ECE 630 – Special Topics: Engineering Analysis and Design Using Genetic Algorithms

Scott Sudhoff
Electrical and Computer Engineering
Purdue University
West Lafayette, IN
Summer 2007

Manual Design Approach

Evolutionary Design Approach

Evolutionary Environment

Detailed Analysis

Fitness Function

Optimization Based Design and Analysis (Evolutionary or Otherwise)

- Pose Design Problem As An Optimization Problem
 - □ Can be single or multi-objective
 - Systematically encode design constraints and objectives into fitness functions
- Reality Check: Problem Properties Not Always Friendly
 - □ Not differentiable
 - □ Not convex
 - ☐ Many local extrema
 - □ No unique global optimum

Optimization Methods

- Classic Methods
 - □ Newton's Method
 - ☐ Gradient Methods
 - ☐ Conjugate Direction Methods
 - □ Quasi-Newton Methods
 - □ Nedler-Mead Simplex Method
- Populations Based Methods
 - Monte-Carlo
 - □ Population Based Classical Methods
 - **☐** Genetic Algorithms
 - □ Swarm Algorithms

Electric Machine Design

Rotor Material Type: Superflux Stator Material Type: Superflux

Permanent Magnet Type: NdFeB-30

Current Phase Advance (Degrees): -56.9791

Permanent Magnet Fraction (Percent): 94.9762

Rotor Iron Radius (cm): 2.5304

Permanent Magnet Depth (cm): 0.12325

Air Gap (mm): 0.35252 Slot Depth (cm): 1.075

Depth of Backiron (cm): 0.60912

Active Length (cm): 5.1814

Number of Slots: 32

Fundamental Turns Density (turns/rad): 0.6194

3rd Harmonic Turns Density (percent): 41.112

Conductor Type: Copper

Conductor Area (mm²): 1.3129

Transfer Function Identification

NCS/IFTP Control Design

 $\theta_{\rm c} = [K_{pv} \ K_{iv} \ K_{ii} \ \tau_{invc} \ \tau_{invout} \ \tau_{iniout} \ K_{sf} \ \tau_{sf1} \ \tau_{sf2} \ K_{v} \ \tau_{v} \ K_{ip} \ K_{id}]^{\rm T}$

Vulnerability Assessment

Course Outline

- Lecture 1: Biological Genetics and Evolution
- Lecture 2: Canonical Genetic Algorithms
- Lecture 3: Schema Theory
- Lecture 4: Real Coded Genetic Algorithms
- Lecture 5: <u>Genetic Optimization System Engineering Tool</u>
- Lecture 6: Single Objective GA Exercises
- Lecture 7: GOSET Graphical User Interface
- Lecture 8: A Design Example: An Electromagnet
- Lecture 9: Multi-Objective Optimization
- Lecture 10: Multi-Objective Optimization Exercises

Acknowledgements

- Office of Naval Research Grant N00014-02-1-0990
- Office of Naval Research Grant N00014-02-1-0623

- Dr. Yonggon Lee, United States Naval Academy
- Dr. Ed Zivi, United States Naval Academy

■ Dr. Stanislaw Żak, Purdue University

Contact Information: S.D. Sudhoff

■ Phone: 765-494-3246

■ Fax: 765-494-0676

■ E-mail: <u>sudhoff@ecn.purdue.edu</u>

■ Web: http://cobweb.ecn.purdue.edu/~sudhoff/

Office: EE150

■ Office Hours: MTWR 9:30-10:30 (Eastern, Daylight Savings Time)

■ Mail:

Scott D. Sudhoff Electrical Engineering Building 465 Northwestern Avenue West Lafayette, IN 47907-2035

For Credit Grading

- 4 Homeworks (10 % of grade, each)
- 1 Final Exam (60 % of grade)