

Suggested reading:

D. E. Goldberg, *Genetic Algorithm in Search, Optimization, and Machine Learning*, Addison Wesley Publishing Company, January 1989

Schema Theorem

- Schema theorem serves as the analysis tool for the GA process
- Explain why GAs work by showing the expectation of schema survival
- Applicable to a canonical GA
 binary representation
 fixed length individuals
 fitness proportional selection
 single point crossover
 gene-wise mutation

Schema

- A schema is a set of binary strings that match the template for schema H
- A template is made up of 1s, 0s, and *s where
 * is the 'don't care' symbol that matches either
 0 or 1

Schema Examples

The schema H = 10*1* represents the set of binary strings

10010, 10011, 10110, 10111

The string '10' of length l = 2 belongs to $2^{l} = 2^{2}$ different schemas

Schema: Order o(H)

- The order of a schema is the number of its fixed bits, i.e. the number of bits that are not '*' in the schema H
- Example: if H = 10*1* then o(H) = 3

Schema: Defining Length $\delta(H)$

- The defining length is the distance between its first and the last fixed bits
- Example: if H = *1*01 then $\delta(H) = 5 2 = 3$
- Example: if $H = 0^{****}$ then $\delta(H) = 1 1 = 0$

Schema: Count

- Suppose x is an individual that belongs to the schema H, then we say that x is an instance of $H(x \in H)$
- *m*(*H*, *k*) denotes the number of instances of *H* in the *k* th generation

Schema: Fitness

■ f(x) denotes fitness value of x

■ *f*(*H*,*k*) denotes average fitness of *H* in the *k*-th generation

$$f(H,k) = \frac{\sum_{x \in H} f(x)}{m(H,k)}$$

Effect of GA On A Schema

- Effect of Selection
- Effect of Crossover
- Effect of Mutation
- \blacksquare = Schema Theorem

Effect of Selection on Schema

Assumption: fitness proportional selection

Selection probability for the individual x

$$p_s(x) = \frac{f(x)}{\sum_{i=1}^N f(x_i)}$$

where the N is the total number of individuals

Net Effect of Selection

The expected number of instances of *H* in the mating pool *M*(*H*,*k*) is

$$M(H,k) = \frac{\sum_{x \in H} f(x)}{\overline{f}} = m(H,k) \frac{f(H,k)}{\overline{f}}$$

Schemas with fitness greater than the population average are likely to appear more in the next generation

Effect of Crossover on Schema

Assumption: single-point crossover

Schema H survives crossover operation if
 one of the parents is an instance of the schema H AND

 \Box one of the offspring is an instance of the schema H

Crossover Survival Examples

Consider H = *10**

P₁ = 1 1 0 1 0 ∈ H P₂ = 1 0 1 1 1 ∉ H $S_1 = 1 1 0 1 1 ∈ H$ Schema H S₂ = 1 0 1 1 0 ∉ H survived

P₁ = 1 1 0 1 0 ∈ H P₂ = 1 0 1 1 1 ∉ H $S_1 = 1 1 1 1 1 ∉ H$ Schema H S₂ = 1 0 0 1 0 ∉ H destroyed

Crossover Operation

- Suppose a parent is an instance of a schema *H*. When the crossover is occurred within the bits of the defining length, it is destroyed unless the other parent repairs the destroyed portion
- Given a string with length l and a schema H with the defining length $\delta(H)$, the probability that the crossover occurs within the bits of the defining length is $\delta(H)/(l-1)$

Crossover Probability Example

Suppose H = *1**0
We gave
l = 5
δ(H) = 5 - 2 = 3

□Thus, the probability that the crossover occurs within the defining length is 3/4

Crossover Operation

The upper bound of the probability that the schema *H* being destroyed is

$$D_c(H) \le p_c \frac{\delta(H)}{l-1}$$

where $p_{\rm c}$ is the crossover probability

Net Effect of Crossover

The lower bound on the probability S_c(H) that H survives is

$$S_{c}(H) = 1 - D_{c}(H) \ge 1 - p_{c} \frac{\delta(H)}{l - 1}$$

Schemas with low order are more likely to survive

Mutation Operation

Assumption: mutation is applied gene by gene

For a schema H to survive, all fixed bits must remain unchanged

Probability of a gene not being changed is

$$(1-p_m)$$

where p_m is the mutation probability of a gene

Net Effect of Mutation

The probability a schema H survives under mutation

$$S_m(H) = (1 - p_m)^{o(H)}$$

Schemas with low order are more likely to survive

Schema Theorem

Exp. # of Schema H in Next Generation > Exp. # in Mating Pool ($M(H,k) = m(H,k) \frac{f(H,k)}{\overline{f}}$) Prob. of Surviving Crossover ($S_c(H) \ge 1 - p_c \frac{\delta(H)}{l-1}$) Prob. of Surviving Mutation ($S_m(H) = (1 - p_m)^{o(H)}$)

Schema Theorem

Mathematically

$$E[m(H,k+1)] \ge m(H,k) \frac{f(H,k)}{\bar{f}} \left(1 - p_c \frac{\delta(H)}{l-1}\right) (1 - p_m)^{o(H)}$$

The schema theorem states that the schema with *above average fitness*, *short defining length* and *lower order* is more likely to survive