Practice I</td>
<td>0</td>
<td>10</td>
<td>Williams</td>
<td>2</td>
<td>Williams</td>
</tr>
<tr>
<td>242</td>
<td>Industrial Practice II</td>
<td>0</td>
<td>3</td>
<td>Williams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>Intro. Aerosp. Design</td>
<td>3</td>
<td>57</td>
<td>DeLaurentis</td>
<td>95</td>
<td>DeLaurentis</td>
</tr>
<tr>
<td>301</td>
<td>Engrg. Systems Anal.</td>
<td>3</td>
<td>79</td>
<td>Frazho</td>
<td>47</td>
<td>Garrison</td>
</tr>
<tr>
<td>333</td>
<td>Fluid Mechanics</td>
<td>3</td>
<td>91</td>
<td>Lyrintzis</td>
<td>32</td>
<td>Lyrintzis</td>
</tr>
<tr>
<td>333L</td>
<td>Fluid Mechanics Lab.</td>
<td>1</td>
<td>90</td>
<td>Collicott</td>
<td>34</td>
<td>Collicott</td>
</tr>
<tr>
<td>334</td>
<td>Aerodynamics</td>
<td>3</td>
<td>41</td>
<td>Sankaran</td>
<td>83</td>
<td>Li</td>
</tr>
<tr>
<td>334L</td>
<td>Aerodynamics Lab.</td>
<td>1</td>
<td>15</td>
<td>Collicott</td>
<td>50</td>
<td>Rufer</td>
</tr>
<tr>
<td>340</td>
<td>Dynamics & Vibration</td>
<td>3</td>
<td>78</td>
<td>Longuski</td>
<td>69</td>
<td>Howell</td>
</tr>
<tr>
<td>341</td>
<td>Industrial Practice III</td>
<td>0</td>
<td>4</td>
<td>Williams</td>
<td>8</td>
<td>Williams</td>
</tr>
<tr>
<td>342</td>
<td>Industrial Practice IV</td>
<td>0</td>
<td>2</td>
<td>Williams</td>
<td>3</td>
<td>Williams</td>
</tr>
<tr>
<td>352</td>
<td>Structural Anal. I</td>
<td>3</td>
<td>78</td>
<td>Sun</td>
<td>40</td>
<td>Kim</td>
</tr>
<tr>
<td>352L</td>
<td>Struct. Anal. I Lab.</td>
<td>1</td>
<td>30</td>
<td>Doyle</td>
<td>36</td>
<td>Doyle</td>
</tr>
<tr>
<td>364</td>
<td>Control System Analy.</td>
<td>3</td>
<td>57</td>
<td>Hwang</td>
<td>71</td>
<td>Hwang</td>
</tr>
<tr>
<td>364L</td>
<td>Control Systems Lab.</td>
<td>1</td>
<td>74</td>
<td>Frazho</td>
<td>64</td>
<td>Frazho</td>
</tr>
<tr>
<td>372</td>
<td>Jet Propl. Power Pt.</td>
<td>3</td>
<td>108</td>
<td>Sankaran</td>
<td></td>
<td></td>
</tr>
<tr>
<td>412</td>
<td>Intro. Comp. Fluid Dyn.</td>
<td>3</td>
<td>48</td>
<td>Blaisdell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>415</td>
<td>Aerodynamic Design</td>
<td>3</td>
<td>27</td>
<td>Sullivan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>421</td>
<td>Flt. Dyn. Control</td>
<td>3</td>
<td>60</td>
<td>Corless</td>
<td>37</td>
<td>Corless</td>
</tr>
<tr>
<td>439</td>
<td>Rocket Propulsion</td>
<td>3</td>
<td>83</td>
<td>Hrbud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>Spacecr. Attitude Dyn.</td>
<td>3</td>
<td>54</td>
<td>Howell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>442</td>
<td>Industrial Practice V</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>Spacecraft Design</td>
<td>3</td>
<td>20</td>
<td>Schneider</td>
<td>43</td>
<td>Longuski</td>
</tr>
<tr>
<td>451</td>
<td>Aircraft Design</td>
<td>3</td>
<td>26</td>
<td>Andrisani</td>
<td>43</td>
<td>Crossley</td>
</tr>
<tr>
<td>A&AE Course</td>
<td>Most Recent Title</td>
<td>Cr.</td>
<td>Fall 2005</td>
<td>Spring 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-----</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Enrollment</td>
<td>Instructor</td>
<td>Enrollment</td>
<td>Instructor</td>
</tr>
<tr>
<td>453</td>
<td>Matr. Meth. Aerosp. Struc.</td>
<td>3</td>
<td></td>
<td></td>
<td>28</td>
<td>Doyle</td>
</tr>
<tr>
<td>454</td>
<td>Design Aerosp. Struct.</td>
<td>3</td>
<td>47</td>
<td>Grandt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>490A</td>
<td>Flight Testing</td>
<td></td>
<td></td>
<td>Andrisani</td>
<td></td>
<td></td>
</tr>
<tr>
<td>490G</td>
<td>Technical Comm.</td>
<td>3</td>
<td></td>
<td>Grandt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>507</td>
<td>Principles of Dynam.</td>
<td>3</td>
<td>48</td>
<td>Longuski</td>
<td>49</td>
<td>Longuski</td>
</tr>
<tr>
<td>508</td>
<td>Optimiz. Aerosp. Engr</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>511</td>
<td>Intro. Fluid Mech.</td>
<td>3</td>
<td>33</td>
<td>Blaisdell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>Comput. Aerody.</td>
<td>3</td>
<td></td>
<td></td>
<td>25</td>
<td>Merkle</td>
</tr>
<tr>
<td>512Q</td>
<td>Comput. Aerody.</td>
<td>3</td>
<td></td>
<td></td>
<td>59</td>
<td>Merkle</td>
</tr>
<tr>
<td>514</td>
<td>Intermediate Aerody.</td>
<td>3</td>
<td></td>
<td></td>
<td>59</td>
<td>Lyrintzis</td>
</tr>
<tr>
<td>514Q</td>
<td>Intermediate Aerody.</td>
<td>3</td>
<td></td>
<td></td>
<td>10</td>
<td>Lyrintzis</td>
</tr>
<tr>
<td>515</td>
<td>Rotorcraft Aerody.</td>
<td>3</td>
<td>22</td>
<td>Lyrintzis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>518</td>
<td>Low-Grav. Fluid Dyn.</td>
<td>3</td>
<td>17</td>
<td>Collicott</td>
<td>24</td>
<td>Schneider</td>
</tr>
<tr>
<td>519</td>
<td>Hyper. Aerothermo.</td>
<td>3</td>
<td>20</td>
<td>Schneider</td>
<td></td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>Experimental Aerody.</td>
<td>3</td>
<td></td>
<td></td>
<td>24</td>
<td>Schneider</td>
</tr>
<tr>
<td>532</td>
<td>Orbit Mechanics</td>
<td>3</td>
<td>39</td>
<td>Howell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>535</td>
<td>Prop; Des. Build, Test</td>
<td>3</td>
<td></td>
<td></td>
<td>15</td>
<td>Anderson</td>
</tr>
<tr>
<td>538</td>
<td>Air Breath. Propul.</td>
<td>3</td>
<td>39</td>
<td>Merkle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>539</td>
<td>Adv. Rocket Prop.</td>
<td>3</td>
<td></td>
<td></td>
<td>37</td>
<td>Heister</td>
</tr>
<tr>
<td>546</td>
<td>Aero Struct Dyn Stab.</td>
<td>3</td>
<td>17</td>
<td>Doyle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>Multidisciplinary Des. Opt.</td>
<td>3</td>
<td>57</td>
<td>Crossley</td>
<td></td>
<td></td>
</tr>
<tr>
<td>550Q</td>
<td>Multidisciplinary Des. Opt.</td>
<td>3</td>
<td>53</td>
<td>Crossley</td>
<td></td>
<td></td>
</tr>
<tr>
<td>552</td>
<td>Nondes. Eval. Struct. Matrls.</td>
<td>3</td>
<td></td>
<td></td>
<td>37</td>
<td>Grandt</td>
</tr>
<tr>
<td>552Q</td>
<td>Nondes. Eval. Struct.</td>
<td>3</td>
<td></td>
<td></td>
<td>15</td>
<td>Grandt</td>
</tr>
<tr>
<td>553</td>
<td>Elasticity Aerosp. I</td>
<td>3</td>
<td>18</td>
<td>Sun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>554</td>
<td>Fatigue Struct. & Matrl.</td>
<td>3</td>
<td>37</td>
<td>Grandt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>554Q</td>
<td>Fatigue Struct. & Matrl.</td>
<td>3</td>
<td>76</td>
<td>Grandt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>555</td>
<td>Mechanics Comp. Matl.</td>
<td>3</td>
<td></td>
<td></td>
<td>29</td>
<td>Sun</td>
</tr>
<tr>
<td>558</td>
<td>Finite Elem Meth. in Aerospace Structures</td>
<td>3</td>
<td>31</td>
<td>Kim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>558Q</td>
<td>Finite Elem. Meth. in Aerospace Struct.</td>
<td>3</td>
<td>9</td>
<td>Kim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A&AE Course</td>
<td>Most Recent Title</td>
<td>Cr.</td>
<td>Fall 2005</td>
<td>Spring 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-----</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Enrollment</td>
<td>Instructor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>564</td>
<td>System Anal. & Synth.</td>
<td>3</td>
<td>31</td>
<td>Corless</td>
<td></td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>Guidance Aerospace Veh.</td>
<td>3</td>
<td>19</td>
<td>Andrisani</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590C</td>
<td>Propul. Sys. Design</td>
<td>3</td>
<td>20</td>
<td>Heister</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590D</td>
<td>Intro. To Labview</td>
<td>3</td>
<td>6</td>
<td>Filmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590E</td>
<td>Intro. Electric Propul.</td>
<td>3</td>
<td>21</td>
<td>Hrbud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590F</td>
<td>Dyn. Behav. Matrls.</td>
<td>3</td>
<td>6</td>
<td>Chen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590G</td>
<td>Intro. Sate. Nav.&Pos.</td>
<td>3</td>
<td>10</td>
<td>Garrison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590K</td>
<td>Sys. of Sys. Model. & Analysis</td>
<td>3</td>
<td></td>
<td>DeLaurentis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590M</td>
<td>Manuf. of Adv. Comp.</td>
<td>3</td>
<td></td>
<td>Pipes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590R</td>
<td>Exp. Char. Of Adv. Composite Matrls.</td>
<td>3</td>
<td>12</td>
<td>Pipes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>646</td>
<td>Elastic Wave Propag.</td>
<td>3</td>
<td>5</td>
<td>Doyle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>690A</td>
<td>Combust. Stability</td>
<td>3</td>
<td>16</td>
<td>Anderson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>690B</td>
<td>Hybrid Sys. Theory & Applications</td>
<td>3</td>
<td>10</td>
<td>Hwang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>690D</td>
<td>Sel. Topics Nonlinear Mech.</td>
<td>3</td>
<td></td>
<td>Doyle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>690G</td>
<td>Astro. Nav. & Guidance</td>
<td>3</td>
<td>7</td>
<td>Howell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>690S</td>
<td>Adv. Satellite Nav.</td>
<td>3</td>
<td>2</td>
<td>Garrison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>698</td>
<td>M.S. Thesis Research</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>699</td>
<td>Ph.D. Thesis Research</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aerospace Engineering Requires a Multidisciplinary Curriculum

<table>
<thead>
<tr>
<th>Aerodynamics</th>
<th>Dynamics and Control</th>
<th>Propulsion</th>
<th>Structures and Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Introductory</td>
<td>251-Introduction to Aerospace Design; 203 Aeromechanics I (statics/dynamics)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required Undergraduate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-Fluid Mechanics & Lab</td>
<td>340-Dynamics and Vibrations</td>
<td>372-Jet Propulsion or</td>
<td>204-Aeromech. II (Str of Mat.) and lab</td>
</tr>
<tr>
<td>334-Aerodynamics and Lab</td>
<td>364-Controls and Lab</td>
<td>439-Rocket Propulsion</td>
<td>352-Structural Analysis & Lab</td>
</tr>
<tr>
<td>421-Flight Dynamics or</td>
<td>440-Spacecraft Att. Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>412-Intro to CFD</td>
<td>421-Flight Dynamics or</td>
<td>372-Jet Propulsion or</td>
<td>453-Matrix Methods in Struct.</td>
</tr>
<tr>
<td>414-Compressible Aero</td>
<td>440-Spacecraft Att. Dynamics</td>
<td>439-Rocket Propulsion</td>
<td></td>
</tr>
<tr>
<td>416-Viscous Flows</td>
<td>490A Flight Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>415-Aerodynamic Design</td>
<td>490R-Control Systems Design</td>
<td>590C Propulsion Design</td>
<td>454-Structural Design</td>
</tr>
<tr>
<td>Multidiscipl. Required</td>
<td>301 Signals for Aero. Systems;</td>
<td>Required Capstone Design</td>
<td>450 Spacecraft Design or 451 Aircraft Design</td>
</tr>
<tr>
<td>Multidisciplinary Electives</td>
<td>490E-Introduction to Satellite Systems; 490B Aerospace Systems Design; 490S-Satellite Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate/Graduate Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>512-Computational Aero</td>
<td>565-Guidance and Control</td>
<td>538-Air Breathing Propulsion</td>
<td>547-Experimental Stress Anal.</td>
</tr>
<tr>
<td>515-Rotorcraft Aerodynamics</td>
<td>590W-Estimation Theory</td>
<td>590E-Electrical Propulsion</td>
<td>553-Elasticity in Aero. Eng</td>
</tr>
<tr>
<td>520-Experimental Aero.</td>
<td>696-Multivariable Control</td>
<td>637-Future Prop Concepts</td>
<td>556-Aeroelasticity</td>
</tr>
<tr>
<td>590D-Molecular Gas Dynam</td>
<td>Astrodynamics</td>
<td>690C-Combustion Stability</td>
<td>558-Finite Element Methods</td>
</tr>
<tr>
<td>613-Viscous Flow Theory</td>
<td>507-Basic Mechanics</td>
<td></td>
<td>559-Mech. of Friction & Wear</td>
</tr>
<tr>
<td>624-Lam-Tur Transition</td>
<td>532-Orbital Mechanics</td>
<td>550-MDO</td>
<td>590M-Manufac. Of Adv Compos</td>
</tr>
<tr>
<td>626-Turbulence</td>
<td>575-Satellite Nav and Pos</td>
<td>551-Design Th and Methods</td>
<td>646-Elastic Wave Propaga</td>
</tr>
<tr>
<td>607-Var Prin of Mechanics</td>
<td>590K Systems of Systems</td>
<td>654-Fracture Mechanics</td>
<td></td>
</tr>
<tr>
<td>632-Adv Orbital Dynamics</td>
<td>690B Hybrid Systems</td>
<td>655-Adv Topics in Composites</td>
<td></td>
</tr>
<tr>
<td>690G-Astro Navig. & Guidance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

School of Aeronautics and Astronautics 2005-2006 Research Report 109
Summarized Class Enrollment Statistics for the 2005-2006 Academic Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Statistic</th>
<th>100, 200, 300, 400 Levels</th>
<th>500 Levels</th>
<th>600 Level</th>
<th>All Levels</th>
<th>One-Credit Laboratory Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall of 2005</td>
<td>No. of classes offered</td>
<td>20</td>
<td>21</td>
<td>2</td>
<td>43</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Total Enrollment</td>
<td>961</td>
<td>597</td>
<td>23</td>
<td>1581</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Average number of students per class</td>
<td>48</td>
<td>28</td>
<td>12</td>
<td>37</td>
<td>49</td>
</tr>
<tr>
<td>Spring of 2006</td>
<td>No. of classes offered</td>
<td>20</td>
<td>17</td>
<td>4</td>
<td>41</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Total enrollment</td>
<td>938</td>
<td>456</td>
<td>19</td>
<td>1413</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Average number of students per class</td>
<td>47</td>
<td>27</td>
<td>5</td>
<td>34</td>
<td>55</td>
</tr>
</tbody>
</table>

(does not include AAE 490, 590, 698 and 699)
STAFF FOR THE 2005-2006 ACADEMIC YEAR

Administrative Assistants
 Linda Flack, Terri Moore

Business Office
 Joan Jackson, Michelle Kidd, Sherry Wagner, Tonya Yoder

Clerical
 Karen Johnson, Paula Kerkhove

Director of Communications and Development
 Eric Gentry

Communications Administrator
 Ann Broughton

Professional/Technical
 Madeline Chadwell, Lisa Crain, Gerald Hahn, Joe Kline, Scott Meyer, John Phillips,
 David Reagan, Robin Snodgrass, Jim Younts