Problem 1 - Biological Genetics.

Suppose a diploid organism with three chromosomes. Further suppose that crossover and mutation did not occur. How many genetically different offspring could be produced ?

Problem 2 - Biological Genetics.

Consider the example on page 25 of the lecture set 1 . Suppose that the genes for seed shape and color were on the same chromosome. What would the final result be ?

Problem 3 - Canonical Genetic Algorithms.

It is desired to minimize the function
$g\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+3\left(x_{2}-4\right)^{2}-200$
What is a possible fitness function (the answer is not unique) if using a canonical GA ?

Problem 4 - Canonical Genetic Algorithms.

The fitness values of the members of a population are: 23, $96,42,12,8,7,47$
What is the expected number of times the individual with a fitness of 42 will appear in the mating pool?

Problem 5 - Schema Theorem.

Consider the individual 101. List all schema to which this individual belongs. Consider the schema $1^{* *} 100^{* *}$. What is the order ? What is the defining length ?

Problem 6 - Schema Theorem.

Consider the population of individuals on page 25 of the Lecture 2 notes. What is the minimum bound on the expected number of times the schema $01^{* * *}$ will appear in the next generation ?

