ECE 47700: Digital Systems Senior Design		Last Modified: 09-15-2023
Software Formalization

Year: 2025 				Semester: Spring	Team: 16 Project: SHALL
Creation Date: 02/21/2025		Last Modified: February 21, 2025
Author: Gino Ako			Email: gakoii@purdue.edu

Assignment Evaluation: See Rubric on Brightspace Assignment

1.0 Utilization of Third-Party Software
The Smart Home Adapter for LED Lights (SHALL) project incorporates several third-party software libraries and frameworks to enhance system performance, streamline development, and enable us to make use of smart home integration, LED control, and audio processing. The table below details the third-party software used, its licensing, purpose in the project, and any necessary compliance steps.
[image: A table with text on it

AI-generated content may be incorrect.]
Table 1: Table of Utilization of Third-Party Software
All open-source software listed above follows the proper licensing requirements. Some components, such as the Swift SDK, require an Apple Developer Account for full usage. The compliance with Matter Protocol specifications is maintained under CSA licensing regulations.
2.0 Description of Software Components

[image: A white sheet of paper with black text

AI-generated content may be incorrect.]
3.0 Testing Plan
[image: A screenshot of a white sheet of paper

AI-generated content may be incorrect.]
4.0 Sources Cited:
[1] Espressif Systems, “ESP-IDF Programming Guide,” Available: https://docs.espressif.com/projects/esp-idf/en/stable/.
[2] Adafruit Industries, “Adafruit NeoPixel Überguide,” Available: https://learn.adafruit.com/adafruit-neopixel-uberguide.
[3] Espressif Systems, “ESP-DSP Library for Digital Signal Processing on ESP32,” Available: https://github.com/espressif/esp-dsp.
[4] LVGL Graphics Library, “Light and Versatile Graphics Library,” Available: https://lvgl.io/.
[5] Connectivity Standards Alliance, “Matter Specification,” ver. 1.0, Oct. 2022. Available: https://csa-iot.org/all-solutions/matter/.
[6] Apple Inc., “Swift Programming Language Guide,” Available: https://developer.apple.com/swift/resources/.

Appendix 1: Software Component Diagram

LED Control Diagram:

[image: A diagram of a computer system

AI-generated content may be incorrect.]

Microphone Control Diagram:
[image: A diagram of a computer data processing

AI-generated content may be incorrect.]

TFT Display Control Diagram:

[image: A diagram of a computer

AI-generated content may be incorrect.]

ESP32 Software State Machine Diagram:
[image: A diagram of a system

AI-generated content may be incorrect.]

		 Page 1 of 3

image3.png
Software Component

Testing Procedure

Priority

WiFi

SPI

ADC (Audio Capturevia
Microphone)

FastLED

Matter Protocol Stack

LVGL Graphics Library

To ensure reliable wireless communication between ESP32 and the mobile app, and to make use
ofthe Matter protocol integration>We currently have it connected well but could be tested for
longivity. We will conduct the following tests for WiFi.

Process:

1. Connect ESP32 to a Wi-Fi network and verify stability over a long period of continuous
operation (10 mins, 30 mins, 1 hour).

2. Send real-time control signals for LED modes, microphone noise, and brightness adjustments
from the mobile app and check for latency.

3. Simulate Wi-Fi disconnection and reconnection and verify if ESP32 automatically reconnects
to the network without requiring manual intervention.

So far we have been able to get all ESP32 drivers, LGVL driversinstalled, and successful
connections to TFT display. Currently, we are having issues getting the TFT to display things.
Process:

1. Load up a very simple message "Hello World" to display to verify connections

2. Verify real-time data updates on messages with no flickering and flashing on display

3. Incorporate our project elements such as connectivity, time, and temperature.

4. Adjust our texts and Ul elements as needed

The ESP32’s ADC will be tested to ensure accurate microphone input capture and FFT-based
frequency analysis for LED control. Currently we have code being developed soon to be tested.
Process:

1. Connect microphone and ESP32. Verify that it picks up sounds from the environment.

2. Apply FFT processing to environmental sound and validate that frequency peaks are correctly
detected and mapped to LED color changes.

3. Test noise filtering by applying a threshold for minimum amplitude detection, ensuring
background noise does not trigger unintended LED changes.

The FastLED library will soon ungo testing with our new LED strips. We will use to be able to have
full control over the addressable LEDs.

Process:

1. Set predefined LED color patterns and confirm that they match expected values.

2. Implement areal-time LED animation sequence and check for smooth transitions without
flickering.

3. Test user-defined LED configurations from the mobile app and verify that changes are reflected
immediately.

We have already got the ESP32 conencted to a Google Home. From this, currently we are able
view it as a Matter accessory, change brightness, and make it turn on or off.

Process:

1. Connect ESP32 to Google Home.

2. Send a control to the ESP32 from the smart device (ie. Brightness control, On/off).

3. Trigger on/off commands and other light controls to confirm synchronization between the
mobileapp, ESP32, and smart home ecosystem

4. Test with Apple Homekit and Alexa to confirm compability.

The LVGL Ul library drivers have been successfully installed and compiles on our ESP32. We are
havingissues loading up Ul elements.

Process:

1.Verify all necessary drivers and dependencies arein their proper place for functionality.

2. Implement a simple message to display "Hello World"

3. Add elements, shapes, and animations to test functionality. Begin implementing our project
elements

4. Check for memory leaks or Ul crashes after extended operation in timeincremnts (ex. 30 mins,
1 hour, 3 hours, etc.) to verify functionality over long periods of time.

image4.png
A 2

Receive Command

Parse Command

vy
Update LED State

A 2

Send Data to WS2812B

image5.png
Start

Read Audio

Y

Sensor Data

Data usi

Process the Audio

ing FFT

A 4

Adjust LED Brightness &

Coll

ors

image6.png
ESP32 handles graphical data using the LVGL and
ESP32 drivers.

ESP32 sets up SPI communication with TFT Display and
sends pixel data, and updates via the SPI bus.

A 4

TFT Display processes the SPI data and updates the screen
with elements and text.

A 4

Display basic information like connectivity, time,
and lighting setting back to the user.

image7.png
Command from App/Matter Processing command Valid LED update

Schedule Override

—App selects Matter Control Matter/App Control Mode

App/Matter update complete:

Switch modes via App or

Off/Ildle App selects power off————— Schedule Override Adjusting LEDs

LEDs updated based on sensors:

-App selects Adaptive Mode: Adaptive Mode Sensor input processed

image1.png
Name ‘ License ‘ Description Use
Core firmware development and
extension (VSCode) for ESP32-
Espressif's loT Development S3, helps Wi-Fi/Bluetooth
ESP-IDF Apache 2.0 Framework florl ESP32, providing connectivity, commumcatlorf with
APIs for Wi-Fi, Bluetooth, and smart home platforms via
peripheral control [1]. Matter, and GPIO control for
interfacing with LEDs and
sensors.
Allows for control of WS2812B
Open-source library for LED animations, allowing for
addressable LEDs, enabling smooth color transitions, custom
FastLED MIT - .
efficient control of WS2812B LED effects, and real-time updates
strips [2]. based on user input or audio
signals.
Used to perform real-time FFT
. . . analysis on audio signals,
Espressif’s Digital Signal .
Processing (DSP) librar extracting frequency components
ESP-DSP Apache 2.0 . . ¥s . to create sound-reactive LED
optimized for efficient audio . .
enal X ESP32 [3] effects. This allows dynamic color
signal processing on : changes based on ambient sound
or music beats.
Lightweight and versatile graphics lRer;d_;e; Eé;li:‘e?ts lon tlhitzs
library designed for embedded Ul Irr:;des conr;eclts'p'ayls:agt Ii al:dg
LVGL Graphics Library MIT development, including support ! ivity us,

Matter Protocol

Swift (i0S SDK)

user control options. Also
integrates with the touchscreen
input system for user interaction.

for ILI9341 TFT displays and
touchscreen interfaces [4].

Enables seamless integration with
smart home ecosystems, allowing
users to control the LED lighting
via voice commands, mobile
apps, or automation routines.

Standardized smart home
Open-source protocol for seamless integration
(CSA License) with Apple HomeKit, Google
Home, and Alexa [5].

Used to build the SHALL

Apple Apple's development framework companion mobile app: which
Developer R allows users to customize LED

. for iOS apps [6].

License colors, set schedules, and control

the adapter remotely.

image2.png
Software Component Description

Development Status

These function ensure a wireless
communication between the ESP32
and the mobile app, including smart

WiFi home Matter protocol integration. It
will be crucial for sending real-time
data like light modes, microphone
noise, and brightness.

SPI communication functions relate to
managing the high-speed data
transfer between the ESP32and the
2.8 inch TFT display. This will allow
users to receive useful information
like connectivity status, time, etc.

SPI

Captures real-time audio signals from
a microphone using ESP32 ADC,
applies signal processing, and extracts
frequency data. This allows us to use
the surrounding environmnet noise
to have it control the lights with their
frequency.

ADC (Audio Capture via
Microphone)

Third-party LED control libraries
optimized for WS2812B strips. We
FastLED will use this to maximum
customizablity on the LEDs and allow
us to interface with them easier.

Matter protocol allows for easy
compatiblity between Google Home,
Apple Home, Amazon Alexa. It make
Matter Protocol Stack interfacing between those
components and our LEDs control like
brightness and on/off status much
easier.

This graphical library gives us more
control over the TFT display. It
includes built-in Ul components,
animations, making it easy to render
our images and texts that are
displayed.

LVGL Graphics Library

Being developed and tested by
team

Being developed and tested by
team

Being developed and tested by
team

Being Ported to Project

Being Ported to Project

Being Ported to Project

