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Chapter 1

Mathematical Modeling

In order to simulate fluid flow, heat transfer, and other related physical phenomena,
it is necessary to describe the associated physics in mathematical terms. Nearly all
the physical phenomena of interest to us in this book are governed by principles of
conservation and are expressed in terms of partial differential equations expressing
these principles. For example, the momentum equations express the conservation of
linear momentum; the energy equation expresses the conservation of total energy. In
this chapter we derive a typical conservation equation and examine its mathematical
properties.

1.1 Conservation Equations

Typical governing equations describing the conservation of mass, momentum, energy,
or chemical species are written in terms of specific quantities - i.e., quantities expressed
on a per unit mass basis. For example, the momentum equation expresses the principle
of conservation of linear momentum in terms of the momentum per unit mass, i.e.,
velocity. The equation for conservation of chemical species expresses the conservation
of the mass of the species in terms of its mass fraction

Let us consider a specific quantity φ , which may be momentum per unit mass, or
the energy per unit mass, or any other such quantity. Consider a control volume of size
∆x ∆y ∆z shown in Figure 1.1. We want to express the variation of φ in the control
volume over time. Let us assume that φ is governed by a conservation principle that
states

Accumulation of φ in the control volume over time ∆t
Net influx of φ into control volume
Net generation of φ
inside control volume

(1.1)
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Jx x+ x∆
∆y

x∆

J

∆z

Figure 1.1: Control Volume

The accumulation of φ in the control volume over time ∆t is given by

ρφ∆ t ∆t ρφ∆ t (1.2)

Here, ρ is the density of the fluid, ∆ is the volume of the control volume (∆x ∆y
∆z) and t is time.

The net generation of φ inside the control volume over time ∆t is given by

S∆ ∆t (1.3)

where S is the generation of φ per unit volume. S is also sometimes called the source
term.

Let us consider the remaining term, the net influx of φ into the control volume. Let
Jx represent the flux of φ coming into the control volume through face x, and J x ∆x the
flux leaving the face x ∆x. Similar fluxes exist on the y and z faces respectively. The
net influx of φ into the control volume over time ∆t is

Jx Jx ∆x ∆y∆z∆t Jy Jy ∆y ∆x∆z∆t Jz Jz ∆z ∆x∆y∆t (1.4)

We have not yet said what physical mechanisms cause the influx of φ . For physical
phenomena of interest to us, φ is transported by two primary mechanisms: diffusion
due to molecular collision, and convection due to the motion of fluid. In many cases,
the diffusion flux may be written as

Jdiffusion x Γ
∂φ
∂x

(1.5)

The convective flux may be written as

Jconvection x ρuφ (1.6)
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Here, the velocity field is given by the vector V ui vj wk. Thus the net convective
and diffusive flux may be written as

Jx ρuφ Γ
∂φ
∂x x

Jx ∆x ρuφ Γ
∂φ
∂x x ∆x

(1.7)

where ρu x is the mass flux through the control volume face at x. Similar expressions
may be written for the y and z directions respectively.

Accumulating terms, and dividing by ∆ ∆t Equation 1.1 may be written as

ρφ t ∆t ρφ t
∆t

Jx Jx ∆x
∆x

Jy Jy ∆y

∆y
Jz Jz ∆z

∆z
S (1.8)

Taking the limit ∆x ∆y ∆z ∆t 0, we get

∂ ρφ
∂ t

∂Jx
∂x

∂Jy
∂y

∂Jz
∂ z

S (1.9)

It is convenient to write Equation 1.9 as

∂
∂ t

ρφ
∂
∂x

ρuφ
∂
∂y

ρvφ
∂
∂ z

ρwφ

∂
∂x

Γ
∂φ
∂x

∂
∂y

Γ
∂φ
∂y

∂
∂ z

Γ
∂φ
∂ z

S

or, in vector notation

∂ ρφ
∂ t

∇ ρVφ ∇ Γ∇φ S (1.10)

1.1.1 Discussion
It is worth noting the following about the above derivation:

The differential form is derived by considering balances over a finite control
volume.

Though we have chosen hexahedral control volume on which to do conservation,
we can, in principle, choose any shape. We should get the same final govern-
ing differential equation regardless of the shape of the volume chosen to do the
derivation.
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The conservation equation is written in terms of a specific quantity φ , which may
be energy per unit mass (J/kg), or momentum per unit mass (m/s) or some similar
quantity.

The conservation equation is written on a per unit volume per unit time basis.
The generation term in Equation 1.10 for example, is the generation of φ per unit
volume per unit time. If φ were energy per unit mass, S would be the generation
of energy per unit volume per unit time.

1.1.2 Conservation Form
Equation 1.10 represents the conservative or divergence form of the conservation equa-
tion. This form is characterized by the fact that in steady state, in the absence of gen-
eration, the divergence of the flux is zero:

∇ J 0 (1.11)

where J = Jxi Jyj Jzk. By using the continuity equation, we may write the non-
conservative form of Equation 1.10

∂ ρφ
∂ t

ρV ∇φ Γ∇ ∇φ ∇Γ ∇φ S (1.12)

The divergence of J represents the net efflux per unit volume of J. Thus, the conser-
vative form is a direct statement about the conservation of φ in terms of the physical
fluxes (convection and diffusion). The non-conservative form does not have a direct
interpretation of this sort. Numerical methods that are developed with the divergence
form as a starting point can be made to reflect the conservation property exactly if care
is taken. Those that start from Equation 1.12 can be made to approximate conservation
in some limiting sense, but not exactly.

1.2 Governing Equations
The governing equations for fluid flow, heat and mass transfer, as well as other transport
equations, may be represented by the conservative form, Equation 1.10. Let us now
consider some specific cases of the conservation equation for φ .

1.2.1 The Energy Equation
The general form of the energy equation is quite elaborate, though it can also be cast
into the general form of Equation 1.10. For simplicity, let us assume low-speed flow
and negligible viscous dissipation.

For this case, the energy equation may be written in terms of the specific enthalpy
h as

∂ρh
∂ t

∇ ρVh ∇ k∇T Sh (1.13)
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where k is the thermal conductivity and T is the temperature. For ideal gases and
incompressible substances,

dh CpdT (1.14)

so that Equation 1.13 may be written as

∂ρh
∂ t

∇ ρVh ∇
k
Cp

∇h Sh (1.15)

Comparing Equation 1.15 with Equation 1.10 shows that the energy equation can be
cast into the form of the general conservation equation, with φ h, Γ k C p and
S Sh.

1.2.2 The Momentum Equation
The momentum equation for a Newtonian fluid in the direction x may be written as

∂ρu
∂ t

∇ ρVu ∇ µ∇u
∂ p
∂x

Su (1.16)

Here, Su contains those parts of the stress tensor not appearing directly in the diffusion
term, and ∂ p ∂x is pressure gradient. We see that Equation 1.16 has the same form as
the general conservation equation 1.10, with φ u, Γ µ and S ∂ p ∂x S u.

1.2.3 The Species Equation
Consider the transport of a mixture of chemical species. The equation for the conser-
vation of mass for a chemical specie i may be written in terms of its mass fraction,
Yi, where Yi is defined as the mass of species i per mass of mixture. If Fick’s law is
assumed valid, the governing conservation equation is

∂ρYi
∂ t

∇ ρVYi ∇ Γi∇Yi Ri (1.17)

Γi is the diffusion coefficient for Yi in the mixture and Ri is the rate of formation of Yi
through chemical reactions. Again we see that Equation 1.17 has the same form as the
general conservation equation 1.10, with φ Yi, Γ Γi, and S Ri.

1.3 The General Scalar Transport Equation
We have seen that the equations governing fluid flow, heat and mass transfer can be cast
into a single general form which we shall call the general scalar transport equation:

∂ ρφ
∂ t

∇ ρVφ ∇ Γ∇φ S (1.18)

If numerical methods can be devised to solve this equation, we will have a framework
within which to solve the equations for flow, heat, and mass transfer.
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1.4 Mathematical Classification of Partial Differential
Equations

The general scalar transport equation is a second-order partial differential equation
(PDE) governing the spatial and temporal variation of φ . If the properties ρ and Γ, or
the generation term Sφ are functions of φ , it is non-linear. Ignoring non-linearities for
the moment, we examine the behavior of this equation.

It is instructive to consider a general second-order PDE given by

aφxx bφxy cφyy dφx eφy fφ g 0 (1.19)

The coefficients a,b,c,d,e, f and g are functions of the coordinates (x,y), but not of φ
itself.

The behavior of Equation 1.19 may be classified according to the sign on the dis-
criminant

b2 4ac (1.20)

If 0 the PDE is called elliptic. If 0, the PDE is called parabolic. If 0 the
PDE is called hyperbolic. Let us consider typical examples of each type of equation.

1.4.1 Elliptic Partial Differential Equations
Let us consider steady heat conduction in a one-dimensional slab, as shown in Fig-
ure 1.2. The governing equation and boundary conditions are given by

∂
∂x

k
∂T
∂x

0 (1.21)

with

T 0 T0
T L TL (1.22)

For constant k, the solution is given by

T x T0
TL T0
L

x (1.23)

This simple problem illustrates important properties of elliptic PDEs. These are

1. The temperature at any point x in the domain is influenced by the temperatures
on both boundaries.

2. In the absence of source terms, T x is bounded by the temperatures on the
boundaries. It cannot be either higher or lower than the boundary temperatures.

It is desirable when devising numerical schemes that these basic properties be reflected
in the characteristics of the scheme.
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Figure 1.2: Conduction in a One-Dimensional Slab
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1.4.2 Parabolic Partial Differential Equations
Consider unsteady conduction in the slab in Figure 1.2. If k, ρ and C p are constant,
Equation 1.13 may be written in terms of the temperature T as

∂T
∂ t

α
∂ 2T
∂x2 (1.24)

where α k ρCp is the thermal diffusivity. The initial and boundary conditions are
given by

T x 0 Ti x
T 0 t T0
T L t T0 (1.25)

Using a separation of variables technique, we may write the solution to this problem as

T x t T0

∞

∑
n 1

Bn sin nπx
L

e
αn2π2
L2 t (1.26)

where
Bn

2
L

L

0
Ti x T0 sin

nπx
L

dx n 1 2 3 (1.27)

We note the following about the solution:

1. The boundary temperature T0 influences the temperature T(x,t) at every point in
the domain, just as with elliptic PDE’s.

2. Only initial conditions are required (i.e., conditions at t 0). No final conditions
are required, for example conditions at t ∞. We do not need to know the future
to solve this problem!

3. The initial conditions only affect future temperatures, not past temperatures.

4. The initial conditions influence the temperature at every point in the domain for
all future times. The amount of influence decreases with time, and may affect
different spatial points to different degrees.

5. A steady state is reached for t ∞. Here, the solution becomes independent of
Ti x 0 . It also recovers its elliptic spatial behavior.

6. The temperature is bounded by its initial and boundary conditions in the absence
of source terms.

It is clear from this problem that the variable t behaves very differently from the vari-
able x. The variation in t admits only one-way influences, whereas the variable x admits
two-way influences. t is sometimes referred to as the marching or parabolic direction.
Spatial variables may also behave in this way, for example, the axial direction in a pipe
flow.
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1.4.3 Hyperbolic Partial Differential Equations
Let us consider the one-dimensional flow of a fluid in a channel, as shown in Figure 1.3.
The velocity of the fluid,U , is a constant; alsoU 0. For t 0, the fluid upstream of
the channel entrance is held at temperature T0. The properties ρ and Cp are constant
and k 0. The governing equations and boundary conditions are given by:

∂
∂ t

ρCpT
∂
∂x

ρCpUT 0 (1.28)

with

T x 0 Ti
T x 0 t T0 (1.29)

You can convince yourself that Equation 1.28 is hyperbolic by differentiating it once
with respect to either t or x and finding the discriminant. The solution to this problem
is

T x t T x Ut 0 (1.30)

or to put it another way

T x t Ti for t x
U

T0 for t x
U

(1.31)

The solution is essentially a step in T traveling in the positive x direction with a velocity
U , as shown in Figure 1.4.

We should note the following about the solution:

1. The upstream boundary condition (x 0) affects the solution in the domain.
Conditions downstream of the domain do not affect the solution in the domain.

2. The inlet boundary condition propagates with a finite speed,U .

3. The inlet boundary condition is not felt at point x until t x U .

1.4.4 Behavior of the Scalar Transport Equation
The general scalar transport equation we derived earlier (Equation 1.10) has much in
common with the partial differential equations we have seen here. The elliptic diffusion
equation is recovered if we assume steady state and there is no flow. The same problem
solved for unsteady state exhibits parabolic behavior. The convection side of the scalar
transport equation exhibits hyperbolic behavior. In most engineering situations, the
equation exhibits mixed behavior, with the diffusion terms tending to bring in elliptic
influences, and the unsteady and convection terms bringing in parabolic or hyperbolic
influences. It is sometimes useful to consider particular coordinates to be elliptic or
parabolic. For example, it is useful in parabolic problems to think about time as the
parabolic coordinate and to think of space as the elliptic coordinate.
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Figure 1.4: Temperature Variation with Time
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Though it is possible to devise numerical methods which exploit the particular na-
ture of the general scalar transport equation in certain limiting cases, we will not do
that here. We will concentrate on developing numerical methods which are general
enough to handle the mixed behavior of the general transport equation.

When we study fluid flow in greater detail, we will have to deal with coupled sets
of equations, as opposed to a single scalar transport equation. These sets can also be
analyzed in terms similar to the discussion above.

1.5 Closure
In this chapter, we have seen that many physical phenomena of interest to us are gov-
erned by conservation equations. These conservation equations are derived by writing
balances over finite control volumes. We have seen that the conservation equations gov-
erning the transport of momentum, heat and other specific quantities have a common
form embodied in the general scalar transport equation. This equation has unsteady,
convection, diffusion and source terms. By studying the behavior of canonical elliptic,
parabolic and hyperbolic equations, we begin to understand the behavior of these dif-
ferent terms in determining the behavior of the computed solution. The ideal numerical
scheme should be able to reproduce these influences correctly.
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Chapter 2

Numerical Methods

In the previous chapter, we saw that physical phenomena of interest to us could be
described by a general scalar transport equation. In this chapter, we examine numerical
methods for solving this type of equation, and identify the main components of the
solution method. We also examine ways of characterizing our numerical methods in
terms of accuracy, consistency, stability and convergence.

2.1 Overview
Our objective here is to develop a numerical method for solving the general scalar
transport equation. Fundamental to the development of a numerical method is the idea
of discretization. An analytical solution to a partial differential equation gives us the
value of φ as a function of the independent variables (x y z t). The numerical solution,
on the other hand, aims to provide us with values of φ at a discrete number of points in
the domain. These points are called grid points, though we may also see them referred
to as nodes or cell centroids, depending on the method. The process of converting
our governing transport equation into a set of equations for the discrete values of φ is
called the discretization process and the specific methods employed to bring about this
conversion are called discretization methods.

The discrete values of φ are typically described by algebraic equations relating the
values at grid points to each other. The development of numerical methods focuses
on both the derivation of the discrete set of algebraic equations, as well as a method
for their solution. In arriving at these discrete equations for φ we will be required
to assume how φ varies between grid points i.e., to make profile assumptions. Most
widely used methods for discretization require local profile assumptions. That is, we
prescribe how φ varies in the local neighborhood surrounding a grid point, but not over
the entire domain.

The conversion of a differential equation into a set of discrete algebraic equations
requires the discretization of space. This is accomplished by means of mesh generation.
A typical mesh is shown in Figure 2.1. Mesh generation divides the domain of interest
into elements or cells, and associates with each element or cell one or more discrete
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Figure 2.1: An Example of a Mesh

values of φ . It is these values of φ we wish to compute.
We should also distinguish between the discretized equations and the methods em-

ployed to solve them. For our purposes, let us say that the accuracy of the numerical
solution, i.e., its closeness to the exact solution, depends only on the discretization
process, and not on the methods employed to solve the discrete set (i.e., the path to
solution). The path to solution determines whether we are successful in obtaining a
solution, and how much time and effort it will cost us. But it does not determine the
final answer. (For some non-linear problems, the path to solution can determine which
of several possible solutions is obtained. For simplicity, we shall not pursue this line of
investigation here.)

Since we wish to get an answer to the original differential equation, it is appropri-
ate to ask whether our algebraic equation set really gives us this. When the number of
grid points is small, the departure of the discrete solution from the exact solution is ex-
pected to be large. A well-behaved numerical scheme will tend to the exact solution as
the number of grid points is increased. The rate at which it tends to the exact solution
depends on the type of profile assumptions made in obtaining the discretization. No
matter what discretization method is employed, all well-behaved discretization meth-
ods should tend to the exact solution when a large enough number of grid points is
employed.
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Figure 2.2: Mesh Terminology

2.2 Mesh Terminology and Types
The physical domain is discretized by meshing or gridding it.(We shall use the terms
mesh and grid interchangeably in this book). We shall use the terminology shown in
Figure 2.2 in describing our meshes. The fundamental unit of the mesh is the cell
(sometimes called the element). Associated with each cell is the cell centroid. A cell
is surrounded by faces, which meet at nodes or vertices. In three dimensions, the face
is a surface surrounded by edges. In two dimensions, faces and edges are the same.

A variety of mesh types are encountered in practice. These are described below.

2.2.1 Regular and Body-fitted Meshes
In many cases, our interest lies in analyzing domains which are regular in shape: rect-
angles, cubes, cylinders, spheres. These shapes can be meshed by regular grids, as
shown in Figure 2.3(a). The grid lines are orthogonal to each other, and conform to the
boundaries of the domain. These meshes are also sometimes called orthogonal meshes.

For many practical problems, however, the domains of interest are irregularly shaped
and regular meshes may not suffice. An example is shown in Figure 2.3(b). Here, grid
lines are not necessarily orthogonal to each other, and curve to conform to the irregular
geometry. If regular grids are used in these geometries, stair stepping occurs at domain
boundaries, as shown in Figure 2.4. When the physics at the boundary are important in
determining the solution, e.g., in flows dominated by wall shear, such an approximation
of the boundary may not be acceptable.

2.2.2 Structured, Block Structured, and Unstructured Meshes
The meshes shown in Figure 2.3 are examples of structured meshes. Here, every inte-
rior vertex in the domain is connected to the same number of neighbor vertices. Fig-
ure 2.5 shows a block-structured mesh. Here, the mesh is divided into blocks, and the
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Figure 2.3: Regular and Body-Fitted Meshes

Figure 2.4: Stair-Stepped Mesh
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Block

Figure 2.5: Block-Structured Mesh

mesh within each block is structured. However, the arrangement of the blocks them-
selves is not necessarily structured. Figure 2.6 shows an unstructured mesh. Here, each
vertex is connected to an arbitrary number of neighbor vertices. Unstructured meshes
impose fewer topological restrictions on the user, and as a result, make it easier to mesh
very complex geometries.

2.2.3 Conformal and Non-Conformal Meshes
An example of a non-conformal mesh is shown in Figure 2.7. Here, the vertices of a
cell or element may fall on the faces of neighboring cells or elements. In contrast, the
meshes in Figures 2.3,2.5 and 2.6 are conformal meshes.

2.2.4 Cell Shapes
Meshes may be constructed using a variety of cell shapes. The most widely used are
quadrilaterals and hexahedra. Methods for generating good-quality structured meshes
for quadrilaterals and hexahedra have existed for some time now. Though mesh struc-
ture imposes restrictions, structured quadrilaterals and hexahedra are well-suited for
flows with a dominant direction, such as boundary-layer flows. More recently, as com-
putational fluid dynamics is becoming more widely used for analyzing industrial flows,
unstructured meshes are becoming necessary to handle complex geometries. Here, tri-
angles and tetrahedra are increasingly being used, and mesh generation techniques for
their generation are rapidly reaching maturity. As of this writing, there are no general
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Figure 2.7: Non-Conformal Mesh
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Figure 2.8: Cell Shapes: (a) Triangle, (b) Tetrahedron, (c) Quadrilateral, (d) Hexahe-
dron, (e) Prism, and (f) Pyramid

purpose techniques for generating unstructured hexahedra. Another recent trend is the
use of hybrid meshes. For example, prisms are used in boundary layers, transitioning to
tetrahedra in the free-stream. In this book, we will develop numerical methods capable
of using all these cell shapes.

2.2.5 Node-Based and Cell-Based Schemes
Numerical methods which store their primary unknowns at the node or vertex loca-
tions are called node-based or vertex-based schemes. Those which store them at the
cell centroid, or associate them with the cell, are called cell-based schemes. Finite
element methods are typically node-based schemes, and many finite volume methods
are cell-based. For structured and block-structured meshes composed of quadrilaterals
or hexahedra, the number of cells is approximately equal to the number of nodes, and
the spatial resolution of both storage schemes is similar for the same mesh. For other
cell shapes, there may be quite a big difference in the number of nodes and cells in the
mesh. For triangles, for example, there are twice as many cells as nodes, on average.
This fact must be taken into account in deciding whether a given mesh provides ade-
quate resolution for a given problem. From the point of view of developing numerical
methods, both schemes have advantages and disadvantages, and the choice will depend

28



Flow

Boundary Layer
Quadrilaterals

Triangles

Figure 2.9: Hybrid Mesh in Boundary Layer

on what we wish to achieve.

2.3 Discretization Methods
So far, we have alluded to the discretization method, but have not said specifically
what method we will use to convert our general transport equation to a set of discrete
algebraic equations. A number of popular methods are available for doing this.

2.3.1 Finite Difference Methods
Finite difference methods approximate the derivatives in the governing differential
equation using truncated Taylor series expansions. Consider a one-dimensional scalar
transport equation with a constant diffusion coefficient and no unsteady or convective
terms:

Γ
d2φ
dx2 S 0 (2.1)

We wish to discretize the diffusion term. Referring to the one-dimensional mesh shown
in Figure 2.10, we write

φ1 φ2 ∆x
dφ
dx 2

∆x 2

2
d2φ
dx2

2
O ∆x 3 (2.2)

and

φ3 φ2 ∆x
dφ
dx 2

∆x 2

2
d2φ
dx2

2
O ∆x 3 (2.3)

The term O ∆x 3 indicates that the terms that follow have a dependence on ∆x n

where n 3. Subtracting Equations 2.2 from Equation 2.3 gives

dφ
dx 2

φ3 φ1
2∆x

O ∆x 2 (2.4)

By adding the two equations together, we can write

d2φ
dx2

2

φ1 φ3 2φ2
∆x2 O ∆x 2 (2.5)
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Figure 2.10: One-Dimensional Mesh

By including the diffusion coefficient and dropping terms of O ∆x 2 or smaller, we
can write

Γ
d2φ
dx2

2
Γ
φ1 φ3 2φ2

∆x2 (2.6)

The source term S is evaluated at the point 2 using

S2 S φ2 (2.7)

Substituting Equations 2.6 and 2.7 into Equation 2.1 gives the equation

2Γ
∆x 2 φ2

Γ
∆x 2 φ1

Γ
∆x 2 φ3 S2 (2.8)

This is the discrete form of Equation 2.1. By obtaining an equation like this for every
point in the mesh, we obtain an set of algebraic equations in the discrete values of φ .
This equation set may be solved by a variety of methods which we will discuss later in
the book.

Finite difference methods do not explicitly exploit the conservation principle in
deriving discrete equations. Though they yield discrete equations that look similar to
other methods for simple cases, they are not guaranteed to do so in more complicated
cases, for example on unstructured meshes.

2.3.2 Finite Element Methods
We consider again the one-dimensional diffusion equation, Equation 2.1. There are
different kinds of finite element methods. Let us look at a popular variant, the Galerkin
finite element method. Let φ be an approximation to φ . Since φ is only an approxima-
tion, it does not satisfy Equation 2.1 exactly, so that there is a residual R:

d2φ
dx2 S R (2.9)

We wish to find a φ such that

domain
WRdx 0 (2.10)

W is a weight function, and Equation 2.10 requires that the residual R become zero in
a weighted sense. In order to generate a set of discrete equations we use a family of
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weight functions Wi, i 1 2 N, where N is the number of grid points, rather than a
single weight function. Thus, we require

domain
WiRdx 0 i 1 2 N (2.11)

The weight functions Wi are typically local in that they are non-zero over element i,
but are zero everywhere else in the domain. Further, we assume a shape function for
φ , i.e., assume how φ varies between nodes. Typically this variation is also local. For
example we may assume that φ assumes a piece-wise linear profile between points 1
and 2 and between points 2 and 3 in Figure 2.10. The Galerkin finite element method
requires that the weight and shape functions be the same. Performing the integration
in Equation 2.11 results in a set of algebraic equations in the nodal values of φ which
may be solved by a variety of methods.

We should note here that because the Galerkin finite element method only requires
the residual to be zero in some weighted sense, it does not enforce the conservation
principle in its original form. We now turn to a method which employs conservation as
a tool for developing discrete equations.

2.3.3 Finite Volume Method
The finite volume method (sometimes called the control volume method) divides the
domain in to a finite number of non-overlapping cells or control volumes over which
conservation of φ is enforced in a discrete sense. It is possible to start the discretiza-
tion process with a direct statement of conservation on the control volume, as in Equa-
tion 1.9 in the previous chapter. Alternatively we may start with the differential equa-
tion and integrate it over the control volume. Let us examine the discretization process
by looking at one-dimensional diffusion with a source term:

d
dx

Γ
dφ
dx

S 0 (2.12)

Consider a one-dimensional mesh, with cells as shown in Figure 2.11. Let us store
discrete values of φ at cell centroids, denoted by W , P and E. The cell faces are
denoted by w and e. Let us assume the face areas to be unity.

We focus on the cell associated with P. We start by integrating Equation 2.12 over
the cell P. This yields

e

w

d
dx

Γ
dφ
dx

dx
e

w
Sdx 0 (2.13)

so that

Γ
dφ
dx e

Γ
dφ
dx w

e

w
Sdx 0 (2.14)

We note that this equation can also be obtained by writing a heat balance over the cell
P from first principles. Thus far, we have made no approximation.
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We now make a profile assumption, i.e., we make an assumption about how φ varies
between cell centroids. If we assume that φ varies linearly between cell centroids, we
may write

Γe φE φP
δxe

Γw φP φW
δxw

S∆x 0 (2.15)

Here S is the average value of S in the control volume. We note that the above equation
is no longer exact because of the approximation in assuming that φ varies in a piece-
wise linear fashion between grid points.

Collecting terms, we obtain

aPφP aEφE aWφW b (2.16)

where

aE Γe δxe
aW Γw δxw
aP aE aW
b S∆x (2.17)

Equations similar to Equation 2.16 may be derived for all cells in the domain, yielding
a set of algebraic equations, as before; these may be solved using a variety of direct or
iterative methods.

We note the following about the discretization process.
1. The process starts with the statement of conservation over the cell. We then find

cell values of φ which satisfy this conservation statement. Thus conservation is
guaranteed for each cell, regardless of mesh size.
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2. Conservation does not guarantee accuracy, however. The solution for φ may be
inaccurate, but conservative.

3. The quantity Γdφ dx e is diffusion flux on the e face. The cell balance is
written in terms of face fluxes. The gradient of φ must therefore be evaluated at
the faces of the cell.

4. The profile assumptions for φ and S need not be the same.

We will examine additional properties of this discretization in the next chapter.

2.4 Solution of Discretization Equations
All the discretization methods described here result in a set of discrete algebraic equa-
tions which must be solved to obtain the discrete values of φ . These equations may
be linear (i.e. the coefficients are independent of φ ) or they may be non-linear (i.e.
the coefficients are functions of φ ). The solution techniques are independent of the
discretization method, and represent the path to solution. For the linear algebraic sets
we will encounter in this book, we are guaranteed that there is only one solution, and if
our solution method gives us a solution, it is the solution we want. All solution meth-
ods (i.e. all paths to solution) which arrive at a solution will give us the same solution
for the same set of discrete equations. For non-linear problems, we do not have this
guarantee, and the answer we get may depend on factors like the initial guess, and the
actual path to solution. Though this is an important issue in computing fluid flows, we
will not address it here.

Solution methods may be broadly classified as direct or iterative. We consider each
briefly below.

2.4.1 Direct Methods
Using one of the discretization methods described previously, we may write the result-
ing system of algebraic equations as

Aφ B (2.18)

where A is the coefficient matrix, φ φ1 φ2
T is a vector consisting of the discrete

values of φ , and B is the vector resulting from the source terms.
Direct methods solve the equation set 2.18 using the methods of linear algebra. The

simplest direct method is inversion, whereby φ is computed from

φ A 1B (2.19)

A solution for φ is guaranteed if A 1 can be found. However, the operation count
for the inversion of an N N matrix is O N 2 . Consequently, inversion is almost
never employed in practical problems. More efficient methods for linear systems are
available. For the discretization methods of interest here, A is sparse, and for structured
meshes it is banded. For certain types of equations, for example, for pure diffusion, the

33



matrix is symmetric. Matrix manipulation can take into account the special structure of
A in devising efficient solution techniques for Equation 2.18. We will study one such
method, the tri-diagonal matrix algorithm (TDMA), in a later chapter.

Direct methods are not widely used in computational fluid dynamics because of
large computational and storage requirements. Most industrial CFD problems today
involve hundreds of thousands of cells, with 5-10 unknowns per cell even for simple
problems. Thus the matrix A is usually very large, and most direct methods become
impractical for these large problems. Furthermore, the matrix A is usually non-linear,
so that the direct method must be embedded within an iterative loop to update non-
linearities in A. Thus, the direct method is applied over and over again, making it all
the more time-consuming.

2.4.2 Iterative Methods
Iterative methods are the most widely used solution methods in computational fluid
dynamics. These methods employ a guess-and-correct philosophy which progressively
improves the guessed solution by repeated application of the discrete equations. Let us
consider an extremely simple iterative method, the Gauss-Seidel method. The overall
solution loop for the Gauss-Seidel method may be written as follows:

1. Guess the discrete values of φ at all grid points in the domain.

2. Visit each grid point in turn. Update φ using

φP
aEφE aWφW b

aP
(2.20)

The neighbor values, φE and φW are required for the update of φP. These are
assumed known at prevailing values. Thus, points which have already been vis-
ited will have recently updated values of φ and those that have not will have old
values.

3. Sweep the domain until all grid points are covered. This completes one iteration.

4. Check if an appropriate convergence criterion is met. We may, for example,
require that the maximum change in the grid-point values of φ be less than 0 1
%. If the criterion is met, stop. Else, go to step 2.

The iteration procedure described here is not guaranteed to converge to a solution
for arbitrary combinations of aP, aE and aW . Convergence of the process is guaranteed
for linear problems if the Scarborough criterion is satisfied. The Scarborough criterion
requires that

aE aW
aP

1 for all grid points

1 for at least one grid point (2.21)

Matrices which satisfy the Scarborough criterion have diagonal dominance. We note
that direct methods do not require the Scarborough criterion to be satisfied to obtain a
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solution; we can always obtain a solution to our linear set of equations as long as our
coefficient matrix is not singular.

The Gauss-Seidel scheme can be implemented with very little storage. All that is
required is storage for the discrete values of φ at the grid points. The coefficients a P,
aE , aW and b can be computed on the fly if desired, since the entire coefficient matrix
for the domain is not required when updating the value of φ at any grid point. Also, the
iterative nature of the scheme makes it particularly suitable for non-linear problems. If
the coefficients depend on φ , they may be updated using prevailing values of φ as the
iterations proceed.

Nevertheless, the Gauss-Seidel scheme is rarely used in practice for solving the
systems encountered in CFD. The rate of convergence of the scheme decreases to un-
acceptably low levels if the system of equations is large. In a later chapter, we will use
a multigrid method to accelerate the rate of convergence of this scheme and make it
usable as a practical tool.

2.5 Accuracy, Consistency, Stability and Convergence
In this section, we turn to certain important properties of numerical methods.

2.5.1 Accuracy
Accuracy refers to the correctness of a numerical solution when compared to an exact
solution. In most cases, we do not know the exact solution. It is therefore more useful
to talk of the truncation error of a discretization method. The truncation error associ-
ated with the diffusion term using the finite difference method is O ∆x 2 , as shown
by Equation 2.5.This simply says that if d 2φ dx2 is represented by the first term in
Equation 2.5, the terms that are neglected are of O ∆x 2 . Thus, if we refine the mesh,
we expect the truncation error to decrease as ∆x 2. If we double the x-direction mesh,
we expect the truncation error to decrease by a factor of four. The truncation error of
a discretization scheme is the largest truncation error of each of the individual terms
in the equation being discretized. The order of a discretization method is n if its trun-
cation error is O ∆x n . It is important to understand that the truncation error tells us
how fast the error will decrease with mesh refinement, but is not an indicator of how
high the error is on the current mesh. Thus, even methods of very high order may yield
inaccurate results on a given mesh. However, we are guaranteed that the error will de-
crease more rapidly with mesh refinement than with a discretization method of lower
order.

2.5.2 Consistency
A consistent numerical method is one for which the truncation error tends to vanish as
the mesh becomes finer and finer. (For unsteady problems, both spatial and temporal
truncation errors must be considered). We are guaranteed this if the truncation error is
some power of the mesh spacing ∆x (or ∆t). Sometimes we may come across schemes
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where the truncation error of the method is O ∆x ∆t . Here, consistency is not guar-
anteed unless ∆x is decreased faster than ∆t. Consistency is a very important property.
Without it, we have no guarantee that mesh refinement will improve our solution.

2.5.3 Stability
The previous two properties refer to the behavior of the discretization method. Stability
is a property of the path to solution. For steady state problems, for example, we obtain
a discretized set of algebraic equations which must be solved. We may choose to
solve this set using an iterative method. Depending on the properties of the method,
solution errors may be amplified or damped. An iterative solution method is unstable
or divergent if it fails to yield a solution to the discrete set.

It is also possible to speak of the stability of time-marching schemes. When solv-
ing unsteady problems, we will use numerical methods which compute the solution at
discrete instants of time, using the solution at one or more previous time steps as initial
conditions. Stability analysis allow us to determine whether errors in the solution re-
main bounded as time marching proceeds. An unstable time-marching scheme would
not be able to reach steady state in an unsteady heat conduction problem, for example
(assuming that a steady state exists).

It is possible to analyze iterative and time marching methods using stability anal-
ysis. However, this is most convenient for linear problems, and is usually too difficult
for most realistic problems. Here, non-linearities in the governing equations, boundary
conditions, and properties, as well as coupling between multiple governing equations,
make a formal analysis difficult. In reality the practitioner of CFD must rely on expe-
rience and intuition in devising stable solution methods.

2.5.4 Convergence
We distinguish between two popular usages of the term convergence. We may say that
an iterative method has converged to a solution, or that we have obtained convergence
using a particular method. By this we mean that our iterative method has successfully
obtained a solution to our discrete algebraic equation set. We may also speak of con-
vergence to mesh independence. By this, we mean the process of mesh refinement, and
its use in obtaining solutions that are essentially invariant with further refinement. We
shall use the term in both senses in this book.

2.6 Closure
In this chapter, we have presented a broad overview of discretization and introduced
terminology associated with numerical methods. We have learned that there are a num-
ber of different philosophies for discretizing the scalar transport equation. Of these,
only the finite volume method enforces conservation on each cell, and thus ensures
that both local and global conservation are guaranteed no matter how coarse the mesh.
In the next chapter, we consider the finite volume method in more detail, and study the
properties of the discretizations it produces when applied to diffusion problems.
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Chapter 3

The Diffusion Equation: A First
Look

In this chapter we turn our attention to an important physical process, namely diffu-
sion. Diffusion operators are common in heat, mass and momentum transfer and can
also be used to model electrostatics, radiation, and other physics. We consider the dis-
cretization and solution of the scalar transport equation for both steady and unsteady
diffusion problems. We will attempt to relate the properties of our discrete equations
with the behavior of the canonical partial differential equations we studied previously.
The methodology we develop in this chapter will allow us to examine more compli-
cated mesh types and physics in later chapters.

3.1 Two-Dimensional Diffusion in Rectangular Domain
Let us consider the steady two-dimensional diffusion of a scalar φ in a rectangular
domain. From Equation 1.10, the governing scalar transport equation may be written
as

∇ J S (3.1)

where J Jxi Jyj is the diffusion flux vector and is given by

J Γ∇φ (3.2)

In Cartesian geometries, the gradient operator is given by

∇
∂
∂x

i ∂
∂y

j (3.3)

We note that Equation 3.1 is written in conservative or divergence form. When Γ is
constant and S is zero, the equation defaults to the familiar Laplace equation. When Γ
is constant and S is non-zero, the Poisson equation is obtained.
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3.1.1 Discretization
The arrangement of cells under consideration is shown in Figure 3.1. As in the previous
chapter, we focus on cell P and its neighbors, the cells E, W, N and S. Discrete values of
φ are stored at cell centroids. We also store the diffusion coefficient Γ at cell centroids.
The faces e,w, n and s are associated with area vectors Ae, Aw, An and As. The vectors
are positive pointing outwards from the cell P. The volume of the cell P is ∆
∆x ∆y.

We begin the process of discretization by integrating Equation 3.1 over the cell P:

∆
∇ Jd

∆
Sd (3.4)

Next, we apply the divergence theorem to yield

A
J dA

∆
Sd (3.5)

The first integral represents the integral over the control surface A of the cell. We have
made no approximations thus far.

We now make a profile assumption about the flux vector J. We assume that J varies
linearly over each face of the cell P, so that it may be represented by its value at the
face centroid. We also assume that the mean value of the source term S over the control
volume is S. Thus,

J A e J A w J A n J A s S∆ (3.6)

or, more compactly
∑

f e w n s
J f A f S∆ (3.7)

The face areas Ae and Aw are given by

Ae ∆y i
Aw ∆y i (3.8)

The other area vectors may be written analogously. Further

Je Ae Γe∆y
∂φ
∂x e

Jw Aw Γw∆y
∂φ
∂x w

(3.9)

The transport in the other directions may be written analogously.
In order to complete the discretization process, we make one more round of profile

assumptions. We assume that φ varies linearly between cell centroids. Thus, Equa-
tion 3.9 may be written as

Je Ae Γe∆y
φE φP
δx e

Jw Aw Γw∆y
φP φW
δx w

(3.10)
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Similar expressions may be written for the other fluxes.
Let us assume that the source term S has the form

S SC SPφ (3.11)

with SP 0. We say that S has been linearized. We will see later how general forms of
S can be written in this way. We write the volume-averaged source term S in the cell P
as

S SC SPφP (3.12)
Substituting Equations 3.10, 3.8 and 3.12 into Equation 3.6 yields a discrete equa-

tion for φP:
aPφP aEφE aWφW aNφN aSφS b (3.13)

where

aE
Γe∆y
δx e

aW
Γw∆y
δx w

aN
Γn∆x
δy n

aS
Γs∆x
δy s

aP aE aW aN aS SP∆x∆y
b SC∆x∆y (3.14)

Equation 3.13 may be written in a more compact form as

aPφP ∑
nb
anbφnb b (3.15)

Here, the subscript nb denotes the cell neighbors E,W , N, and S.

3.1.2 Discussion
We make the following important points about the discretization we have done so far:

1. The discrete equation expresses a balance of discrete flux (the J’s) and the source
term. Thus conservation over individual control volumes is guaranteed. How-
ever, overall conservation in the calculation domain is not guaranteed unless the
diffusion transfer from one cell enters the next cell. For example, in writing the
balance for cell E, we must ensure that the flux used on the face e is J e, and that
it is discretized exactly as in Equation 3.10.

2. The coefficients aP and anb are all of the same sign. In our case they are all
positive. This has physical meaning. If the temperature at E is increased, we
would expect the temperature at P to increase, not decrease. (The solution to our
elliptic partial differential equation also has this property). Many higher order
schemes do not have this property. This does not mean these schemes are wrong
– it means they do not have a property we would like to have if at all possible.
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3. We require that SP in Equation 3.11 be negative. This also has physical meaning.
If for example S is a temperature source, we do not want a situation where as
T increases, S increases indefinitely. We control this behavior in the numerical
scheme by insisting that SP be kept negative.

4. When SP 0, we have
aP ∑

nb
anb (3.16)

Equation 3.13 may then be written as

φP ∑
nb

anb
aP

φnb (3.17)

where∑nb anb aP 1. Since φP is the weighted sum of its neighbor values, it is
always bounded by them. By extension, φP is always bounded by the boundary
values of φ . We notice that this property is also shared by our canonical elliptic
equation.
When S 0, φP need not be bounded in this manner, and can overshoot or under-
shoot its boundary values, but this is perfectly physical. The amount of overshoot
is determined by the magnitude of SC and SP with respect to the anb’s.

5. If SP 0 and aP ∑nb anb, we notice that φ and φ C are solutions to Equa-
tion 3.13. This is also true of the original differential equation, Equation 3.1.
The solution can be made unique by specifying boundary conditions on φ which
fix the value of φ at some point on the boundary.

3.2 Boundary Conditions
A typical boundary control volume is shown in Figure 3.2. A boundary control volume
is one which has one or more faces on the boundary. Discrete values of φ are stored at
cell centroids, as before. In addition, we store discrete values of φ at the centroids of
boundary faces.

Let us consider the discretization process for a near-boundary control volume cen-
tered about the cell centroid P with a face on the boundary. The boundary face centroid
is denoted by b. The face area vector of the boundary face is A b, and points outward
from the cell P as shown.

Integrating the governing transport equation over the cell P as before yields

J A b J A e J A n J A s S∆ (3.18)

The fluxes on the interior faces are discretized as before. The boundary area vector A b
is given by

Ab ∆y i (3.19)

Let us assume that the boundary flux Jb is given by the boundary face centroid value.
Thus

Jb Γb∇φb (3.20)
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so that

Jb Ab ∆yΓb∇φb (3.21)

Assuming that φ varies linearly between b and P, we write

Jb Ab ∆yΓb
φP φb
δx b

(3.22)

The specification of boundary conditions involves either specifying the unknown bound-
ary value φb, or alternatively, the boundary flux Jb. Let us consider some common
boundary conditions next.

3.2.1 Dirichlet Boundary Condition

The boundary condition is given by

φb φb given (3.23)

Using φb given in Equation 3.22, and including Jb Ab in Equation 3.18 yields the fol-
lowing discrete equation for boundary cell P:

aPφP aEφE aNφN aSφS b (3.24)
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where

aE
Γe∆y
δx e

aN
Γn∆x
δy n

aS
Γs∆x
δy s

ab
Γb∆y
δx b

aP aE aN aS ab SP∆x∆y
b abφb SC∆x∆y (3.25)

We note the following important points about the above discretization:

1. At Dirichlet boundaries, aP aE aN aS . This property ensures that the
Scarborough criterion is satisfied for problems with Dirichlet boundary condi-
tions.

2. φP is guaranteed to be bounded by the values of φE , φN , φS and φb if SC and SP
are zero. This is in keeping with the behavior of the canonical elliptic partial
differential equation we encountered earlier.

3.2.2 Neumann Boundary Condition
Here, we are given the normal gradient of φ at the boundary:

Γ∇φ b i qb given (3.26)

We are in effect given the flux Jb at Neumann boundaries:

Jb Ab qb given∆y (3.27)

We may thus include qb given∆y directly in Equation 3.18 to yield the following
discrete equation for the boundary cell P:

aPφP aEφE aNφN aSφS b (3.28)

where

aE
Γe∆y
δx e

aN
Γn∆x
δy n

aS
Γs∆x
δy s

aP aE aN aS SP∆x∆y
b qb given∆y SC∆x∆y (3.29)

We note the following about the discretization at the boundary cell P:
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1. aP aE aN aS at Neumann boundaries if S 0.

2. If both qb given and S are zero, φP is bounded by its neighbors. Otherwise, φP can
exceed (or fall below) the neighbor values of φ . This is admissible. If heat were
being added at the boundary, for example, we would expect the temperature in
the region close to the boundary to be higher than that in the interior.

3. Once φP is computed, the boundary value, φb may be computed using Equa-
tion 3.22:

φb
qb given Γb δxb φP

Γb δxb
(3.30)

3.2.3 Mixed Boundary Condition

The mixed boundary condition is given by

Γ∇φ b i hb φ∞ φ (3.31)

Since Ab ∆yi, we are given that

Jb Ab hb φ∞ φ ∆y (3.32)

Using Equation 3.22 we may write

Γb
φP φb
δxb

hb φ∞ φb (3.33)

We may thus write φb as

φb
hbφ∞ Γb δxb φP
hb Γb δxb

(3.34)

Using Equation 3.34 to eliminate φb from Equation 3.33 we may write

Jb Ab Req φ∞ φP ∆y (3.35)

where

Req
hb Γb δxb
hb Γb δxb

(3.36)

We are now ready to write the discretization equation for the boundary control volume
P. Substituting the boundary flux from Equation 3.35 into Equation 3.18 given the
following discrete equation for φP:

aPφP aEφE aNφN aSφS b (3.37)
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where

aE
Γe∆y
δx e

aN
Γn∆x
δy n

aS
Γs∆x
δy s

ab Req∆y
aP aE aN aS ab SP∆x∆y
b Req∆yφ∞ SC∆x∆y (3.38)

We note the following about the above discretization:

1. aP aE aN aS for the boundary cell P if S 0. Thus, mixed boundaries
are like Dirichlet boundaries in that the boundary condition helps ensure that the
Scarborough criterion is met.

2. The cell value φP is bounded by its neighbor values φE , φN and φS, and the
external value, φ∞.

3. The boundary value, φb, may be computed from Equation 3.34 once a solution
has been obtained. It is bounded by φP and φ∞, as shown by Equation 3.34.

3.3 Unsteady Conduction
Let us now consider the unsteady counterpart of Equation 3.1:

∂
∂ t

ρφ ∇ J S (3.39)

We are given initial conditions φ x y 0 . As we saw in a previous chapter, time is
a “marching” coordinate. By knowing the initial condition, and taking discrete time
steps ∆t, we wish to obtain the solution for φ at a each discrete time instant.

In order to discretize Equation 3.39, we integrate it over the control volume as
usual. We also integrate it over the time step ∆t, i.e., from t to t ∆t.

∆t ∆

∂
∂ t

ρφ d dt
∆t ∆

∇ Jd dt
∆t ∆

Sd dt (3.40)

Applying the divergence theorem as before, we obtain

∆
ρφ 1 ρφ 0 d

∆t A
J dAdt

∆t ∆
Sd dt (3.41)

The superscripts 1 and 0 in the first integral denote the values at the times t ∆t and t
respectively. Let us consider each term in turn. If we assume that

∆
ρφd ρφ P∆ (3.42)
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we may write the unsteady term as

∆ ρφ 1
P ρφ 0

P (3.43)

We now turn to the flux term. If we assume as before that the flux on a face is
represented by its centroid value, we may write the term as

∆t
∑

f e w n s
J f A f dt (3.44)

We are now required to make a profile assumption about how the flux J varies with
time. Let us assume that it can be interpolated between time instants t ∆t and t using
a factor f between zero and one:

∆t
J Adt fJ1 A 1 f J0 A ∆t (3.45)

Proceeding as before, making linear profile assumptions for φ between grid points, we
may write

J1
e Ae Γe∆y

φ1
E φ1

P
δx e

J1
w Aw Γw∆y

φ1
P φ1

W
δx w

(3.46)

and

J0
e Ae Γe∆y

φ0
E φ0

P
δx e

J0
w Aw Γw∆y

φ0
P φ0

W
δx w

(3.47)

Let us now examine the source term. Linearizing S as SC SPφ and further assum-
ing that

∆
SC SPφ d SC SPφP ∆ (3.48)

we have

∆t ∆
Sd dt

∆t
SC SPφP ∆ dt (3.49)

Again, interpolating S between t ∆t and t using a weighting factor f between zero
and one:

∆t
SC SPφP ∆ dt f SC SPφP

1
∆ ∆t 1 f SC SPφP

0
∆ ∆t (3.50)

For simplicity, let us drop the superscript 1 and let the un-superscripted value represent
the value at time t ∆t. The values at time t are represented as before with the super-
script 0. Collecting terms and dividing through by ∆t, we obtain the following discrete
equation for φ :

aPφP ∑
nb
anb fφnb 1 f φ0

nb b a0
P 1 f ∑

nb
anb φ0

P (3.51)
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where nb denotes E,W , N and S. Further

aE
Γe∆y
δx e

aW
Γw∆y
δx w

aN
Γn∆x
δy n

aS
Γs∆x
δy s

a0
P

ρ∆
∆t

aP f∑
nb
anb f SP∆ a0

P

b f SC 1 f S0
C 1 f S0

Pφ
0
P ∆ (3.52)

It is useful to examine the behavior of Equation 3.51 for a few limiting cases.

3.3.1 The Explicit Scheme
If we set f 0, we obtain the explicit scheme. This means that the flux and source
terms are evaluated using values exclusively from the previous time step. In this limit,
we obtain the following discrete equations:

aPφP ∑
nb
anbφ

0
nb b a0

P ∑
nb
anb φ0

P (3.53)

and

aE
Γe∆y
δx e

aW
Γw∆y
δx w

aN
Γn∆x
δy n

aS
Γs∆x
δy s

a0
P

ρ∆
∆t

aP a0
P

b S0
C S0

Pφ
0
P ∆ (3.54)

We notice the following about the discretization:
1. The right hand side of Equation 3.53 contains values exclusively from the pre-

vious time t. Thus, given the condition at time t, it is possible for us to evaluate
the right hand side completely, and find the value of φP at time t ∆t.
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2. We do not need to solve a set of linear algebraic equations to find φP.

3. When ∆t ∞, we see that the discrete equation for steady state is recovered.
This is also true when steady state is reached through time marching, i.e., when
φP φ0

P . Thus, we are assured that our solution upon reaching steady state is the
same as that we would have obtained if we had solved a steady problem in the
first place.

4. The explicit scheme corresponds to the assumption that φ 0
P prevails over the en-

tire time step.

5. We will see later in the chapter that the explicit scheme has a truncation error of
O ∆t . Thus, the error reduces only linearly with time-step refinement.

This type of scheme is very simple and convenient, and is frequently used in CFD
practice. However, it suffers from a serious drawback. We see that the term multiplying
φ0
P can become negative when

a0
P ∑

nb
anb (3.55)

When a0
P ∑nb anb, we see that an increase in φ at the previous time instant can cause

a decrease in φ at the current instant. This type of behavior is not possible with a
parabolic partial differential equation. We can avoid this by requiring a 0

P ∑nb anb.
For a uniform mesh, and constant properties, this restriction can be shown , for one-,
two- and three-dimensional cases to be, respectively

∆t
ρ ∆x 2

2Γ
(3.56)

∆t
ρ ∆x 2

4Γ
(3.57)

and

∆t
ρ ∆x 2

6Γ
(3.58)

This condition is sometimes called the von Neumann stability criterion in the literature.
It requires that the forward time step be limited by the square of the mesh size. This
dependence on ∆x 2 is very restrictive in practice. It requires us to take smaller and
smaller time steps as our mesh is refined, leading to very long computational times.

3.3.2 The Fully-Implicit Scheme
The fully-implicit scheme is obtained by setting f 1 in Equation 3.51. In this limit,
we obtain the following discrete equation for φP.

aPφP ∑
nb
anbφnb b a0

Pφ
0
P (3.59)
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with

aE
Γe∆y
δx e

aW
Γw∆y
δx w

aN
Γn∆x
δy n

aS
Γs∆x
δy s

a0
P

ρ∆
∆t

aP ∑
nb
anb SP∆ a0

P

b SC∆ (3.60)

We note the following important points about the implicit scheme:

1. In the absence of source terms, aP ∑nb anb a0
P. Because of this property, we

are guaranteed that φP is bounded by the values of its spatial neighbors at t ∆t
and by the value at point P at the previous time. This is in keeping with the
behavior of canonical parabolic partial differential equation. We may consider
φ0
P to be the time neighbor of φP. Also, the Scarborough criterion is satisfied.

2. The solution at time t ∆t requires the solution of a set of algebraic equations.

3. As with the explicit scheme, as ∆t ∞, we recover the discrete equations gov-
erning steady state diffusion. Also, if we reach steady state by time marching,
i.e., φ 0

P φP, we recover the discrete algebraic set governing steady diffusion.

4. The fully-implicit scheme corresponds to assuming that φP prevails over the en-
tire time step.

5. There is no time step restriction on the fully-implicit scheme. We can take as
big a time step as we wish without getting an unrealistic φP. However, physical
plausibility does not imply accuracy – it is possible to get plausible but inaccurate
answers if our time steps are too big.

6. We will see later in this chapter that the truncation error of the fully-implicit
scheme is O ∆t , i.e., it is a first-order accurate scheme. Though the coefficients
it produces have useful properties, the rate of error reduction with time step is
rather slow.
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3.3.3 The Crank-Nicholson Scheme
The Crank-Nicholson Scheme is obtained by setting f 0 5. With this value of f , our
discrete equation becomes

aPφP ∑
nb
anb 0 5φnb 0 5φ 0

nb b a0
P 0 5∑

nb
anb φ0

P (3.61)

with

aE
Γe∆y
δx e

aW
Γw∆y
δx w

aN
Γn∆x
δy n

aS
Γs∆x
δy s

a0
P

ρ∆
∆t

aP 0 5∑
nb
anb 0 5SP∆ a0

P

b 0 5 SC S0
C S0

Pφ
0
P ∆ (3.62)

We note the following about the Crank-Nicholson scheme:

1. For a0
P 0 5∑nb anb the term multiplying φ 0

P becomes negative, leading to the
possibility of unphysical solutions. Indeed, any value of f different from one
will have this property.

2. The Crank-Nicholson scheme essentially makes a linear assumption about the
variation of φP with time between t and t ∆t. We will see later in this chap-
ter that though this leads to a possibility of negative coefficients for large time
steps, the scheme has a truncation error of O ∆t 2 . Consequently, if used with
care, the error in the our solutions can be reduced more rapidly with time-step
refinement than the other schemes we have encountered thus far.

3.4 Diffusion in Polar Geometries
Since Equation 3.1 is written in vector form, it may be used to describe diffusive trans-
port in other coordinate systems as well. Indeed much of our derivation thus far can be
applied with little change to other systems. Let us consider two-dimensional polar ge-
ometries next. A typical control volume is shown in Figure 3.3. The control volume is
located in the r θ plane and is bounded by surfaces of constant r and θ . The grid point
P is located at the cell centroid. The volume of the control volume is ∆ r P∆θ∆r.
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Figure 3.3: Control Volume in Polar Geometry

We assume ∂φ ∂x 0, so that all transport is confined to the r θ plane. We also
assume steady diffusion, though the unsteady counterpart is easily derived.

Integrating Equation 3.1 over the control volume as before, and applying the diver-
gence theorem yields Equation 3.6:

J A e J A w J A n J A s S∆ (3.63)

The face area vectors are given by

Ae ∆r eθ e
Aw ∆r eθ w
An rn∆θ er
As rs∆θ er (3.64)

We recall that the diffusive flux J is given by

J Γ∇φ (3.65)

For polar geometries the gradient operator is given by

∇
∂
∂ r

er
1
r
∂
∂θ

eθ (3.66)
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Thus the fluxes on the faces are given by

Je Ae Γe∆r
1
re

∂φ
∂θ e

Jw Aw Γw∆r
1
rw

∂φ
∂θ w

Jn An Γnrn∆θ
∂φ
∂ r n

Js As Γsrs∆θ
∂φ
∂ r s

(3.67)

Assuming that φ varies linearly between grid points yields

Je Ae Γe∆r
φE φP
re δθ e

Jw Aw Γw∆r
φP φW
rw δθ w

Jn An Γnrn∆θ
φN φP
δ r n

Js As Γsrs∆θ
φP φS
δ r s

(3.68)

The source term may be written as

SC SPφP ∆ (3.69)

Collecting terms, we may write the discrete equation for the cell P as

aPφP aEφE aWφW aNφN aSφS b (3.70)

where

aE
Γe∆r
re δθ e

aW
Γw∆r

rw δθ w

aN
Γnrn∆θ
δ r n

aS
Γsrs∆θ
δ r s

aP aE aW aN aS SP∆
b SC∆ (3.71)

We note the following about the above discretization:
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1. Regardless of the shape of the control volume, the basic process is the same. The
integration of the conservation equation over the control volume and the appli-
cation of the divergence theorem results in a control volume balance equation,
regardless of the shape of the control volume.

2. The only differences are in the form of the face area vectors and the gradient
operator for the coordinate system. The latter manifests itself in the expressions
for the distances between grid points.

3. The polar coordinate system is orthogonal, i.e., e r and eθ are always perpen-
dicular to each other. Because the control volume faces are aligned with the
coordinate directions, the line joining the cell centroids (P and E, for example)
is perpendicular the face (e, for example). As a result, the flux normal to the
face can be written purely in terms of the cell centroid φ values for the two cells
sharing the face. We will see in the next chapter that additional terms appear
when the mesh is non-orthogonal, i.e., when the line joining the cell centroids is
not perpendicular to the face.

3.5 Diffusion in Axisymmetric Geometries
A similar procedure can be used to derive the discrete equation for axisymmetric ge-
ometries. We assume steady conduction. Since the problem is axisymmetric, ∂φ ∂θ
0. A typical control volume is shown in Figure 3.4, and is located in the r x plane.
The grid point P is located at the cell centroid. The volume of the control volume is
∆ rP∆r∆x.

The face area vectors are given by

Ae re∆r i
Aw rw∆r i
An rn∆x er
As rs∆x er (3.72)

For axisymmetric geometries the gradient operator is given by

∇
∂
∂ r

er
∂
∂x

i (3.73)

Thus the fluxes on the faces are given by

Je Ae Γere∆r
∂φ
∂x e

Jw Aw Γwrw∆r
∂φ
∂x w

Jn An Γnrn∆x
∂φ
∂ r n

Js As Γsrs∆x
∂φ
∂ r s

(3.74)
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Figure 3.4: Control Volume in Axisymmetric Geometry

Assuming that φ varies linearly between grid points yields

Je Ae Γere∆r
φE φP
δx e

Jw Aw Γwrw∆r
φP φW
δx w

Jn An Γnrn∆x
φN φP
δ r n

Js As Γsrs∆x
φP φS
δ r s

(3.75)

The source term may be written as

SC SPφP ∆ (3.76)

Collecting terms, we may write the discrete equation for the cell P as

aPφP aEφE aWφW aNφN aSφS b (3.77)
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where

aE
Γere∆r
δx e

aW
Γwrw∆r
δx w

aN
Γnrn∆x
δ r n

aS
Γsrs∆x
δ r s

aP aE aW aN aS SP∆
b SC∆ (3.78)

3.6 Finishing Touches
A few issues remain before we have truly finished discretizing our diffusion equation.
We deal with these below.

3.6.1 Interpolation of Γ
We notice in our discretization that the diffusion flux is evaluated at the face of the
control volume. As a result, we must specify the face value of the diffusion coefficient
Γ. Since we store Γ at cell centroids, we must find a way to interpolate Γ to the face.

Referring to the notation in Figure 3.5, it is possible to simple interpolate Γ linearly
as:

Γe feΓP 1 fe ΓE (3.79)

where
fe

0 5∆xE
δx e

(3.80)

As long as Γe is smoothly varying, this is a perfectly adequate interpolation. When
φ is used to represent energy or temperature, step jumps in Γ may be encountered at
conjugate boundaries. It is useful to devise an interpolation procedure which accounts
for these jumps.

Our desire is to represent the interface flux correctly. Let Je be the magnitude of
the flux vector Je. Let us assume locally one-dimensional diffusion. In this limit, we
may write

Je
φE φP

0 5∆xP ΓP 0 5∆xE ΓE
(3.81)

Thus, an equivalent interface diffusion coefficient may be defined as

δxe
Γe

0 5∆xP
ΓP

0 5∆xE
ΓE

(3.82)
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Figure 3.5: Diffusion Transport at Conjugate Boundaries

The term δxe Γe may be seen as a resistance to the diffusion transfer between P and
E. We may write Γe as

Γe
1 fe
ΓP

fe
ΓE

1
(3.83)

Equation 3.83 represents a harmonic mean interpolation for Γ. The properties of this
interpolation may be better understood if we consider the case f e 0 5, i.e., the face e
lies midway between P and E. In this case,

Γe
2ΓPΓE
ΓP ΓE

(3.84)

In the limit ΓP ΓE , we get Γe 2ΓE . This is as expected since the high-diffusion co-
efficient region does not offer any resistance, and the effective resistance is that offered
by the cell E, corresponding to a distance of 0 5∆xE .

It is important to realize that the use of harmonic mean interpolation for discontin-
uous diffusion coefficients is exact only for one-dimensional diffusion. Nevertheless,
its use for multi-dimensional situations has an important advantage. With this type of
interpolation, nothing special need be done to treat conjugate interfaces. We simply
treat solid and fluid cells as a part of the same domain, with different diffusion coeffi-
cients stored at cell centroids. With harmonic-mean interpolation, the discontinuity in
temperature gradient at the conjugate interface is correctly captured.
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3.6.2 Source Linearization and Treatment of Non-Linearity
Our goal is to reduce our differential equation to a set of algebraic equations in the
discrete values of φ . When the scalar transport is non-linear, the resulting algebraic set
is also non-linear. Non-linearity can arise from a number of different sources. For ex-
ample, in diffusion problems, the diffusion coefficient may be a function of φ , such as
in the case of temperature-dependent thermal conductivity. The source term S may also
be a function of φ . In radiative heat transfer in participating media, for example, the
source term in the energy equation contains fourth powers of the temperature. There
are many ways to treat non-linearities. Here, we will treat non-linearities through Pi-
card iteration. In this method, the coefficients aP, anb, SC and SP are evaluated using
prevailing values of φ . They are updated as φ is updated by iteration.

We said previously that the source term S could be written in the form

S SC SPφ (3.85)

We now examine how this can be done when S is a non-linear function of φ .
Let the prevailing value of φ be called φ . This is the value that exists at the

current iteration. We write a Taylor series expansion for S about its prevailing value
S S φ :

S S
∂S
∂φ

φ φ (3.86)

so that

SC S
∂S
∂φ

φ

SP
∂S
∂φ

(3.87)

Here, ∂S ∂φ is the gradient evaluated at the prevailing value φ . For most problems
of interest to us, ∂S ∂φ is negative, resulting in a negative SP. This ensures that the
source tends to decrease as φ increases, providing a stabilizing effect. However, this
type of dependence is not always guaranteed. In an explosion or a fire, for example, the
application of a high temperature (the lighting of a match) causes energy to be released,
and increases the temperature further. (The counter-measure is provided by the fact that
the fuel is eventually consumed and the fire burns out). From a numerical viewpoint,
a negative SP makes aP ∑nb anb in our discretization, and allows us to satisfy the
Scarborough criterion. It aids in the convergence of iterative solution techniques.

3.6.3 Under-Relaxation
When using iterative methods for obtaining solutions or when iterating to resolve non-
linearities, it is frequently necessary to control the rate at which variables are changing
during iterations. When we have a strong non-linearity in a temperature source term,
for example, and our initial guess is far from the solution, we may get large oscillations
in the temperature computed during the first few iterations, making it difficult for the
iteration to proceed. In such cases, we often employ under-relaxation.
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Let the current iterate of φ be φP . We know that φP satisfies

aPφP ∑
nb
anbφnb b (3.88)

so that after the system has been solved for the current iteration, we expect to compute
a value of φP of

φP
∑nb anbφnb b

aP
(3.89)

We do not, however, want φP to change as much as Equation 3.89 implies. The change
in φP from one iteration to the next is given by

∑nb anbφnb b
aP

φP (3.90)

We wish to make φP change only by a fraction α of this change. Thus

φP φP α
∑nb anbφnb b

aP
φP (3.91)

Collecting terms, we may write

aP
α
φP ∑

nb
anbφnb b

1 α
α

aPφP (3.92)

We note the following about Equation 3.92:

1. When the iterations converge to a solution, i.e., when φP φP , the original dis-
crete equation is recovered. So we are assured that under-relaxation is only a
change in the path to solution, and not in the discretization itself. Thus, both
under-relaxed and un-underrelaxed equations yield the same final solution.

2. Though over-relaxation (α 1) is a possibility, we will for the most part be using
α 1. With α 1, we are assured that aP α ∑nb anb. This allows us to satisfy
the Scarborough criterion.

3. The optimum value of α depends strongly on the nature of the system of equa-
tions we are solving, on how strong the non-linearities are, on grid size and so
on. A value close to unity allows the solution to move quickly towards conver-
gence, but may be more prone to divergence. A low value keeps the solution
close to the initial guess, but keeps the solution from diverging. We use intuition
and experience in choosing an appropriate value.

4. We note the similarity of under-relaxation to time-stepping. The initial guess
acts as the initial condition. The terms aP α and 1 α α apφP represent the
effect of the unsteady terms.
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3.7 Discussion
At this point, our discretized equation set is ready for solution. We have seen that
our diffusion equation can be discretized to yield coefficients that guarantee physical
plausibility for the orthogonal meshes we have considered here. This property is very
useful in a numerical scheme. However, we will see in the next chapter that it cannot
usually be obtained when meshes are non-orthogonal or unstructured.

We have thus far not addressed the issue of solving the discretization equations.
For the moment, we shall use the simple Gauss-Seidel scheme to solve our equation
set. This is admittedly slow for large meshes, and far better iteration schemes exist.
These will be covered in a later chapter.

3.8 Truncation Error
We now examine the various profile assumptions we have made in the course of dis-
cretizing our diffusion equation to quantify the truncation error of our finite volume
scheme.

3.8.1 Spatial Truncation Error
In coming up with our spatial approximations we made the following assumptions:

1. The face flux (Je, for example) was represented by the face centroid value. That
is, the mean flux through the face e was represented by the face centroid value.

2. The source term S∆ was written as SC SPφP ∆ ,i.e., the cell centroid value
φP was used to represent the mean φ value in the cell.

3. The gradient at the face was computed by assuming that φ varies linearly be-
tween cell centroids. Thus dφ dx e was written as φE φP δx e.

Items 1 and 2 essentially involve the same approximation: that of representing the
mean value of a variable by its centroid value. Item 3 involves an approximation to the
face gradient. Let us examine each of these approximations in turn. We will consider a
one-dimensional control volume and a uniform grid.

Mean Value Approximation

Consider the control volume in Figure 3.6 and the function φ x in the control volume.
We expand φ x as

φ x φP x xP
dφ
dx P

x xP 2

2!
d2φ
dx2

P

x xP 3

3!
d3φ
dx3

P
O ∆x 4

(3.93)
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Integrating Equation 3.93 over the control volume, we have

xe

xw
φ x dx φP

xe

xw
dx

dφ
dx P

xe

xw
x xP dx

d2φ
dx2

P

xe

xw

x xP 2

2!
dx O ∆x 4 (3.94)

so that
xe

xw
φ x dx ∆x φP

1
2

xe xP
2 xw xP

2 dφ
dx P

1
6

xe xP
3 xw xP

3 d2φ
dx2

P

O ∆x 4 (3.95)

For a uniform mesh, Equation 3.95 may be written as

xe

xw
φ x dx ∆x φP

1
24

∆x 3 d2φ
dx2

P
O ∆x 4 (3.96)

Dividing through by ∆x we get

φ
1
∆x

xe

xw
φ x dx φP O ∆x 2 (3.97)

Thus, we see that the centroid value φP represents the mean value with a truncation
error of O ∆x 2 . For a constant φ , all derivatives are zero. If φ x is linear, all
derivatives of order higher than dφ dx are zero. For these two cases, φ φP is true
exactly. The same analysis can be applied to the face flux J e, or indeed to any variable
being represented by its centroid value.

Gradient Approximation

Let us now examine the truncation error in representing the gradient dφ dx e as φE
φP δx e. Referring to Figure 3.6, we write:

φE φe
∆x
2

dφ
dx e

∆x 2

8
d2φ
dx2

e

∆x 3

48
d3φ
dx3

e

O ∆x 4

φP φe
∆x
2

dφ
dx e

∆x 2

8
d2φ
dx2

e

∆x 3

48
d3φ
dx3

e

O ∆x 4 (3.98)

Subtracting the second equation from the first and dividing by ∆x yields

dφ
dx e

φE φP
∆x

O ∆x 2 (3.99)
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Thus the assumption that φ varies linearly between grid points leads to a truncation
error of O ∆x 2 in dφ dx. We see that all the approximations in a steady diffusion
equation areO ∆x 2 . So the discretization scheme has a truncation error ofO ∆x 2 .

The mean-value approximation is O ∆x 2 even for a non-uniform mesh. The gra-
dient approximations is O ∆x 2 only for uniform meshes. For non-uniform meshes,
theO ∆x 2 terms in the Taylor series expansion do not cancel upon subtraction, leav-
ing a formal truncation error of O ∆x on dφ dx.

3.8.2 Temporal Truncation Error

Let us consider the fully-implicit scheme. The profile assumptions made in discretizing
the unsteady diffusion equation using this scheme are

1. The cell centroid values ρφ 1
P and ρφ 0

P in the unsteady term are assumed to
represent the average value for the cell.

2. The spatial assumptions are as described above.

3. The flux and source terms from time t ∆t are assumed to prevail over the time
step ∆t.

The first assumption is equivalent to the mean value assumption analyzed above and
engenders a spatial error of O ∆x 2. We have already seen that the other spatial as-
sumptions result in a truncation error of O ∆x 2 . Let us examine the truncation error
implicit in item 3. In effect, we wish to evaluate a term of the type

t1

t0
S t dt (3.100)
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Expanding S(t) about S1, its value at t1, we have

S t S1 dS
dt

1
t t1

d2S
dt2

1 t t1
2

2
O ∆t 3 (3.101)

Integrating over the time step ∆t, i.e. from t0 to t1, we get

t1

t0
S t dt S1∆t

dS
dt

1 t1

t0
t t1 dt O ∆t 3 (3.102)

Integrating and dividing by ∆t we get

1
∆t

t1

t0
S t dt S S1 dS

dt

1 ∆t
2

O ∆t 2 (3.103)

Thus the temporal truncation error of the fully implicit scheme is O ∆t .
We state without proof that the truncation error of the explicit scheme is also O ∆t

and that of the Crank-Nicholson scheme is O ∆t 2 .

3.9 Stability Analysis
In this section, we perform a von Neumann stability analysis. Stability can be under-
stood in two ways. For steady state problems, we wish to determine whether the path
to solution is stable, i.e., we wish to analyze a particular iterative method for stability.
For unsteady problems, we ask whether a particular marching scheme is stable. For
example, for an unsteady heat conduction problem, we may want to determine whether
taking successive time steps cause the errors in the solution to grow. This similarity be-
tween iteration and time-stepping is not surprising. We may consider any time-stepping
scheme to be an iterative scheme, i.e., a way of obtaining a steady state solution, if one
exists.

Let us consider the stability of the explicit scheme. For simplicity, let us consider
a one-dimensional case with constant properties and no source term. The discretized
diffusion equation may be written as:

aPφP aEφ
0
E aWφ

0
W a0

P aE aW φ0
P (3.104)

and

aE
Γe
δx e

aW
Γw
δx w

a0
P

ρ∆x
∆t

aP a0
P (3.105)
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Let Φ represent the exact solution to Equation 3.104. By exact we mean that it is
the solution to the discrete equation, obtained using a computer with infinite precision.
However, all real computers available to us have finite precision, and therefore, we
must contend with round-off error. Let this finite-precision solution be given by φ . The
error ε is given by

ε φ Φ (3.106)
We ask the following question: Will the explicit scheme cause our error ε to grow, or
will the process of time-stepping keep the error within bounds?

Substituting Equation 3.106 into Equation 3.104 yields

aP ΦP εP aE Φ0
E ε0

E aW Φ0
W ε0

W a0
P aE aW Φ0

P ε0
P (3.107)

As before, the Φ and ε terms superscripted 0 represent the values at the time step t, and
the un-superscripted values represent the values at time t ∆t. Since ΦP is the exact
solution, it satisfies Equation 3.104. Therefore, the Φ terms in Equation 3.107 cancel,
leaving

aPεP aEε
0
E aWε

0
W a0

P aE aW ε0
P (3.108)

Let us expand the error ε in an infinite series

ε x t ∑
m
eσmteiλmx m 0 1 2 M (3.109)

where σm may be either real or complex, and λm is given by

λm
mπ
L

m 0 1 2 M (3.110)

L is the width of the domain. Equation 3.109 essentially presents the spatial depen-
dence of the error by the sum of periodic functions e iλmx, and the time dependence by
eσmt . If σm is real and greater than zero , the error grows with time, and if σm is real
and less than zero, the error is damped. If σm is complex, the solution is oscillatory in
time. We wish to find the amplification factor

ε x t ∆t
ε x t

(3.111)

If the amplification factor is greater than one, our error grows with time step, and our
scheme is unstable. If it is less than one, our error is damped in the process of time
marching, and our scheme is stable.

Since the diffusion equation for constant Γ and zero S is linear, we may exploit the
principle of superposition. Thus, we can examine the stability consequences of a single
error term

ε eσmteiλmx (3.112)
rather than the summation in Equation 3.109. Substituting Equation 3.112 into Equa-
tion 3.108, we get

aPe
σm t ∆t eiλmx eσmt aEe

iλm x ∆x aWe
iλm x ∆x

a0
P aE aW eσmteiλmx (3.113)
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Dividing through by aPeσmteiλmx we get

eσm∆t
aE
aP
eiλm∆x

aW
aP

e iλm∆x

a0
P aE aW

aP
(3.114)

For a uniform mesh aE aW Γ ∆x and a0
P ρ∆x ∆t. Thus

eσm∆t
Γ∆t

ρ ∆x 2 eiλm∆x e iλm∆x 1
2Γ∆t
ρ ∆x 2 (3.115)

Using β λm∆x and the identities

eiλm∆x e iλm∆x 2cosβ 2 4sin2 β
2

(3.116)

we get

eσm∆t 1 4Γ∆t
ρ ∆x 2 sin2 β

2
(3.117)

We recognize that the amplification factor is

ε x t ∆t
ε x t

eσm∆t 1 4Γ∆t
ρ ∆x 2 (3.118)

We require that
ε x t ∆t
ε x t

1 (3.119)

or
1 4Γ∆t

ρ ∆x 2 1 (3.120)

If 1 4Γ∆t
ρ ∆x 2 0, we require

4Γ∆t
ρ ∆x 2 0 (3.121)

This is always guaranteed since all terms are positive. If, on the other hand, 1
4Γ∆t
ρ ∆x 2 0, we require

4Γ∆t
ρ ∆x 2 2 (3.122)

or

∆t
ρ ∆x 2

2Γ (3.123)

We recognize this criterion to be the same as Equation 3.56. Using an error expansion
of the type

ε x y t eσmteiλmxeiλny (3.124)
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we may derive an equivalent criterion for two-dimensional uniform meshes (∆x ∆y)
as

∆t
ρ ∆x 2

4Γ
(3.125)

A similar analysis may also be done to obtain the criterion for three-dimensional situ-
ations. It is also possible to show, using a similar analysis, that the fully-implicit and
Crank-Nicholson schemes are unconditionally stable.

Though the von Neumann stability analysis and our heuristic requirement of posi-
tive coefficients have yielded the same criterion in the case of the explicit scheme, we
should not conclude that the two will always yield identical results. The von Neumann
analysis yields a time-step limitation required to keep round-off errors bounded. It
is possible to get bounded but unphysical solutions. This happens in the case of the
Crank-Nicholson scheme, which the von Neumann stability analysis classifies as un-
conditionally stable. However, we know that for ρ∆x ∆t 0 5 ∑nb anb, it is possible to
get unphysical results. In this case, the von Neumann stability analysis tells us that the
oscillations in our solution will remain bounded, but it cannot guarantee that they will
be physically plausible.

Von Neumann stability analysis is a classic tool for analyzing the stability of linear
problems. However, we see right away that it would be substantially more complicated
to do the above analysis if Γ were a function of φ , or if we had non-linear source terms.
It becomes very difficult to use when we solve coupled non-linear equations such as the
Navier-Stokes equations. In practice, we use von Neumann stability analysis to give us
guidance on the baseline behavior of idealized systems, realizing that the coupled non-
linear equations we really want to solve will probably have much stringent restrictions.
For these, we must rely on intuition and experience for guidance.

3.10 Closure
In this chapter, we have completed the discretization of the diffusion equation on reg-
ular orthogonal meshes for Cartesian, polar and axisymmetric geometries. We have
seen that our discretization guarantees physically plausible solutions for both steady
and unsteady problems. We have also seen how to handle non-linearities. For uni-
form meshes, we have shown that our spatial discretization is formally second-order
accurate, and that if we use the fully-implicit scheme, our temporal discretization is
first-order accurate. We have also see how to conduct a stability analysis for the ex-
plicit scheme as applied to the diffusion equation. In the next chapter, we will address
the issue of mesh non-orthogonality and understand the resulting complications.
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Chapter 4

The Diffusion Equation: A
Closer Look

In the last chapter, we saw how to discretize the diffusion equation for regular (orthog-
onal) meshes composed of quadrilaterals. In this chapter, we address non-orthogonal
meshes, both structured and unstructured. We will see that non-orthogonality leads
to extra terms in our discrete equations which destroy some of the properties we had
particularly prized in our discretization scheme. We will also address the special issues
associated with the computation of gradients on unstructured meshes.

4.1 Diffusion on Orthogonal Meshes
Let us consider a mesh consisting of convex polyhedra, and particularly, equilateral
triangles, as shown in Figure 4.1. Regardless of the shape of the cells, any face f in the
mesh is shared by only two neighbor cells. We shall consider the mesh to be orthogonal
if the line joining the centroids of adjacent cells is orthogonal to the shared face f . This
is guaranteed for the equilateral triangular mesh in the figure. A detail of the cells C0
andC1 is shown in Figure 4.2.

Consider the steady diffusion equation:

∇ J S (4.1)

where
J Γ∇φ (4.2)

We focus on the cellC0. To discretize Equation 4.1, we integrate it over the control
volume C0 as before:

∆ 0

∇ Jd
∆ 0

Sd (4.3)

Applying the divergence theorem, we get

A
J dA

∆ 0

Sd (4.4)

67



C0
C1f

Figure 4.1: Orthogonal Mesh

e η e ξ
C0

C1

fA

face f 

x

y

∆ξ
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We now make a profile assumption. We assume that J can be approximated by its value
at the centroid of the face f . Also, let us assume that S SC SPφ0 as before. Thus

∑
f

J f A f SC SPφ0 ∆ 0 (4.5)

The summation in the first term is over all the faces of the control volume C0, and A f
is the area vector on the face f pointing outwards from cell C0. Further,

J f Γ f ∇φ f

Γ f
∂φ
∂x

i ∂φ
∂y

j
f

(4.6)

In order to evaluate ∂φ ∂x and ∂φ ∂y at the face f , we need cell centroid values
of φ which are suitably placed along the x and y axes. This is easy to arrange for a
rectangular mesh, as we saw in the previous chapter. We see from Figure 4.2 that such
values are not available for the mesh under consideration. We must take an alternative
approach.

Consider the coordinate directions ξ and η in Figure 4.2. The unit vector e ξ is
aligned with the line joining the centroids. The unit vector eη is tangential to the face
f . Because the mesh is orthogonal, the unit vectors are perpendicular to each other. We
may write the face flux vector J f in the coordinate system ξ η as

J f Γ f
∂φ
∂ξ

eξ
∂φ
∂η

eη (4.7)

The area vector A f may be written as

A f A f eξ (4.8)

Therefore
J f A f Γ f A f

∂φ
∂ξ f

(4.9)

We see that if the line joining the centroids is perpendicular to the face, the normal
diffusion transport Jf A f only depends on the gradient of φ in the coordinate direction
ξ and not on η . We realize that since cell centroid values of φ are available along the
eξ direction, it is easy for us to write ∂φ ∂ξ .

As before, let us make a linear profile assumption for the variation of φ ξ between
the centroids of cells C0 andC1. Thus

J f A f Γ f A f
φ1 φ0
∆ξ

(4.10)

where ∆ξ is the distance between the cell centroids, as shown in Figure 4.2, and φ 0
and φ1 are the discrete values of φ at the cell centroids. We see that if the mesh is
orthogonal, the diffusion transport normal to the face f can be written purely in terms
of values of φ at the centroids of the cells sharing the face.
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So far we have looked at the transport through a single face f . Substituting Equa-
tion 4.10 into Equation 4.5 and summing over all the faces of the cell C0 yields an
equation of the form

aPφP ∑
nb
anbφnb b (4.11)

where

anb
Γ f A f
∆ξ nb

nb 1 2 M

aP ∑
nb
anb SP∆ 0

b SC∆ 0 (4.12)

In the above equations, nb denotes the face neighbors of the cell under consideration,
P. That is, the “neighbor” cells are those which share faces with the cell under con-
sideration. The cell P shares vertices with other cells, but these do not appear in the
discretization. M is the number of face neighbors. If the cell is a triangle, there are
three face neighbors, and M 3 in the above equation. We note the following:

1. In the development above, we have not used the fact that cell under consideration
is a triangle. All we have required is that the cell be a polyhedron and that line
joining the cell centroids be orthogonal to the face.

2. It is necessary for the mesh to consist of convex polyhedra. If the cells are not
convex, the cell centroid may not fall inside the cell.

3. We need not make the assumption of two-dimensionality. The above develop-
ment holds for three dimensional situations.

4. We have not made any assumptions about mesh structure, though it is usually
difficult to generate orthogonal meshes without some type of structure.

5. The scheme is conservative because we use the conservation principle to derive
the discrete equations. The face flux J f leaves one cell and enters the adjacent
cell. Thus overall conservation is guaranteed. It is worth noting here that J f
should be thought of as belonging to the face f rather that to either cellC0 orC1.
Thus, whatever profile assumptions are used to evaluate J f are used consistently
for both cells C0 andC1.

6. As with our orthogonal rectangular mesh in the previous chapter, we get a well-
behaved set of discrete equations. In the absence of source terms, aP ∑nb anb.
We are thus guaranteed that φP is bounded by its face neighbors when S 0.

7. All the development from the previous chapter regarding unsteady flow, interpo-
lation of Γ f and linearization of source terms may be carried over unchanged.

8. It is possible to solve the discrete equation set using the Gauss-Seidel iterative
scheme, which does not place any restrictions on the number of neighbors.
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Figure 4.3: Non-Orthogonal Mesh

4.2 Non-Orthogonal Meshes
In practice, it is rarely possible to use orthogonal meshes in industrial geometries be-
cause of their complexity. Our interest therefore lies in developing methods which can
deal with non-orthogonal meshes, and preferably, with unstructured meshes. We will
start by looking at general non-orthogonal meshes and derive expressions for structured
meshes as a special case.

Consider the cellsC0 andC1 shown in Figure 4.3. We consider this mesh to be non-
orthogonal because the line joining the cell centroids C0 and C1 is not perpendicular
to the face f .

As before, we consider the steady diffusion equation

∇ J S (4.13)

and focus on the cell C0. We integrate the equation over the control volume C0 and
apply the divergence theorem as before. Assuming that J f , the flux at the face centroid,
prevails over the face f , we obtain:

∑
f

J f A f SC SPφ0 ∆ 0 (4.14)

Thus far, the procedure is the same as that for an orthogonal mesh. The area vector A f
is given by

A f Ax i Ay j (4.15)

As before, writing J f in terms of ∂φ ∂x and ∂φ ∂y is not useful since we do not have
cell centroid values of φ along these directions. Let us consider instead the coordinate
system ξ η on the face f . The unit vector eξ is parallel to the line joining the cen-
troids. The unit vector eη is tangential to the face. However, since the mesh is not
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orthogonal, eξ and eη are not orthogonal to each other. Writing J f in terms of the
ξ η coordinate system seems promising since we have cell centroid values aligned
along the ξ direction.

As usual, we may write J f A f as

J f A f Γ f
∂φ
∂x

Ax
∂φ
∂y

Ay
f

(4.16)

In order to express ∂φ ∂x and ∂φ ∂y in terms of ξ and η , we start be writing

φξ φxxξ φyyξ
φη φxxη φyyη (4.17)

where φξ denotes ∂φ ∂ξ , xξ denote ∂x ∂ξ and so on. Solving for φx and φy, we get

φx
φξ yη φηyξ

φy
φξ xη φηxξ (4.18)

where
xξ yη xηyξ (4.19)

Therefore

J f A f Γ f
Axyη Ayxη φξ f

Γ f
Axyξ Ayxξ φη f (4.20)

Furthermore, we may write

xξ
x1 x0
∆ξ

yξ
y1 y0
∆ξ

xη
xb xa
∆η

yη
yb ya
∆η

Ax yb ya
Ay xb xa (4.21)

The unit vectors eξ and eη may be written as

eξ
x1 x0 i y1 y0 j

∆ξ

eη
xb xa i yb ya j

∆η
(4.22)
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where ∆ξ is the distance between the centroids and ∆η is the distance between the
vertices a and b. We recognize that

∆η Af (4.23)

Now, let us examine the Jacobian . Using the equations 4.21, we may write

xξ yη xηyξ
x1 x0
∆ξ

yb ya
∆η

y1 y0
∆ξ

xb xa
∆η

A f eξ
∆η

(4.24)

The φξ term in Equation 4.20 may be written as

φξ
Axyη Ayxη φξ

Ax yb ya Ax xb xa ∆η

A f eξ ∆η

φξ
A f A f
A eξ

(4.25)

The φη term in Equation 4.20 may be written as

φη
Axyξ Ayxξ φη

y1 y0 yb ya x1 x0 xb xa ∆ξ
A f eξ ∆η

φη ∆η 2
eξ eη
A f eξ

φη
A f A f
A f eξ

eξ eη (4.26)

Collecting terms, we may write

J f A f Γ f
A f A f
A f eξ

φξ f
Γ f

A f A f
A f eξ

eξ eη φη f (4.27)

We now need profile assumptions for φ . For the moment, we shall consider only the
φξ term. Assuming that φ varies linearly between cell centroids, we may write

φξ f

φ1 φ0
∆ξ

(4.28)

Furthermore, we define

f Γ f
A f A f
A f eξ

eξ eη φη f (4.29)

Therefore
J f A f

Γ f
∆ξ

A f A f
A f eξ

φ1 φ0 f (4.30)
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4.2.1 Discussion
We have thus far derived an expression for the quantity J f A f for the face f . We see
that, unlike for orthogonal meshes, the flux cannot be written in terms of ∂φ ∂ξ alone
– an additional gradient, ∂φ ∂η is involved. We call the term involving ∂φ ∂ξ the
primary gradient or the primary diffusion term. The term f is called the secondary
gradient or the secondary diffusion term. For orthogonal meshes, e ξ eη is zero since
the line joining the centroids is perpendicular to the face. Therefore f is zero for
orthogonal meshes. Furthermore, from Equation 4.8, the term A f A f A f eξ re-
duces to A f for an orthogonal mesh. Thus, we are assured that our formulation defaults
to the right expression when the mesh is orthogonal.

The secondary gradient term is a little problematic to compute since we do not have
any cell centroid values of φ available in the η direction. We must devise a method by
which ∂φ ∂η can be computed on the face f . Precisely how this is done will depend
on whether our mesh is structured or unstructured.

4.2.2 Secondary Gradient Calculation
For structured meshes, the computation of the gradient ∂φ ∂η poses no particular
problem. In two dimensions, the problem may be boiled down to either finding the φ a
and φb by interpolation and thus finding ∂φ ∂η , or alternatively, finding ∂φ ∂η at
the cells C0 and C1 and interpolating these values to the face f .

For three-dimensional situations on structured meshes, again, there is no particular
difficulty. The structured mesh shown in the x-y plane in Figure 4.4(a) consists of mesh
lines of ξ c and η c which form the faces of the cell. In three dimensions, a cell
is bounded by faces of constant ξ , η and ζ . The gradient ∇φ may be decomposed in
these three non-orthogonal directions, resulting in secondary gradient terms involving
∂φ ∂η and ∂φ ∂ζ . These tangential gradients may be written in terms of values of
φ at the points a, b, c and d shown in Figure 4.4(b). These values in turn may be
interpolated from neighboring cell-centroid values.

For unstructured meshes, it is possible to write ∂φ ∂η in terms of φa and φb in
two dimensions since the coordinate direction η can be uniquely defined. In three
dimensions, however, it not possible to define the η direction uniquely. The face f is in
general an n-sided polyhedron, with no unique mesh directions, and the two tangential
directions η and ζ would have to be chosen arbitrarily. We should note however that
the ξ direction is uniquely defined as the centroid-to-centroid direction.

For unstructured meshes, we write

J f A f
Γ f
∆ξ

A f A f

A f eξ
φ1 φ0 Γ f ∇φ f A f

Γ f
∆ξ

A f A f

A f eξ
∇φ f eξ ∆ξ (4.31)

so that the secondary gradient term is given by

f Γ f ∇φ f A f
Γ f
∆ξ

A f A f
A f eξ

∇φ f eξ∆ξ (4.32)
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Figure 4.4: Definition of Face Tangential Directions in (a) Two Dimensions and (b)
Three Dimensions

Equation 4.32 writes the secondary gradient term as the difference of the total transport
through the face f and the transport in the direction e ξ . Both terms require the face
gradient ∇φ f ; its computation is addressed in a later section.

Thus the problem of computing the secondary gradient is reduced to the problem
of computing the face gradient of φ . It is possible to compute ∇φ f directly at the
face using the methods we will present in a later section. It is often more convenient
to store ∇φ at the cells C0 and C1. Assuming that the gradient of φ in each cell is a
constant, we may find an average as

∇φ f
∇φ0 ∇φ1

2
(4.33)

The unstructured mesh formulation can of course be applied to structured meshes.
However, it is usually simpler and less expensive to exploit mesh structure when it
exists.

4.2.3 Discrete Equation for Non-Orthogonal Meshes

The discretization procedure at the face f can be repeated for each of the faces of the
cellC0. The resulting discrete equation may be written in the form

aPφP ∑
nb
anbφnb b (4.34)
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where

anb
Γ f
∆ξ

A f A f
A f eξ nb

nb 1 2 M

aP ∑
nb
anb SP 0

b SC∆ 0 ∑
nb

f nb
(4.35)

As before, nb denotes the cell neighbors of the cell under consideration, P. The quan-
tities Γ f , eξ , ∆ξ , A f and f correspond to the face f shared by the cell P and the
neighbor cell nb.

We see that the primary terms result in a coefficient matrix which has the same
structure as for orthogonal meshes. The above discretization ensures that a P ∑nb anb
if S 0. However, we no longer have the guarantee that φP is bounded by its cell
neighbors. This is because the secondary gradient term, f , involves gradients of φ
which must be evaluated from the cell centroid values by interpolation. As we will see
later, this term can result in the possibility of spatial oscillations in the computed values
of φ .

Though the formulation has been done for steady diffusion, the methods for un-
steady diffusion outlined in the previous chapter are readily applicable here. Similarly
the methods for source term linearization and under-relaxation are also readily applica-
ble. The treatment of interfaces with step jumps in Γ requires a modest change, which
we leave as an exercise to the reader.

4.3 Boundary Conditions
Consider the cell C0 with the face b on the boundary, as shown in Figure 4.5. The cell
value φ0 is stored at the centroid of the cell C0. As with regular meshes, we store a
discrete value φb at the centroid of the boundary face b. The boundary area vector A b
points outwards from the cell C0 as shown. The cell balance for cell C0 is given as
before by

∑
f

J f A f Jb Ab SC SPφ0 ∆ 0 (4.36)

Here the summation over f in the first term on the left hand side is over all the interior
faces of cellC0, and the second term represents the transport of φ through the boundary
face. We have seen how the interior fluxes are discretized. Let us now consider the
boundary term Jb Ab.

The boundary transport term is written as

Jb Ab Γb ∇φ b Ab (4.37)

We define the direction ξ to be the direction connecting the cell centroid to the face
centroid, as shown in Figure 4.5, and the direction η to be tangential to the boundary
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Figure 4.5: Boundary Control Volume for Non-Orthogonal Mesh

face. Decomposing the flux Jb in the ξ and η directions as before, we obtain

Jb Ab Γb
Ab Ab
Ab eξ

φξ b
Γ f

Ab Ab
Ab eξ

eξ eη φη b (4.38)

As before, we define the secondary diffusion term

b Γ f
Ab Ab
Ab eξ

eξ eη φη b (4.39)

We note that if eξ and eη are perpendicular to each other, b is zero.
Thus, the total transport across the boundary face b is given by

Jb Ab Γb
Ab Ab
Ab eξ

φξ b b (4.40)

As before we make a linear profile assumption for the variation of φ between pointsC0
and b. This yields

Jb Ab
Γb
∆ξ b

Ab Ab
Ab eξ

φb φ0 b (4.41)

As with interior faces, we are faced with the question of how to compute φη at the
face b. For structured meshes, and two-dimensional unstructured meshes, we may use
interpolation to obtain the vertex values φc and φd in Figure 4.5. For three-dimensional
unstructured meshes, however, the boundary face tangential directions are not uniquely
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defined. Consequently, we write the boundary secondary gradient term as the differ-
ence of the total and primary terms:

b Γb ∇φ b Ab
Γb
∆ξ b

Ab Ab
Ab eξ

∇φ b eξ ∆ξ b (4.42)

Further assuming that
∇φ b ∇φ 0 (4.43)

we may write the secondary gradient term at the boundary as

b Γb ∇φ 0 Ab
Γb
∆ξ b

Ab Ab
Ab eξ

∇φ 0 eξ ∆ξ b (4.44)

We will see in a later section how the cell gradient ∇φ 0 is computed.
Having seen how to discretize the boundary flux, we now turn to the application of

boundary conditions.

Dirichlet Boundary Condition

At Dirichlet boundaries, we are given the value of φb

φb φb given (4.45)

Using φb given in Equation 4.41 and including Jb Ab in the boundary cell balance yields
a discrete equation of the following form:

aPφP ∑
nb
anbφnb b (4.46)

where

anb
Γ f
∆ξ

A f A f
A f eξ nb

nb 1 2 M

ab
Γb
∆ξ b

Ab Ab
Ab eξ

aP ∑
nb
anb ab SP 0

b SC∆ 0 ∑
nb

f nb
abφb given b (4.47)

Here, nb denotes the interior cell neighbors of the cell under consideration, P. The
quantities Γ f , eξ , ∆ξ , A f and f correspond to the face f shared by the cell P and the
neighbor cell nb. In the ab term, eξ corresponds to the direction shown in Figure 4.5.

As with interior cells, we see that the primary terms result in a coefficient matrix
which has the same structure as for orthogonal meshes. The above discretization en-
sures that aP ∑nb anb if S 0. However, we no longer have the guarantee that φP
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is bounded by its cell neighbors. This is because the secondary gradient terms, f
and b, involve gradients of φ which must be evaluated from the cell centroid values
by interpolation. As we will see later, this term can cause spatial oscillations in the
computed values of φ .

Equivalent discrete equations for Neumann and mixed boundary conditions may
be derived starting with Equation 4.41 and following the procedures in the previous
chapter. We leave this as an exercise for the reader.

4.4 Gradient Calculation
As we saw in the previous section, for non-orthogonal grids we need to determine gra-
dients of φ at the cell face centroids to compute the secondary diffusion term. Gradients
are also required in many other cases. For example, velocity derivatives are required
to compute the production term in turbulence models or to compute the strain rate for
non-Newtonian viscosity models. In this section, we will learn about techniques for
evaluating gradients for different types of mesh topologies.

4.4.1 Structured Meshes
For a one-dimensional problem, a linear profile assumption for the variation of φ be-
tween cell centers results in the following expression for the derivative at the cell face

dφ
dx f

φE φP
∆x

(4.48)

In the same manner we can write the derivative at a cell center using the values at the
two adjacent cells.

dφ
dx P

φE φW
2∆x

(4.49)

This expression is usually referred to as the “central difference” approximation for the
first derivative.

For Cartesian grids in multiple dimensions, we can compute the derivatives by ap-
plying the same principle along the respective coordinate directions. Consider, for ex-
ample the grid shown in Fig. 4.6. For simplicity, we restrict the following development
to equispaced grids. Using the central difference approximation introduced earlier we
can write

∂φ
∂x P

φE φW
2∆x

(4.50)

∂φ
∂y P

φN φS
2∆y

(4.51)

The procedure is similar in case of general non-orthogonal structured grids, where
we use central difference approximations to write the derivatives in the transformed
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coordinates. Figure 4.7 shows a non-orthogonal mesh in the x y plane and the corre-
sponding transformed mesh in the ξ η plane. We write

∂φ
∂ξ P

φE φW
2∆ξ

(4.52)

∂φ
∂η P

φN φS
2∆η

(4.53)

Knowing the cell gradients, we can compute the face value required in the secondary
diffusion term (Equation 4.29) by averaging. For example, for a uniform mesh

∂φ
∂η f

∂φ
∂η P

∂φ
∂η E

2
(4.54)

An alternative approach would be to write the face derivative in terms of the values
at the nodes a and b

∂φ
∂η f

φb φa
∆η

(4.55)

For Cartesian grids, it is easy to show that the two approximations are equivalent if the
nodal values are obtained by linear interpolation. For an equispaced Cartesian grid this
means that the nodal value φa is

φa
φP φE φSE φS

4
(4.56)

The second interpretation (Equation 4.55) is useful because it suggests one way of
obtaining derivatives at faces for general unstructured grid where we no longer have
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orthogonal directions to apply the finite-difference approximation. Thus, we can use
Equation 4.55 for the face f shown in Figure 4.3. The nodal values in this case are
obtained by some averaging procedure over the surrounding cells.

4.4.2 Unstructured Meshes
The method outlined above is applicable for arbitrary unstructured grids in two di-
mensions. However, as we commented earlier, extension to three dimensions is not
straightforward. This is because in 3D we no longer have unique directions in the
plane of the face to use a finite-difference approximation. Also, in many instances we
need to know all three components of the derivative at cell centers, not just deriva-
tives in the plane of the cell face. Therefore we need to seek other ways of calculating
derivatives that are applicable for arbitrary grids.

Gradient Theorem Approach

One approach is suggested by the gradient theorem which states that for any closed
volume ∆ 0 surrounded by surface A

∆ 0

∇φd
A
φdA (4.57)

where dA is the outward-pointing incremental area vector. To obtain a discrete version
of Equation 4.57, we make our usual round of profile assumptions. First, we assume
that the gradient in the cell is constant. This yields

∇φ
1
∆ 0

∑
f A

φdA f (4.58)
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Next, we approximate the integral over a cell face by the face centroid value times the
face area. Thus we can write

∇φ
1
∆ 0

∑
f
φ fA f (4.59)

We still need to define the face value, φ f before we can use this formula. The simple
approximation is to use the average of the two cells values sharing the face:

φ f
φ0 φ1

2
(4.60)

The advantage of this approach is that it is applicable for arbitrary cell shapes, including
non-conformal grids. All the operations involved in this procedure are face-based just
like the operations involved in the discretization of the transport equations and do not
require any additional grid connectivity. Also, this procedure is easily extended to
three-dimensional cases.

Once we have obtained the derivative by using Equations 4.59 and 4.60, we can
improve on our initial approximation of the face average by reconstructing from the
cell. Thus, from Figure 4.8 we can write

φ f
φ0 ∇φ0 ∆r0 φ1 ∇φ1 ∆r1

2
(4.61)

This suggests an iterative approach for computing successively better approximations
to the gradients. During each iteration, we can compute the face average value using
the gradients computed from the previous iteration and use these face values to com-
pute new values of the gradients. However, this increases the effective stencil with
increasing iterations and can lead to oscillatory results. In practice, therefore only one
or two iterations are typically used. In addition, as we will see in the next chapter,
the gradients used to reconstruct face values are also limited to the bounds dictated by
suitable neighbor values, so as to avoid undershoots and overshoots in the solution.

Note that in applying the gradient theorem we used the cell around the point C0 as
the integration volume. While this practice involves the smallest possible stencil, it is
not mandatory that we use the same control volume for computing the gradient that we
use for applying the discrete conservation laws. Other integration volumes are often
used, specially in node-based discretization algorithms.

The gradient resulting from the use of the cell as the integration volume involves
values of φ only at the face neighbors and is not always the most optimal solution.
In the next section we learn about the use of another approach that can use a bigger
stencil.

Least Squares Approach

The idea here is to compute the gradient at a cell such that it reconstructs the solution in
the neighborhood of the cell. For example, consider cell C0. We would like the value
of φ computed at the centroid of cell C1 in Figure 4.9 to be equal to φ 1. By assuming
a locally linear variation of φ , we write

φ0 ∇φ0 ∆r1 φ1 (4.62)
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Here ∆r1 s the vector from the centroid of cell 0 to the centroid of cell 1

∆r1 ∆x1i ∆y1j (4.63)

We rewrite Equation 4.62 as

∆x1
∂φ
∂x 0

∆y1
∂φ
∂y 0

φ1 φ0 (4.64)

We require that the same be true at all other cells surrounding cellC0. For a cellC j the
equation reads

∆x j
∂φ
∂x 0

∆y j
∂φ
∂y 0

φ j φ0 (4.65)

It is convenient to assemble all the equations in a matrix form as follows

Md φ (4.66)

Here M is the J 2 matrix

M

∆x1 ∆y1
∆x2 ∆y2

...
...

∆xJ ∆yJ

(4.67)
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and d is the vector of the components of gradients of φ at cellC0

d

∂φ
∂x 0

∂φ
∂y 0

(4.68)

and φ is the vector of differences of φ

φ

φ1 φ0
φ2 φ0

...
φJ φ0

(4.69)

Equation 4.66 represents J equations in two unknowns. Since in general J is larger
than 2 this is an over-determined system. Physically, this means that we cannot assume
a linear profile for φ around the cell C0 such that it exactly reconstructs the known
solution at all of its neighbors. We can only hope to find a solution that fits the data
in the best possible way, i.e., a solution for which the RMS value of the difference
between the neighboring cell values and the reconstructed values is minimized. From
Equation 4.65 we know that the difference in the reconstructed value and the cell value
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for cell C j is given by

Rj ∆x j
∂φ
∂x 0

∆y j
∂φ
∂y i

φ j φ0 (4.70)

The sum of the squares of error over all the neighboring cells is

R ∑
j
R2
j (4.71)

Let ∂φ
∂x 0

a and ∂φ
∂y 0

b. Equation 4.71 can then be written as

R ∑
j

a∆x j b∆y j φ j φ0
2

(4.72)

Our objective is to find a and b such that R is minimized. Recall that the standard way
of solving the problem is to differentiate R with respect to a and b and set the result to
zero, ie.,

∂R
∂a

0

∂R
∂b

0 (4.73)

This gives us two equations in the two unknowns, viz. the components of the gradient
at cell C0. It is easy to show that this equation set is the same as that obtained by
multiplying Equation 4.66 by the transpose of the matrix M

MTMd MT φ (4.74)

MTM is a 2 2 matrix that can be easily inverted analytically to yield the required
gradient ∇φ . We should note here that since M is purely a function of geometry, the
inversion only needs to be done once. In practical implementations, we would compute
a matrix of weights for each cell. The gradient for any scalar can then be computed
easily by multiplying the matrix with the difference vector φ .

Mathematically, for the solution to exist the matrix M must be non-singular, i.e., it
should have linearly independent columns and its rank must be greater than or equal
to 2. Physically this implies that we must involve at least 3 non-collinear points to
compute the gradient. Another way of understanding this requirement is to note that
assuming a linear variation means that φ is expressed as

φ A Bx Cy (4.75)

Since this involves three unknowns, we need at least three points at which φ is specified
in order to determine the gradient.

The least squares approach is easily extended to three dimensions. We note that
it places no restrictions on cell shape, and does not require a structured mesh. It also
does not require us to choose only face neighbors for the reconstruction. At corner
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boundaries, for example, it may not be possible to obtain a sufficient number of face
neighbor cells, and we may be forced to reconstruct at cells sharing vertices with cell
C0 in addition to the usual complement of face neighbors. In other cases, we may wish
to involve more cells near cellC0 to get a better estimate of the gradient. This requires
storing additional mesh connectivity information.

4.5 Influence of Secondary Gradients on Coefficients

We noted earlier that the presence of secondary gradient terms introduces the possibil-
ity that φP may not be bounded by its neighbors even when S 0. Here we examine
this assertion in somewhat greater detail.

For simplicity, let us consider the calculation of secondary gradient the term on the
structured mesh shown in Figure 4.7. To computed the secondary gradient term, we
must find the gradient ∂φ ∂η f . As we noted before, one way to find this is to write

∂φ
∂η f

φb φa
∆η

(4.76)

For a uniform non-orthogonal mesh with ∆ξ ∆η , we may write

φa
φP φE φSE φS

4

φb
φP φE φNE φN

4
(4.77)

so that
∂φ
∂η f

0 5 φN φNE 0 5 φS φSE
2∆η

(4.78)

We note that φN , φNE , φS and φSE do not all have the same sign in the above expression.
When ∂φ ∂η f is included in the cell balance as a part of the secondary gradient term
for the face, it effectively introduces additional neighbors – φNE and φSE . These are not
face neighbors; the corresponding cells share vertices with point P. These terms are
hidden in f . Notice that they do not all have positive coefficients. Consequently it is
possible for an increase in one of the neighbor φ ’s to result in a decrease in φ P. We are
no longer guaranteed that φP is bounded by its neighbors when S 0.

Even though we have adopted a particular gradient calculation method here, similar
terms result from other calculation methods as well. The magnitude of the secondary
gradient terms is proportional to eξ eη . For most good quality meshes, this term is
nearly zero, and the influence of neighbors with negative coefficients is relatively small.
Thus, for good quality meshes, our discussions in the previous chapter about coefficient
positivity and boundedness of φ hold in large measure. However, we no longer have the
absolute guarantee of boundedness and positivity that we had with orthogonal meshes.
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4.6 Implementation Issues
4.6.1 Data Structures
For both structured and unstructured meshes, the face flux J f is most conveniently
construed as belonging to the face f rather than to either of the cells sharing the face.
Such an interpretation is in keeping with the conservation idea, whereby the diffusive
flux of φ out of cell C0 enters cell C1 without modification. We can ensure this by
thinking of J f as belonging to the face, and using it for the cell balance in cells C0
and C1 in turn. This association of the flux with the face and not the cell makes a
face-based data structure a convenient one for implementing finite volume schemes.

In a typical implementation, we would carry a linked list or array of faces. Each
face would carry a pointer or index to each of the two cells that share it, i.e., cells
C0 and C1. The influence of cell C1 on the equation for cell C0 is given by a 01; the
influence of cell C0 on the equation for cell C1 is given by a 10. Thus, we compute the
coefficient

anb
Γ f
∆ξ

A f A f
A f eξ

(4.79)

for the face and make the assignment:

a01 anb
a10 anb

(4.80)

A visit to all the faces in the list completes the calculation of the neighbor coefficients
anb for all the cells in the domain.

If the cell gradient is available, the face value of the gradient may be found by
averaging, as in Equation 4.33. The secondary gradient terms may then be computed
during the visit to the face since they are also associated with the face. Each face
contributes a secondary gradient term to the b term for cells C0 andC1:

b0 b0 f
b1 b1 f

Notice that the secondary gradient term is added to one cell and subtracted from the
other. This is because the face flux leaves one cell and enters the other.

It is also useful to carry a linked list or array of cells. Once the coefficient calcu-
lation is complete, aP for all cells may be computed by visiting each cell, computing
SP∆ and summing anb. Similarly the SC contribution to b may also be computed.

Not all gradient calculation procedures are amenable to a purely face-based imple-
mentation. Calculations based on the gradient theorem are amenable to a face-based
calculation procedure. Here, the face value is computed using Equation 4.60 during the
visit to the face, as well as the contribution to the sum in Equation 4.59 for each of the
cells sharing the face. The reconstruction procedure described by Equation 4.61 may
also be implemented in a face-based manner. The least-squares approach for gradient
calculation may be implemented by a mixture of face and cell-based manipulations,
depending on the calculation stencil chosen.
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4.6.2 Overall Solution Loop
It is convenient to compute and store cell gradients prior to coefficient calculation.
Using the gradient theorem to compute cell gradients, for example, the overall solution
loop takes the following nominal form.

1. Guess φ at all cell centroids and at boundary face centroids as necessary.

2. For f 1 nfaces

Find φ f by averaging neighbor cell values φ0 and φ1.
Add gradient contribution to cells C0 andC1.

A visit to all faces completes the cell gradient calculation.

3. For f 1 nfaces

Find a01 and a10.
Find f ; find b0 and b1 by adding/subtracting secondary gradient contributions
to C0 andC1.

4. For c 1 ncells

Find aP ∑nb anb SP∆
Find b b SC∆

At this point the coefficient calculation is complete.

5. Solve for φ at cell centroids using a linear solver such as Gauss-Seidel iteration.

6. Check for convergence. If iterations are converged, stop. Else go to 2.
We refer to one pass through the above loop as an outer iteration. During an outer
iteration, we make one call to a linear solver, such as a Gauss-Seidel solver. The
Gauss-Seidel solver may perform a number of inner iterations to obtain the solution
to the nominally linear system. For linear problems on orthogonal meshes, only one
outer iteration (with sufficient inner iterations of the linear solver) would be required to
obtain the converged solution. For non-linear problems, many outer iterations would
be required. For non-orthogonal meshes, the above procedure employs a deferred com-
putation of secondary gradient terms. Consequently, many outer iterations are required
for convergence, even for linear problems.

A comment on the Scarborough criterion is appropriate here. Since the Scarbor-
ough criterion is satisfied by the primary diffusion terms when Dirichlet boundary con-
ditions are present, we are guaranteed convergence of the Gauss-Seidel solver during
any outer iteration. In our deferred calculation procedure, the secondary gradient terms
remain fixed during an outer iteration. Therefore, even though the negative coefficients
they introduce tend to violate the Scarborough criterion, they are not relevant since the
secondary gradient terms are held constant during the Gauss-Seidel iteration.
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4.7 Closure
In this chapter, we have seen how to discretize the diffusion equation on non-orthogonal
meshes, both structured and unstructured. The overall idea is the same as for regular
meshes, and involves a balance of diffusive fluxes on the faces of the cell with the
source inside the cell. However, we have seen that the face fluxes may no longer be
written purely in terms of the neighbor cell values if the mesh is non-orthogonal; an
extra secondary gradient term appears. To compute this term, we require face gradients
of φ , which may be averaged from cell gradients. We have seen how cell gradients
may be computed for structured and unstructured meshes. Finally, we have seen how
much of the calculation is amenable to a face-based data structure. In the next chapter,
we address the discretization of the convective term, and therefore, the solution of a
complete scalar transport equation.
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Chapter 5

Convection

In this chapter, we turn to the remaining term in the general transport equation for the
scalar φ , namely the convection term. We will see how to difference this term in the
framework of the finite volume method, and the special problems associated with it.
We will address both regular and non-orthogonal meshes. Once we have addressed this
term, we will have developed a tool for solving the complete scalar transport equation,
or the convection-diffusion equation, as it is sometimes called in the literature.

In the development that follows, we will assume that the fluid flow is known,i.e.,
the velocity vector V is known at all the requisite points in the domain. We seek to
determine how the scalar φ is transported in the presence of a given fluid flow field.
In reality, of course, the fluid flow would have to be computed. We will address the
calculation of the fluid flow in later chapters.

5.1 Two-Dimensional Convection and Diffusion in A Rect-
angular Domain

Let us consider a two-dimensional rectangular domain such as that shown in Figure 5.1.
The domain has been discretized using a regular Cartesian mesh. For the sake of clarity,
let us assume that ∆x and ∆y are constant, i.e., the mesh is uniform in each of the
directions x and y. As before, we store discrete values of φ at cell centroids.

The equation governing steady scalar transport in the domain is given by

∇ J S (5.1)

where J is given by
J ρVφ Γ∇φ (5.2)

Here, ρ is the density of the fluid and V is its velocity, and is given by

V ui vj (5.3)

As before, we integrate Equation 5.1 over the cell of interest, P, so that

∆
∇ Jd

∆
Sd (5.4)
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Figure 5.1: Convection on a Cartesian Mesh

Applying the divergence theorem, we write

A
J dA S∆ P (5.5)

As usual, we assume that J is constant over each of the faces e, w, n and s of the cell P,
and that the face centroid value is representative of the face average. Also, we assume
S SC SPφP as before. Thus

Je Ae Jw Aw Jn An Js As SC SPφP ∆ P (5.6)

with

Ae ∆y i
Aw ∆y i

An ∆x j
As ∆x j

(5.7)

Thus far the discretization process is identical to our procedure in previous chapters.
Let us now consider one of the transport terms, say, J e Ae. This is given by

Je Ae ρuφ e∆y Γe∆y
∂φ
∂x e

(5.8)

We see from Equation 5.8 that the convection component has the form

Feφe (5.9)
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where
Fe ρu e∆y (5.10)

is the mass flow rate through the face e. We note that the face value, φ e, is required to
determine the transport due to convection at the face. For the purposes of this chapter,
we shall assume that Fe is given.

We have seen that the diffusive term on the face e may be written as

De φE φP (5.11)

where
De Γe

∆y
δx e

(5.12)

Similar diffusion terms can be written for other faces as well. The quantity

Pe
F
D

ρuδx
Γ

(5.13)

is called the Peclet number, and measures the relative importance of convection and
diffusion in the transport of φ . If it is based on a cell length scale, δx, it is referred to
as the cell Peclet number.

We see that writing the face flux Je requires two types of information: the face
value φe, and the face gradient ∂φ ∂x e. We already know how to write the face
gradient. We turn now to different methods for writing the face value φ e in terms of
the cell centroid values. Once φe is determined, it is then simply a matter of doing the
same operation on all the faces, collecting terms, and writing the discrete equation for
the cell P.

5.1.1 Central Differencing
The problem of discretizing the convection term reduces to finding an interpolation for
φe from the cell centroid values of φ . One approximation we can use is the central-
difference approximation. Here, we assume that φ varies linearly between grid points.
For a uniform mesh, we may write

φe
φE φP

2
(5.14)

so that the convective transport through the face is

Fe
φE φP

2
(5.15)

Similar expressions may be written for the convective contributions on other faces. We
note with trepidation that φE and φP appear with the same sign in Equation 5.15.

Collecting the convection and diffusion terms on all faces, we may write the fol-
lowing discrete equation for the cell P:

aPφP ∑
nb
anbφnb b
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where

aE De
Fe
2

aW Dw
Fw
2

aN Dn
Fn
2

aS Ds
Fs
2

aP ∑
nb
anb SP∆ P Fe Fw Fn Fs

b SC∆ P (5.17)

In the above equations,

De Γe
∆y
δx e

Dw Γw
∆y
δx w

Dn Γn
∆x
δy n

Ds Γs
∆x
δy s

Fe ρu e∆y
Fw ρu w∆y
Fn ρv n∆x
Fs ρv s∆x

(5.18)

The term
Fe Fw Fn Fs (5.19)

represents the net mass outflow from the cell P. If the underlying flow field satisfies
the continuity equation, we would expect this term to be zero.

Let us consider the case when the velocity vector V ui vj is such that u 0
and v 0. For Fe 2De, we see that aE becomes negative. Similarly for Fn 2Dn,
aN becomes negative. (Similar behavior would occur with aW and aS if the velocity
vector reverses sign). These negative coefficients mean that though a P ∑nb anb for
S 0, we are not guaranteed that φP is bounded by its neighbors. Furthermore, since
the equation violates the Scarborough criterion, we are not guaranteed the convergence
of the Gauss-Seidel iterative scheme.

For u 0 and v 0, we see that as long as Fe 2De and Fn 2Dn, we are guar-
anteed positive coefficients, and physically plausible behavior. That is, the face Peclet
numbers Pee Fe De 2 and Pen Fn Dn 2 are required for uniform meshes. For
a given velocity field and physical properties we can meet this Peclet number criterion

94



by reducing the grid size sufficiently. For many practical situations, however, the re-
sulting mesh may be very fine, and the storage and computational requirements may
be too large to afford.

5.1.2 Upwind Differencing
When we examine the discretization procedure described above, we realize that the
reason we encounter negative coefficients is the arithmetic averaging in Equation 5.14.
We now consider an alternative differencing procedure call the upwind differencing
scheme. In this scheme, the face value of φ is set equal to the upwind cell centroid
value. Thus, for face e in Figure 5.1, we write

φe φP if Fe 0
φE if Fe 0 (5.20)

These expressions essentially say that the value of φ on the face is determined entirely
by the mesh direction from which the flow is coming to the face. Similar expressions
may be written on the other faces. Using Equation 5.20 in the cell balance for cell
P, and the diffusion term discretization in Equation 5.11, we may write the following
discrete equation for cell P:

aPφP ∑
nb
anbφnb b

where

aE De Max Fe 0
aW Dw Max Fw 0
aN Dn Max Fn 0
aS Ds Max Fs 0
aP ∑

nb
anb SP∆ P Fe Fw Fn Fs

b SC∆ P (5.22)

Here

Max a b a if a b
b otherwise (5.23)

We see that the upwind scheme yields positive coefficients, and aP ∑nb anb if the flow
field satisfies the continuity equation and S 0. Consequently, we are guaranteed that
φP is bounded by its neighbors.

We will see in later sections that though the upwind scheme produces a coefficient
matrix that guarantees physically plausible results and is ideally suited for iterative
linear solvers, it can smear discontinuous profiles of φ even in the absence of diffu-
sion. We will examine other higher order differencing schemes which do not have this
characteristic.
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Figure 5.2: Convection on a Non-Orthogonal Mesh

5.2 Convection-Diffusion on Non-Orthogonal Meshes
For non-orthogonal meshes, both structured and unstructured, counterparts of the cen-
tral difference and upwind schemes are easily derived. We start with the integration
of the convection-diffusion equation as usual, integrate it over the cell C0 shown in
Figure 5.2, and apply the divergence theorem to get

A
J dA SC SPφ0 ∆ 0 (5.24)

As before, we assume that the flux on the face may be written in terms of the face
centroid value, so that

∑
f

J f A f SC SPφ0 ∆ 0 (5.25)

where the summation is over the faces f of the cell.The flux is given by

J f ρVφ f Γ f ∇φ f (5.26)

The transport of φ at the face f may thus be written as

J f A f ρV f A fφ f Γ f ∇φ f A f (5.27)

We define the face mass flow rate as

Ff ρV f A f (5.28)

This is the mass flow rate out of the cell C0.
We have already seen in the previous chapter that the diffusion transport at the face

may be written as:
Γ f
∆ξ

A f A f
A f eξ

φ1 φ0 f (5.29)
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Defining

Df
Γ f
∆ξ

A f A f
A f eξ

(5.30)

we write the net transport across the face f as

J f A f Ffφ f D f φ1 φ0 f (5.31)

We note that, as with regular meshes, the convective transport of φ at the face requires
the evaluation of the face value φ f .

5.2.1 Central Difference Approximation
As with regular meshes, we may find φ f through either a central difference or an up-
wind approximation. The simplest central difference approximation is to write

φ f
φ0 φ1

2
(5.32)

With this approximation, the following discrete equation is obtained:

aPφP ∑
nb
anbφnb b

where

anb Df
Ff
2

aP ∑
nb
anb SP∆ 0 ∑

f
Ff

b SC∆ 0 ∑
nb

f nb
(5.34)

We see that, just as with structured meshes, it is possible to get negative coefficients
using central differencing. If Ff 0, we expect anb 0 if Ff Df 2, ie, if the Peclet
number Pe f 2. As before, the quantity ∑ f Ff is the sum of the outgoing mass fluxes
for the cell, and is expected to be zero if the underlying flow field satisfies mass balance.

5.2.2 Upwind Differencing Approximation
Under the upwind differencing approximation,

φ f φ0 if Ff 0
φ1 otherwise (5.35)

Using this approximation in the discrete cell balance we get

aPφP ∑
nb
anbφnb b
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where

anb Df Max Ff 0

aP ∑
nb
anb SP∆ 0 ∑

f
Ff

b SC∆ 0 ∑
nb

f nb
(5.37)

As with structured meshes, we see that the anb is always guaranteed positive.
Thus, we see that the discretization for unstructured meshes yields a coefficient

structure that is very similar to that for regular meshes. In both cases, the central differ-
ence scheme introduces the possibility of negative coefficients for cell Peclet numbers
greater than 2 for uniform meshes. The upwind scheme produces positive coefficients,
but, as we will see in the next section, this comes at the cost of accuracy.

5.3 Accuracy of Upwind and Central Difference Schemes
Let us consider the truncation error associated with the upwind and central difference
schemes. Let us assume a uniform mesh, as shown in Figure 5.3. Using a Taylor series
expansion about point e, we may write

φP φe
∆x
2

dφ
dx e

1
2

∆x
2

2 d2φ
dx2

e
O ∆x 3 (5.38)

φE φe
∆x
2

dφ
dx e

1
2

∆x
2

2 d2φ
dx2

e
O ∆x 3 (5.39)

From Equation 5.38, we see that

φe φP O ∆x (5.40)

Recall that we use Equation 5.40 when Fe 0. We see that upwind differencing is only
first order accurate.

Adding Equations 5.38 and 5.39, dividing by two, and rearranging terms, we get

φe
φP φE

2
∆x 2

8
d2φ
dx2

e
O ∆x 3 (5.41)

We see that the central difference approximation is second-order accurate.

5.3.1 An Illustrative Example
Consider convection of a scalar φ over the square domain shown in Figure 5.4. The
left and bottom boundaries are held at φ 0 and φ 1 respectively. The flow field in
the domain is given by

V 1 0i 1 0j (5.42)

98



w e
EPW

x∆

∆ ∆x x

WW

Figure 5.3: One-Dimensional Control Volume

so the velocity vector is aligned with the diagonal as shown. We wish to compute the
distribution of φ in the domain using the upwind and central difference schemes for.
The flow is governed by the domain Peclet number Pe ρ V L Γ. For Γ 0, i.e.,
Pe ∞, the solution is φ 1 below the diagonal and φ 0 above the diagonal. For
other values of Pe, we expect a diffusion layer in which 0 φ 1. The diffusion layer
is wider for smaller Pe. We compute the steady convection-diffusion problem in the
domain using 13 16 quadrilateral cells to discretize the domain. We consider the case
Pe ∞. Figure 5.5 shows the predicted φ values along the vertical centerline of the
domain (x=0.5). We see that the upwind scheme smears the phi profile so that there
is a diffusion layer even when there is no physical diffusion. The central difference
scheme, on the other hand, shows unphysical oscillations in the value of phi. In this
problem, it is not possible to control these oscillations by refining the mesh, since the
cell Peclet number is infinite no matter how fine the mesh.

5.3.2 False Diffusion and Dispersion

We can gain greater insight into the behavior of the upwind and central difference
schemes through the use of model equations. The main drawback of the first order
upwind scheme is that it is very diffusive. To understand the reasons behind this we
develop a model equation for the scheme. Consider case of steady two-dimensional
convection with no diffusion:

∂
∂x

ρuφ
∂
∂y

ρvφ 0 (5.43)

Consider the case of a constant velocity field, with u 0, v 0, and ρ constant. Using
upwind differencing, we obtain the following discrete form

ρu
φP φW
∆x

ρv
φP φS
∆y

0 (5.44)
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Consider the computational domain shown in Figure 5.1.Expanding φW and φS about
φP using a Taylor series, we get

φW φP ∆x
∂φ
∂x

∆x 2

2!
∂ 2φ
∂x2

∆x 3

3!
∂ 3φ
∂x3 (5.45)

φS φP ∆y
∂φ
∂y

∆y 2

2!
∂ 2φ
∂y2

∆y 3

3!
∂ 3φ
∂y3 (5.46)

All derivatives in the above equations are evaluated at P. Rearranging,

φP φW
∆x

∂φ
∂x

∆x
2!

∂ 2φ
∂x2

∆x 2

3!
∂ 3φ
∂x3 (5.47)

φP φS
∆y

∂φ
∂y

∆y
2!

∂ 2φ
∂y2

∆y 2

3!
∂ 3φ
∂y3 (5.48)

Using the above expressions in Eq 5.44 and rearranging we obtain

ρu
∂φ
∂x

ρv
∂φ
∂y

ρu∆x
2

∂ 2φ
∂x2

ρv∆x
2

∂ 2φ
∂y2 O ∆x 2 O ∆y 2 (5.49)

For simplicity let us consider the case when u v and ∆x ∆y. Equation 5.50 reduces
to

ρu
∂φ
∂x

ρv
∂φ
∂y

ρu∆x
2

∂ 2φ
∂x2

∂ 2φ
∂y2 O ∆x 2 (5.50)

The differential equation derived in this manner is referred to as the equivalent or mod-
ified equation. It represents the continuous equation that our finite-volume numerical
scheme is effectively modeling. The left hand side of Equation 5.50 is our original
differential equation and the right hand side represents the truncation error.The leading
term in Equation 5.50 is O ∆x , as expected for a first-order scheme. It is interesting
to compare Equation5.50 with the one dimensional form of the convection-diffusion
equation (Equation 5.1). We find that the leading order error term in Equation 5.50
looks similar to the diffusion term in the convection-diffusion equation. Thus we see
that although we are trying to solve a pure convection problem, applying the upwind
scheme means that effectively we are getting the solution to a problem with some dif-
fusion. This phenomenon is variously called artificial, false or numerical diffusion (or
viscosity, in the context of momentum equations). In case of the upwind scheme, the
artificial diffusion coefficient is proportional to the grid size so we would expect its
effects to decrease as we refine the grid, but it is always present.

The same analysis for the two-dimensional central difference scheme starts with
Equation 5.43 and the discrete equation

ρu
φE φW

2∆x ρv
φN φS

2∆y 0 (5.51)

Expanding φW and φE about φP using a Taylor series, we get

φW φP ∆x
∂φ
∂x

∆x 2

2!
∂ 2φ
∂x2

∆x 3

3!
∂ 3φ
∂x3 (5.52)
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φE φP ∆x
∂φ
∂x

∆x 2

2!
∂ 2φ
∂x2

∆x 3

3!
∂ 3φ
∂x3 (5.53)

Subtracting the two equations, we get

φE φW
2∆x

∂φ
∂x

∆x 2

3!
∂ 3φ
∂x3 (5.54)

A similar procedure in the y-direction yields

φN φS
2∆y

∂φ
∂y

∆y 2

3!
∂ 3φ
∂y3 (5.55)

As before, we consider the case when u v and ∆x ∆y. Substituting Equations 5.54
and 5.55 into Equation 5.51 we get

ρu
∂φ
∂x

ρv
∂φ
∂y

ρu∆x2

3!
∂ 3φ
∂x3

∂ 3φ
∂y3 O ∆x 3 (5.56)

We see that the leading truncation term is O ∆x2 , as expected in a second order
scheme. Though we set out to solve a pure convection equation, the effective equa-
tion we solve using the central difference scheme contains a third derivative term on
the right hand side. This term is responsible for dispersion, i.e., for the oscillatory be-
havior of φ . Thus, the upwind scheme leads to false or artificial diffusion which tends
to smear sharp gradients, whereas the central-difference scheme tends to be dispersive.

5.4 First-Order Schemes Using Exact Solutions
A number of first-order schemes for the convection-diffusion equation have been pub-
lished in the literature which treat the convection and diffusion terms together, rather
than discretizing them separately. These schemes use local profile assumptions which
are approximations to the exact solution to a local convection-diffusion equation. We
present these here for historical completeness. Their behavior in multi-dimensional
situations has the same characteristics as the upwind scheme.

5.4.1 Exponential Scheme
The one-dimensional convection diffusion equation with no source term may be written
as

∂
∂x

ρuφ
∂
∂x

Γ
∂φ
∂x

0 (5.57)

The boundary conditions are

φ φ0 atx 0
φ φL atx L (5.58)
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The exact solution to the problem is

φ φ0
φL φ0

exp Pe x L 1
exp Pe 1

(5.59)

where Pe is the Peclet number given by

Pe
ρuL
Γ

(5.60)

We wiish to use this exact solution in making profile assumptions. Consider the
one-dimensional mesh shown in Figure 5.3 and the convection-diffusion equation:

∂
∂x

ρuφ
∂
∂x

Γ
∂φ
∂x

S (5.61)

We wish to obtain a discrete equation for point P. Integrating Equation 5.61 over the
cell P yields

Je Ae Jw Aw SC SPφP ∆ P (5.62)

Assuming, for this 1-D case that

Ae i
Aw i (5.63)

we may write

Je Ae ρuφ e Γe
dφ
dx e

Jw Aw ρuφ w Γw
dφ
dx w

(5.64)

As before, we must make profile assumptions to write φe, φw and the gradients
dφ dx e and dφ dx w. We assume that φ x may be taken from Equation 5.59. We

will use this profile to evaluate both φ and dφ dx at the face. Thus

Je Ae Fe φP
φP φE

exp Pee 1
(5.65)

Here

Pee
ρu eδxe
Γe

Fe
De

(5.66)

A similar expression may be written for the w face. Collecting terms yields the follow-
ing discrete equation for φP:

aPφP aEφE aWφW b
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where

aE
Fe

exp Fe De 1

aW
Fwexp Fw Dw
exp Fw Dw 1

aP aE aW SP∆ P Fe Fw
b SC∆ P (5.68)

This scheme always yields positive coefficients and bounded solutions. For the case
of S 0, for one-dimensional situations, it will yield the exact solution regardless of
mesh size or Peclet number. Of course, this is not true when a source term exists or
when the situation is multi-dimensional. It is possible to show that for these general
situations the scheme is only first-order accurate.

Because exponentials are expensive to compute, researchers have created schemes
which approximate the behavior of the coefficients obtained using the exponential
scheme. These include the hybrid and power law schemes which are described be-
low.

5.4.2 Hybrid Scheme
The hybrid scheme seeks to approximate the behavior of the discrete coefficients from
the exponential scheme by reproducing their limiting behavior correctly. The coeffi-
cient aE in the exponential scheme may be written as

aE
De

Pe
exp Pee 1

(5.69)

A plot of aE De is shown in Figure 5.6. It shows the following limiting behavior:
aE
De

0 for Pee ∞

aE
De

Pee for Pee ∞

aE
De

1 Pee
2

at Pee 0 (5.70)

The hybrid scheme models aE De using the three bounding tangents shown in Fig-
ure 5.6. Thus

aE
De

0 for Pee 2

aE
De

1 Pee
2

for 2 Pee 2
aE
De

Pee for Pee 2 (5.71)

The overall discrete equation for the cell P is given by

aPφP aEφE aWφW b
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Figure 5.6: Variation of aE De (Adapted from Patankar(1980))

where

aE Max Fe De
Fe
2

0

aW Max Fw Dw
Fw
2

0

aP aE aW SP∆ P Fe Fw
b SC∆ P (5.73)

5.4.3 Power Law Scheme
Here, the objective is to curve-fit the aE De curve using a fifth-order polynomial, rather
than to use the bounding tangents as the hybrid scheme does. The power-law expres-
sions for aE De may be written as:

aE
De

Max 0 1 0 1 Fe
De

5
Max 0 Fe (5.74)

This expression has the advantage that it is less expensive to compute that the expo-
nential scheme, while reproducing its behavior closely.

5.5 Unsteady Convection
Let us now focus our attention on unsteady convection. For simplicity we will set ρ to
be unity and Γ 0. The convection-diffusion equation (Equation 5.1) then takes the
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Figure 5.7: Exact solutions for linear convection of (a) sine wave (b) square wave

form
∂φ
∂ t

∂uφ
∂x

0 (5.75)

Equation 5.75 is also known as the linear advection or linear wave equation. It is
termed linear because the convection speed u is not a function of the convected quantity
φ . We saw in a previous chapter that mathematically this is classified as a hyperbolic
equation. To complete the specification of the problem we need to define the initial and
boundary conditions. Let us consider a domain of length L and let the initial solution
be given by a spatial function φ0, i.e.,

φ x 0 φ0 x (5.76)

The exact solution to this problem is given by

φ x t φ0 x ut (5.77)

In other words, the exact solution is simply the initial profile translated by a distance
ut.

Consider the convection of two initial profiles by a convection velocity u 1 in a
domain of length L, as shown in Figure 5.7. One is a single sine wave and the other
is a square wave, The boundary conditions for both problems are φ 0 t φ L t 0.
Figure 5.7 shows the initial solution as well as the solution at t 0 25. We see that
the profiles have merely shifted to the right by 0 25u. We will use these examples
to determine whether our discretization schemes are able to predict this translation
accurately, without distorting or smearing the profile.

Even though Equation 5.75 appears to be quite simple, it is important because it
provides a great deal of insight into the treatment of the more complex, non-linear,
coupled equations that govern high speed flows. For these reasons, historically it has
been one of the most widely studied equations in CFD. Many different approaches
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have been developed for its numerical solution but in this book we will concentrate
mostly on modern techniques that form the basis of solution algorithms for the Euler
and Navier-Stokes equations.

5.5.1 1D Finite Volume Discretization
For simplicity let us examine the discretization of Equation 5.75. We assume a uniform
mesh with a cell width ∆x as shown in Figure 5.3. Integrating Equation 5.75 over the
cell P yields

∂φ
∂ t P

∆x ueφe uwφw 0 (5.78)

Since u is constant, we may rearrange the equation to write

∂φ
∂ t P

u
∆x

φe φw 0 (5.79)

Since for the linear problem the velocity u is known everywhere, the problem of deter-
mination of the face flux simply reduces to the determination of the face values φ .

In general, we are interested in two kinds of problems. In some instances we might
be interested in the transient evolution of the solution. Since the equation is hyperbolic
in the time coordinate and the solution only depends on the past and not the future, it
would seem logical to devise methods that yield the solution at successive instants in
time, starting with the initial solution, using time marching. Often, however, only the
steady-state solution (i.e., the solution as ∂φ

∂ t 0) is of interest. In the previous chap-
ter we saw that we could obtain the steady-state solution by solving a sparse system
of nominally linear algebraic equations, iterating for non-linearities. An alternative to
iterations is to use time-marching, and to obtain the steady state solution as the culmi-
nation of an unsteady process. With the general framework in hand, let’s look at some
specific schemes.

5.5.2 Central Difference Scheme
Using the explicit scheme we developed in a previous chapter, we may write

φP φ0
P

∆t
u
φ0
E φ0

W
2∆x

0 (5.80)

where, as per our convention, the un-superscripted values denote the values at the cur-
rent time, and the terms carrying the superscript “0” denote the value at the previous
time level. As we noted earlier, in the explicit scheme, φP for every cell is only a
function of the (known) solution at the previous time level.

We have shown from a truncation error analysis that the central difference scheme
is second-order accurate in space; explicit time discretization is first order accurate in
time. Thus the scheme described above is second-order accurate in space and first-
order accurate in time. Applying the von-Neumann stability analysis to this scheme,
however, shows that it is unconditionally unstable. As such it is not usable but there
are several important lessons one can learn from this.
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The first point to note is that the instability is not caused by either the spatial or
the temporal discretization alone but by the combination of the two. Indeed, we get
very different behavior if we simply using an implicit temporal discretization while
retaining the central difference scheme for the spatial term:

φP φ0
P

∆t
u
φE φW

2∆x
0 (5.81)

It is easy to show that the resulting implicit scheme is unconditionally stable. However,
it is important to realize that stability does not guarantee physical plausibility in the
solution. We may rewrite the scheme in the following form:

φP u∆t
φE φW

2∆x
φ0
P (5.82)

We see that aW is negative for u 0 and aE is negative for u 0. The solution is
therefore not guaranteed to be bounded by the spatial and temporal neighbor values.
Since the scheme is implicit, it requires the solution of a linear equation set at each
time step. However, the Scarborough criterion is not satisfied, making it difficult to use
iterative solvers.

5.5.3 First Order Upwind Scheme
Using the upwind difference scheme for spatial discretization and an explicit time dis-
cretization, we obtain the following scheme

φP φ0
P

∆t
u
φ0
P φ0

W
∆x

0 (5.83)

We have shown that the upwind differencing scheme is only first-order accurate and
that the explicit scheme is also only first-order accurate. Stability analysis reveals that
the scheme is stable as long as

0 u
∆t
∆x

1 (5.84)

The quantity ν u ∆t∆x is known as theCourant orCFL number (after Courant, Friedrichs
and Lewy [1, 2]) who first analyzed the convergence characteristics of such schemes.
Explicit schemes usually have a stability limit which dictates the maximum Courant
number that can be used. This limits the time step and makes the use of time marching
with explicit schemes undesirable for steady state problems.

It is interesting to note that our heuristic requirement of all spatial and temporal
neighbor coefficients being positive is also met when the above condition is satisfied.
This is easily seen by writing Equation 5.83 in the form

φP 1 ν φ0
P νφW (5.85)

We therefore the expect the scheme to also be monotone when it is stable.
To see how well the upwind scheme performs for unsteady problems let us apply it

to the problem of convection of single sine and square waves we described above. To
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Figure 5.8: First order upwind solutions for linear convection of (a) sine wave (b)
square wave

compute this numerical solution we use an equispaced solution mesh of 50 cells. Using
ν 0 5, we apply the explicit scheme for 25 time steps. We compare the resulting
solutions at t 0 25 with the exact solutions in Figure 5.8. The exact solution, as
expected, is the initial profile translated to the right by a distance of 0.25. Our numerical
solution is similarly shifted but we note that the sharp discontinuities in either the slope
of the variable itself have been smoothened out considerably. In case of the sine wave,
the peak amplitude has decreased but nowhere has the solution exceeded the initial
bounds. We also observe that the profiles in both examples are monotonic.

5.5.4 Error Analysis
We can develop a model equation for the transient form of the upwind scheme (Equa-
tion 5.83) using techniques similar those we used for steady state to obtain

∂φ
∂ t

u
∂φ
∂x

u∆x
2

1 ν
∂ 2φ
∂x2 (5.86)

We see that, just like steady state, the transient form of the upwind scheme also suffers
from numerical dissipation, which is now a function of the Courant number.

We know that physically the effect of diffusion (or viscosity) is to smoothen out
the gradients. The numerical diffusion present in the upwind scheme acts in a similar
manner and this is why we find the profiles in Figure 5.8 are smoothened. Although
this results in a loss of accuracy, this same artificial dissipation is also responsible for
the stability of our scheme. This is because the artificial viscosity also damps out any
errors that might arise during the course of time marching (or iterations) and prevents
these errors from growing. Note also that for ν 1 the numerical viscosity of the
upwind scheme would be negative. We can now appreciate the physical reason behind
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the CFL condition; when it is violated the numerical viscosity will be negative and thus
cause any errors to grow.

Let us now analyze the explicit central difference scheme (Equation 5.80) we saw
earlier. The corresponding modified equation is

∂φ
∂ t

u
∂φ
∂x

u2∆t
2

∂ 2φ
∂x2 (5.87)

This scheme has a negative artificial viscosity in all cases and therefore it is not very
surprising that it is unconditionally unstable. It can also be shown that the implicit
version (Equation 5.81 has the following modified equation

∂φ
∂ t

u
∂φ
∂x

u2∆t
2

∂ 2φ
∂x2 (5.88)

Thus this scheme is stable but also suffers from artificial diffusion.

5.5.5 Lax-Wendroff Scheme
A large number of schemes have been developed to overcome the shortcomings of the
explicit central difference scheme that we discussed in the previous section. Of these,
the most important is the Lax-Wendroff scheme since it forms the basis of several well-
known schemes used for solution of Euler and compressible Navier-Stokes equations.

The principle idea is to remove the negative artificial diffusion of the explicit central
difference scheme by adding an equal amount of positive diffusion. That is, we seek to
solve

∂φ
∂ t

u
∂φ
∂x

u2∆t
2

∂ 2φ
∂x2 (5.89)

rather than the original convection equation. Discretizing the second derivative using
linear profiles assumptions, as in previous chapters, we obtain the following explicit
equation for cell P

φP φ0
P

∆t
u
φ0
E φ0

W
2∆x

u2∆t
2

φ0
E 2φ 0

P φ0
W

∆x 2 0 (5.90)

It is possible to show that this scheme is second order accurate in both space and
time. Stability analysis shows that it is stable for ν 1. Applying it to the sine wave
convection problem, we see that it resolves the smoothly varying regions of the profile
much better than the upwind scheme (see Figure 5.9(a)). However, in regions of slope
discontinuity we see spurious “wiggles”. Such non-monotonic behavior is even more
pronounced in the presence of discontinuities, as shown in Figure 5.9(b). We also note
that the solution in this case exceeds the initial bounds. At some locations it is higher
than one while in other places it is negative. If φ is a physical variable such as species
concentration or the turbulence kinetic energy that is always supposed to be positive,
such behavior could cause a lot of difficulties in our numerical procedure.

The reasons for this behavior can once again be understood by examining the trun-
cation error. The modified equation for the Lax-Wendroff scheme is

∂φ
∂ t

u
∂φ
∂ t

u
∆x 2

6
1 ν2 ∂ 3φ

∂x3 O ∆x 3 (5.91)
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Figure 5.9: Lax-Wendroff solutions for linear convection of (a) sine wave (b) square
wave

The leading order term is proportional to the third derivative of φ and there is no dif-
fusion like term. This is characteristic of second-order schemes and is the reason why
wiggles in the solution do not get damped. The errors produced by second-order terms
are dispersive in nature whereas those produced by first-order schemes are dissipa-
tive. In wave-mechanics terms, dispersion refers to the phenomenon that alters the
frequency content of a signal and dissipation refers to the reduction in amplitude. For
smooth profiles that contain few frequencies, second-order schemes work very well;
the lack of numerical diffusion preserves the amplitude. However, in case of disconti-
nuities (which are composed of many frequencies), the effect of numerical dispersion is
to cause phase errors between the different frequencies. The first order upwind scheme,
on the other hand, does not alter the phase differences but damps all modes.

All the numerical schemes we saw in previous sections were derived by separate
profile assumptions for the spatial and temporal variations. The Lax-Wendroff scheme
is different in that the spatial profile assumption is tied to the temporal discretization.
This becomes more clear if we re-arrange Equation 5.90 in the following form

φP φ0
P

∆t
u
∆x

φ0
E φ0

P
2

u∆t
2∆x φ0

E φ0
P

φ0
P φ0

W
2

u∆t
2∆x φ0

P φ0
W 0

We recognize the terms in square brackets as the face flux definitions for the e and w
faces respectively. If we are using this scheme for computing a steady state solution,
the equation that is satisfied at convergence is given by

φE φP
2

u∆t
2∆x

φE φP
φP φW

2
u∆t
2∆x

φP φW 0 (5.92)

The consequence of this is that the final answer we obtain depends on the time-step
size ∆t ! Although the solution still has a spatial truncation error of O ∆x 2 , this
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dependence on the time step is clearly not physical. In this particular case, the resulting
error in the final solution maybe small since stability requirements restrict the time
step size. We will see in later chapters that similar path dependence of the converged
solution can occur even in iterative schemes if we are not careful.

5.6 Higher-Order Schemes
We have seen thus far that both the upwind and central difference schemes have se-
vere limitations, the former due to artificial diffusion, and the latter due to dispersion.
Therefore there has been a great deal of research to improve the accuracy of the up-
wind scheme, by using higher-order interpolation. These higher-order schemes aim to
obtain at least a second-order truncation error, while controlling the severity of spatial
oscillations.

Thus far, we have assume that, for the purposes of writing the face value φ e, the
profile of φ is essentially constant. That is, for Fe 0,

φe φP (5.93)

Instead of assume a constant profile assumption for φ , we may use higher-order profile
assumptions, such as linear or quadratic, to derive a set of upwind weighted higher-
order schemes. If Fe 0, we write a Taylor series expansion for φ in the neighborhood
of the upwind point P:

φ x φP x xP
∂φ
∂x

x xP 2

2!
∂ 2φ
∂x2 O ∆x 3 (5.94)

5.6.1 Second-Order Upwind Schemes
We may derive a second-order upwind scheme by making a linear profile assumption.
This is equivalent to retaining the first two terms of the expansion. Evaluating Equa-
tion 5.94 at xe xP ∆x 2, we obtain

φe φP
∆x
2
∂φ
∂x

(5.95)

This assumption has a truncation error of O ∆x 2. In order to write φe in terms of
cell centroid values, we must write ∂φ

∂x in terms of cell centroid values. On our one-
dimensional grid we can represent the derivative at P using either a forward, backward
or central difference formula to give us three different second-order schemes. If we
write ∂φ

∂x using
∂φ
∂x

φE φW
2∆x

(5.96)

we obtain

φe φP
φE φW

4
(5.97)
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or, adding and subtracting φP 4, we get

φe φP
φP φW

4
φE φP

4
(5.98)

This scheme is referred to as the Fromm scheme in the literature.
If we write ∂φ

∂x using
∂φ
∂x

φP φW
∆x

(5.99)

we obtain

φe φP
φP φW

2
(5.100)

This scheme is referred to in the literature as the Beam-Warming scheme.

5.6.2 Third-Order Upwind Schemes
We may derive third-order accurate schemes by retaining the second derivative in the
Taylor series expansion:

φ x φP x xP
∂φ
∂x

x xP 2

2!
∂ 2φ
∂x2 (5.101)

and using cell-centroid values to write the derivatives ∂φ
∂x and ∂ 2φ

∂x2 . Using

∂φ
∂x

φE φW
2∆x

O ∆x2 (5.102)

and
∂ 2φ
∂x2

φE φW 2φP
∆x 2 O ∆x2 (5.103)

we may write

φe φP
φE φW

4
φE φW 2φP

8
(5.104)

Re-arranging, we may write

φe
φE φP

2
φE φW 2φP

8
(5.105)

This scheme is called the QUICK scheme (Quadratic Upwind Interpolation for Con-
vective Kinetics) [3]. This scheme may be viewed as a parabolic correction to linear
interpolation for φe. We can emphasize this by introducing a curvature factor C such
that

φe
1
2
φE φP C φE φW 2φP (5.106)

and C=1/8.
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The second- and third-order schemes we have seen here may be combined into a
single expression for φe using

φe φP
1 κ

4
φP φW

1 κ
4

φE φP (5.107)

Here, κ 1 yields the Beam-Warming scheme, κ 0 the Fromm scheme and κ
1 2 the QUICK scheme. For κ 1 we get the familiar central difference scheme.

We see from the signs of the terms in Equation 5.107 that it is possible to produce
negative coefficients in our discrete equation using these higher-order schemes. How-
ever, the extent of the resulting spatial oscillations is substantially smaller than those
obtained through the central difference scheme, while retaining at least second-order
accuracy.

5.6.3 Implementation Issues
If iterative solvers are used to solve the resulting set of discrete equations, it is important
to ensure that the Scarborough criterion is satisfied by the nominally linear equations
presented to the iterative solver. Consequently, typical implementations of higher-order
schemes use deferred correction strategies whereby the higher order terms are included
as corrections to an upwind flux. For the QUICK scheme, for example, the convective
transport Feφe for Fe 0 is written as

Feφe FeφP Fe
φE φP

2
φE φW 2φP

8
φP (5.108)

Here, the first term on the right hand side represents the upwind flux. The second term
is a correction term, and represents the difference between the QUICK and upwind
fluxes. The upwind term is included in the calculation of the coefficients a p and anb
while the correction term is included in the b term. It is evaluated using the prevailing
value of φ . At convergence, φP φP , and the resulting solution satisfies the QUICK
scheme. Since the upwind scheme gives us coefficients that satisfy the Scarborough
criterion, we are assured that the iterative solver will converge every outer iteration.
Just as with non-linear problems, we have no guarantee that the outer iterations will
themselves converge. It is sometimes necessary to use good initial guesses and under-
relaxation strategies to obtain convergence.

5.7 Higher-Order Schemes for Unstructured Meshes
All the higher-order schemes we have seen so far assume line structure. In order to
write φe, we must typically know the values φW , φP and φE ; a similar stencil is required
for φw, and involves the values φWW , φW , and φP in Figure 5.3. Thus, we can no longer
write the face value purely in terms of cell centroid values on either side of the face.
This presents a big problem for unstructured meshes since no such line structure exists.
Higher-order schemes for unstructured meshes are an area of active research and new
ideas continue to emerge . We present here a second-order accurate upwind scheme
suitable for unstructured meshes.
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Figure 5.10: Schematic for Second-Order Scheme

Our starting point is the multi-dimensional equivalent of Equation 5.95. If F f 0,
referring to Figure 5.10, we may write φ using a Taylor series expansion about the
upwind cell centroid:

φ x y φ0 ∇φ 0 ∆r O ∆r 2 (5.109)

Here, ∆r is given by
∆r x x0 i y y0 j (5.110)

To find the face value φ f , we evaluate Equation 5.109 at ∆r ∆r0, as shown in Fig-
ure 5.10

φ f φ0 ∇φ 0 ∆r0 O ∆r0
2 (5.111)

As with structured meshes, the problem now turns to the evaluation of ∇φ 0. We
have already seen in the previous chapter several methods for the calculation of the cell
centered gradient. Any of these methods may be used to provide ∇φ 0.

5.8 Discussion
We have touched upon a number of different first and second-order schemes for dis-
cretizing the convection term. We have seen that all the schemes we have discussed
here have drawbacks. The first-order schemes are diffusive, whereas the central dif-
ference and higher-order differencing schemes exhibit non-monotonicity to varying
degrees. All the schemes we have seen employ linear coefficients, i.e., the discrete
coefficients are independent of φ . Thus, for linear problems, we do not, in principle,
require outer iterations unless a deferred correction strategy is adopted.

A number of researchers have sought to control the spatial oscillations inherent in
higher-order schemes by limiting cell gradients so as to ensure monotonicity. These
schemes typically employ non-linear coefficients which are adjusted to ensure adjacent
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cell values are smoothly varying [4]. Though we do not address this class of discretiza-
tion scheme here, they nevertheless represent an important arena of research.

5.9 Boundary Conditions
When dealing with the diffusion equation, we classified boundaries according to what
information was specified. At Dirichlet boundaries, the value of φ itself was speci-
fied whereas at Neumann boundaries, the gradient of φ was specified. For convection
problems we must further distinguish between flow boundaries where flow enters or
leaves the computational domain, and geometric boundaries. Flow boundaries occur in
a problem because we cannot include the entire universe in our computational domain
and are forced to consider only a subset. We must then supply the appropriate infor-
mation that represents the part of the universe that we are not considering but that is
essential to solve the problem we are considering. For example, while analyzing the
exhaust manifold of an automobile we might not include the combustion chamber and
external airflow but then we must specify information about the temperature, velocity
etc. of the flow as it leaves the combustion chamber and enters our computational do-
main. The geometric boundaries in such a problem would be the external walls of the
manifold as well the surfaces of any components inside the manifold.

Flow boundaries may further be classified as inflow and outflow boundaries. We
consider each in turn.

5.9.1 Inflow Boundaries
At inflow boundaries, we are given the inlet velocity distribution, as well the value of
φ

V Vb; Vb Ab 0
φ φgiven (5.112)

Consider the boundary cell shown in Fig 5.11. The dashed line shows the inflow bound-
ary. The discrete equation for the cell is given by

Jb Ab ∑
f

J f A f SC SPφ0 ∆ 0 (5.113)

The summation in the second term is over the interior faces of the cell. We have already
seen how to deal with the interior fluxes J f . The boundary flux may Jb is given by

Jb Ab ρVb Abφb Γb ∇φ b Ab (5.114)

Using φb φgiven, and writing the diffusion flux as in the previous chapter,

Jb Ab ρVb Abφgiven
Γb
∆ξ

Ab Ab
Ab eξ

φ0 φgiven b (5.115)

This boundary flux may be incorporated into the cell balance for the cellC0.
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Figure 5.11: Cell Near Inflow Boundary

5.9.2 Outflow Boundaries
At outflow boundaries, we assume

Γb ∇φ b Ab 0 (5.116)

That is, the diffusive component of the flux normal to the boundary is zero. Thus, the
net boundary flux at the outflow boundary is

Jb Ab ρVb Abφb; Vb Ab 0 (5.117)

The cell balance for cell near an outflow boundary, such as that shown in Figure 5.12
is given by Equation 5.113. Using a first-order upwind scheme, we may write φ b φ0,
so that

Jb Ab ρVb Abφ0 (5.118)
Thus, at outflow boundaries, we do not require the value of φ to be specified – it is
determined by the physical processes in the domain, and convected to the boundary by
the exiting flow. This result makes physical sense. For example, if we were solving for
temperature in an exhaust manifold where the fluid was cooled because of conduction
through the walls, we would certainly need to know the temperature of the fluid where
it entered the domain but the temperature at the outlet would be determined as part of
the solution and thus cannot be specified a priori.

There are two key implicit assumptions in writing Equation 5.118. The first is that
convective flux is more important than diffusive flux. Indeed, we have assumed that the
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Figure 5.12: Cell Near Outflow Boundary

local grid Peclet number at the outflow face is infinitely large. For the exhaust manifold
example, this means that the flow rate is high enough so that conditions downstream
of our boundary do not affect the solution inside the domain. If the flow rate was
not sufficiently high compared to the diffusion, then we would expect that a lower
temperature downstream of the our domain would cause a lower temperature inside the
domain as well. The second assumption is that the flow is directed out of the domain
at all points on the boundary. Consider the flow past a backward-facing step, as shown
in Figure 5.13. If we choose location A as the the outflow boundary, we cut across the
recirculation bubble. In this situation, we would have to specify the φ values associated
with the incoming portions of the flow for the problem to be well-posed. These are not
usually available to us. Location B, located well past the recirculation zone, is a much
better choice for an outflow boundary. It is very important to place flow boundaries
at the appropriate location. Inflow boundaries should be placed at locations where we
have sufficient data, either from another numerical simulation or from experimental
observations. Outlet boundaries should be placed such that the conditions downstream
have no influence on the solution.

5.9.3 Geometric Boundaries

At geometric boundaries, such as the external walls of an exhaust manifold, the normal
component of the velocity is zero:

Vb Ab 0 (5.119)
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Consequently the boundary flux Jb is purely diffusive and given by

Jb Γb ∇φ b (5.120)

At geometric boundaries, we are typically given either Dirichlet, Neumann or mixed
boundary conditions. We have already shown how these may be discretized in a previ-
ous chapter.

5.10 Closure
In this chapter, we have addressed the discretization of the convection-diffusion equa-
tion. We have seen that the convection term requires the evaluation of φ at the faces of
the cell for both structured and unstructured meshes. If the face value is interpolated
using a central difference scheme, we have seen that our solution may have spatial os-
cillations for high Peclet numbers. The upwind scheme on the other hand, smears dis-
continuities, though the solution is bounded. We have also examined a class of upwind-
weighted second-order and third–order schemes. All these higher-order schemes yield
solutions which can have spatial oscillations. In developing these schemes for convec-
tion, we have assumed that the flow field is known. In the next chapter we shall turn to
the task of computing the flow and pressure fields.
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Chapter 6

Fluid Flow: A First Look

We have thus far considered convection and diffusion of a scalar in the presence of a
known flow field. In this chapter, we shall examine the particular issues associated with
the computation of the flow field. The momentum equations have the same form as the
general scalar equation, and as such we know how to discretize them. The primary
obstacle is the fact that the pressure field is unknown. The extra equation available
for its determination is the continuity equation. The calculation of the flow field is
complicated by the coupling between these two equations. We shall examine how to
deal with this coupling, especially for incompressible flows. We shall also see how to
develop formulations suitable for unstructured meshes.

6.1 Discretization of the Momentum Equation
Consider the two-dimensional rectangular domain shown in Figure 6.1. Let us assume
for the moment that the velocity vector V and the pressure p are stored at the cell
centroids. Let us, for simplicity, assume a Newtonian fluid though the issues raised
here apply to other rheologies as well. Let us also assume steady state. The momentum
equations in the x and y directions may be written as:

∇ ρVu ∇ µ∇u ∇p i Su (6.1)
∇ ρVv ∇ µ∇v ∇p j Sv (6.2)

In the above equations, the stress tensor term has been split so that a portion of the
normal stress appears in the diffusion term, and the rest is contained in S u and Sv. The
reader may wish to confirm that

Su fu
∂
∂x

µ
∂u
∂x

∂
∂y

µ
∂v
∂x

2
3
∂
∂x

µ∇ V (6.3)

and
Sv fv

∂
∂y

µ
∂v
∂y

∂
∂x

µ
∂u
∂y

2
3
∂
∂y

µ∇ V (6.4)
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Here, fu and fv contain the body force components in the x and y directions respec-
tively. We see that Equations 6.1 and 6.2 have the same form as the general scalar
transport equation, and as such we know how to discretize most of the terms in the
equation. Each momentum equation contains a pressure gradient term, which we have
written separately, as well as a source term (Su or Sv) which contains the body force
term, as well as remnants of the stress tensor term.

Let us consider the pressure gradient term. In deriving discrete equations, we in-
tegrate the governing equations over the cell volume. This results in the integration of
the pressure gradient over the control volume. Applying the gradient theorem, we get

∆
∇pd

A
pdA (6.5)

Assuming that the pressure at the face centroid represents the mean value on the face,
we write

A
pdA ∑

f
p fA f (6.6)

The face area vectors are

Ae ∆yi
Aw ∆yi
An ∆xj
As ∆xj (6.7)

Thus, for the discrete u- momentum equation, the pressure gradient term is

i
∆

∇pd i ∑
f
p fA f (6.8)

which in turn is given by

i ∑
f
p fA f pw pe ∆y (6.9)

Similarly, for the discrete v-momentum equation, the pressure gradient term is

j ∑
f
p fA f ps pn ∆x (6.10)

Completing the discretization, the discrete u- and v-momentum equations may be writ-
ten as

aPuP ∑
nb
anbunb pw pe ∆y bu

aPvP ∑
nb
anbvnb ps pn ∆x bv (6.11)
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The next step is to find the face pressures pe, pw, pn and ps. If we assume that the
pressure varies linearly between cell centroids, we may write, for a uniform grid

pe
pE pP

2
pw

pW pP
2

pn
pN pP

2

ps
pS pP

2
(6.12)

Therefore the pressure gradient terms in the momentum equations become

pw pe ∆y pW pE ∆y
ps pn ∆x pS pN ∆x (6.13)

Given a pressure field, we thus know how to discretize the momentum equations. How-
ever, the pressure field must be computed, and the extra equation we need for its com-
putation is the continuity equation. Let us examine its discretization next.

6.2 Discretization of the Continuity Equation
For steady flow, the continuity equation, which takes the form

∇ ρV 0 (6.14)
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Integrating over the cell P and applying the divergence theorem, we get

∆
∇ ρV d

A
ρV dA (6.15)

Assuming that the ρV on the face is represented by its face centroid value, we may
write

A
ρV dA ∑

f
ρV f A f (6.16)

Using V ui vj and Equations 6.7, we may write the discrete continuity equation as

ρu e∆y ρu w∆y ρv n∆x ρv s∆x 0 (6.17)

We do not have the face velocities available to us directly, and must interpolate the cell
centroid values to the face. For a uniform grid, we may assume

ρu e
ρu P ρu E

2

ρu w
ρu W ρu P

2

ρv n
ρv P ρv N

2

ρv s
ρv S ρv P

2
(6.18)

Gathering terms, the discrete continuity equation for the cell P is

ρu E ∆y ρu W ∆y ρv N ∆x ρv S∆x 0 (6.19)

We realize that continuity equation for cell P does not contain the velocity for cell P.
Consequently, a checkerboard velocity pattern of the type shown in Figure 6.2 can be
sustained by the continuity equation. If the momentum equations can sustain this pat-
tern, the checkerboarding would persist in the final solution. Since the pressure gradient
is not given a priori, and is computed as a part of the solution, it is possible to create
pressure fields whose gradients exactly compensate the checkerboarding of momentum
transport implied by the checkerboarded velocity field. Under these circumstances, the
final pressure and velocity fields would exhibit checkerboarding.

We see also that the pressure gradient term in the u-momentum equation (Equa-
tion 6.13) involves pressures that are 2∆x apart on the mesh, and does not involve the
pressure at the point P. The same is true for the v-momentum equation. This means
that if a checkerboarded pressure field were imposed on the mesh during iteration, the
momentum equations would not be able to distinguish it from a completely uniform
pressure field. If the continuity equation were consistent with this pressure field as
well, it would persist at convergence.

In practice, perfect checkerboarding is rarely encountered because of irregulari-
ties in the mesh, boundary conditions and physical properties. Instead, the tendency
towards checkerboarding manifests itself in unphysical wiggles in the velocity and
pressure fields. We should emphasize that these wiggles are a property of the spa-
tial discretization and would be obtained regardless of the method used to solve the
discrete equations.
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Figure 6.2: Checkerboard Velocity Field

6.3 The Staggered Grid

A popular remedy for checkerboarding is the use of a staggered mesh. A typical stag-
gered mesh arrangement is shown in Figure 6.3. We distinguish between the main cell
or control volume and the staggered cell or control volume. The pressure is stored at
centroids of the main cells. The velocity components are stored on the faces of the
main cells as shown, and are associated with the staggered cells. The u velocity is
stored on the e and w faces and the v velocity is stored on the n and s faces. Scalars
such as enthalpy or species mass fraction are stored at the centroids of the cell P as in
previous chapters. All properties, such as density and Γ, are stored at the main grid
points.

The cell P is used to discretize the continuity equation as before:

ρu e∆y ρu w∆y ρv n∆x ρv s∆x 0 (6.20)

However, no further interpolation of velocity is necessary since discrete velocities are
available directly where required. Thus the possibility of velocity checkerboarding is
eliminated.

For the momentum equations, the staggered control volumes are used to write mo-
mentum balances. The procedure is the same as above, except that the pressure gradient
term may be written directly in terms of the pressures on the faces of the momentum
control volumes directly, without interpolating as in Equation 6.12. Thus for the dis-
crete momentum equation for the velocity ue, the pressure gradient term is

pP pE ∆y (6.21)

Similarly, for the velocity vn, the pressure gradient term is

pP pN ∆y (6.22)

Thus, we no longer have a dependency on pressure values that are 2∆x apart.
We note that the mesh for the u-momentum equation consists of non-overlapping

cells which fill the domain completely. This is also true for the v-momentum equation
and the continuity equation. The control volumes for u and v overlap each other and
the cell P, but this is of no consequence.
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We note further that the mass flow rates

Fe ρu e∆y
Fw ρu w∆y
Fn ρv n∆x
Fs ρv s∆x (6.23)

are available at the main cell faces, where they are needed for the discretization of the
convective terms in scalar transport equations.

6.4 Discussion
The staggered mesh provides an ingenious remedy for the checkerboarding problem
by locating discrete pressures and velocities exactly where required. At this point, our
discretization of the continuity and momentum equations is essentially complete. The
ue momentum equation may be written as

aeue ∑
nb
anbunb ∆y pP pE be (6.24)

Similarly the equation for vn may be written as:

anvn ∑
nb
anbvnb ∆x pP pN bn (6.25)

Here, nb refers to the momentum control volume neighbors. For the e momentum
equation, the neighbors nb would involve the u velocities at points ee, nne w and sse
shown in Figure 6.4. A similar stencil influences vn. The discrete continuity equation
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is given by Equation 6.20. (Note that because of grid staggering, the coefficients a p
and anb are different for the u and v equations). It is not yet clear how this equation set
is to be solved to obtain u, v and p. We turn to this matter next.

6.5 Solution Methods
Thus far, we have examined issues related to discretization of the continuity and mo-
mentum equations. The discretization affects the accuracy of the final answer we ob-
tain. We now turn to issues related to the solution of these equations. The solution
path determines whether we obtain a solution and how much computer time and mem-
ory we require to obtain the solution. For the purposes of this book, the final solution
we obtain is considered independent of the path used to obtain it, and only dependent
on the discretization. (This is not true in general for non-linear problems, where the
solution path may determine which of several possible solutions is captured).

Thus far, our solution philosophy has been to so solve our discrete equations it-
eratively. Though we have not emphasized this, when solving multiple differential
equations, a convenient way is to solve them sequentially. That is, when computing the
transport of Ns chemical species, for example, one option is to employ a solution loop
of the type:

1. for species i =1, Ns

Discretize governing equation for species i
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Solve for mass fractions of species i at cell centroids, assuming prevailing
values to resolve non-linearities and dependences on the mass fractions of
species j

2. If all species mass fractions have converged, stop; else go to step 1.

Other alternatives are possible. If we are not worried about storage or computa-
tional time, we may wish to solve the entire problem directly using a linear system of
the type

Mφ b (6.26)

where M is a coefficient matrix of size N Ns N Ns , where N is the number
of cells and Ns is the number of species, φ is a column vector of size N Ns, and b
is a column vector also of size N Ns. That is, our intent is to solve for the entire
set of N Ns species mass fractions in the calculation domain simultaneously. For
most practical applications, this type of simultaneous solution is still not affordable,
especially for non-linear problems where the M matrix (or a related matrix) would
have to be recomputed every iteration.

For practical CFD problems, sequential iterative solution procedures are frequently
adopted because of low storage requirements and reasonable convergence rate. How-
ever there is a difficulty associated with the sequential solution of the continuity and
momentum equations for incompressible flows. In order to solve a set of discrete equa-
tions iteratively, it is necessary to associate the discrete set with a particular variable.
For example, we use the discrete energy equation to solve for the temperature. Simi-
larly, we intend to use the discrete u-momentum equation to solve for the u-velocity. If
we intend to use the continuity equation to solve for pressure, we encounter a problem
for incompressible flows because the pressure does not appear in the continuity equa-
tion directly. The density does appear in the continuity equation, but for incompressible
flows, the density is unrelated to the pressure and cannot be used instead. Thus, if we
want to use sequential, iterative methods, it is necessary to find a way to introduce the
pressure into the continuity equation. Methods which use pressure as the solution vari-
able are called pressure-based methods. They are very popular in the incompressible
flow community.

There are a number of methods in the literature [5] which use the density as a pri-
mary variable rather than pressure. This practice is especially popular in the compress-
ible flow community. For compressible flows, pressure and density are related through
an equation of state. It is possible to find the density using the continuity equation, and
to deduce the pressure from it for use in the momentum equations. Such methods are
called density-based methods. For incompressible flows, a class of methods called the
artificial compressibility methods have been developed which seek to ascribe a small
(but finite) compressibility to incompressible flows in order to facilitate numerical so-
lution through density-based methods [6]. Conversely, pressure-based methods have
also been developed which may be used for compressible flows [7].

It is important to realize that the necessity for pressure- and density-based schemes
is directly tied to our decision to solve our governing equations sequentially and itera-
tively. It is this choice that forces us to associate each governing differential equation
with a solution variable. If we were to use a direct method, and solve for the discrete
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velocities and pressure using a domain-wide matrix of size 3N 3N, (three variables -
u,v,p - over N cells), no such association is necessary. However, even with the power
of today’s computers, direct solutions of this type are still out of reach for most prob-
lems of practical interest. Other methods, including local direct solutions at each cell,
coupled to an iterative sweep, have been proposed [8] but are not pursued here.

In this chapter, we shall concentrate on developing pressure-based methods suitable
for incompressible flows, but which can be extended to compressible flows as well.
These methods seek to create an equation for pressure by using the discrete momentum
equations. They then solve for the continuity and momentum equations sequentially,
with each discrete equation set being solved using iterative methods. We emphasize
here that these methods define the path to solution and not the discretization technique.

6.6 The SIMPLE Algorithm
The SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm and its
variants are a set of pressure-based methods widely used in the incompressible flow
community [9]. The primary idea behind SIMPLE is to create a discrete equation for
pressure (or alternatively, a related quantity called the pressure correction) from the
discrete continuity equation (Equation 6.20). Since the continuity equation contains
discrete face velocities, we need some way to relate these discrete velocities to the
discrete pressure field. The SIMPLE algorithm uses the discrete momentum equations
to derive this connection.

Let u and v be the discrete u and v fields resulting from a solution of the discrete
u and vmomentum equations. Let p represent the discrete pressure field which is used
in the solution of the momentum equations. Thus, ue and vn satisfy

aeue ∑
nb
anbunb ∆y pP pE be

anvn ∑
nb
anbvnb ∆x pS pP bn (6.27)

Similar expressions may be written for uw and vs . If the pressure field p is only a
guess or a prevailing iterate, the discrete u and v obtained by solving the momentum
equations will not, in general, satisfy the discrete continuity equation (Equation 6.20).
We propose a correction to the starred velocity field such that the corrected values
satisfy Equation 6.20:

u u u
v v v (6.28)

Correspondingly, we wish to correct the existing pressure field p with

p p p (6.29)

If we subtract Equations 6.27 from Equations 6.24 and 6.25 we obtain

aeue ∑
nb
anbunb ∆y pP pE

anv ∑
nb
anbvnb ∆x pS pP (6.30)
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Similar expressions may be written for uw and vs. Equations 6.30 represent the depen-
dence of the velocity corrections u and v on the pressure corrections p . In effect, they
tell us how the velocity field will respond when the pressure gradient is increased or
decreased.

We now make an important simplification. We approximate Equations 6.30 as

aeue ∆y pP pE
anvn ∆x pS pP (6.31)

or, defining

de
∆y
ae

dn
∆x
an

(6.32)

we write Equations 6.31 as

ue de pP pE
vn dn pP pS (6.33)

so that

ue ue de pP pE
vn vn dn pP pS (6.34)

Further, using Equations 6.23 we may write the face flow rates obtained after the solu-
tion of the momentum equations as

Fe ρeue∆y
Fn ρnvn∆x (6.35)

The corrected face flow rates are given by

Fe Fe Fe
Fn Fn Fn (6.36)

with

Fe ρede∆y pP pE
Fn ρndn∆x pP pS (6.37)

Similar expressions may be written for Fw, Fw, Fs and Fs .
Thus far, we have derived expressions describing how the face flow rates vary if the

pressure difference across the face is changed. We now turn to the task of creating an
equation for pressure from the discrete continuity equation.
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6.6.1 The Pressure Correction Equation
We now consider the discrete continuity equation. The starred velocities u and v ,
obtained by solving the momentum equations using the prevailing pressure field p do
not satisfy the discrete continuity equation. Thus

ρu e∆y ρu w∆y ρv n∆x ρv s∆x 0 (6.38)

or, in terms of F , we have

Fe Fw Fn Fs 0 (6.39)

We require our corrected velocities, given by Equations 6.28, to satisfy continu-
ity. Alternately, the corrected face flow rates, given by Equation 6.36, must satisfy
continuity. Thus,

Fe Fe Fw Fw Fn Fn Fs Fs 0 (6.40)

or using Equations 6.37

Fe ρede∆y pP pE Fw ρwdw∆y pW pP (6.41)
Fn ρndn∆x pP pN Fs ρsds∆x pS pP 0 (6.42)

Rearranging terms, we may write an equation for the pressure correction p P as:

aPpP ∑
nb
pnb b

where

aE ρede∆y
aW ρwdw∆y
aN ρndn∆x
aS ρsds∆x
aP ∑

nb
anb

b Fw Fe Fs Fn (6.44)

We note that the source term in the pressure correction equation is the mass source for
the cell P. If the face flow rates F satisfy the discrete continuity equation (i,e, b is
zero), we see that p constant satisfies Equation 6.44. Thus, the pressure correction
equation yields non-constant corrections only as long as the velocity fields produced by
the momentum equations do not satisfy continuity. Once these velocity fields satisfy
the discrete continuity equations, the pressure correction equation will yield a constant
correction. In this limit, differences of p are zero and no velocity corrections are ob-
tained. If the constant correction value is chosen to be zero (we will see why this is
possible in a later section), the pressure will not be corrected. Thus, convergence is ob-
tained once the velocities predicted by the momentum equations satisfy the continuity
equation.
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6.6.2 Overall Algorithm
The overall procedure for the SIMPLE algorithm is the following:

1. Guess the pressure field p .

2. Discretize and solve the momentum equations using the guessed value p for the
pressure source terms. This yields the u and v fields.

3. Find the mass flow rates F using the starred velocity fields. Hence find the
pressure correction source term b.

4. Discretize and solve the pressure correction equation, and obtain the p field.

5. Correct the pressure field using Equation 6.29 and the velocities using Equa-
tion 6.28. The corrected velocity field satisfies the discrete continuity equation
exactly.

6. Solve the discrete equations for scalar φ if desired, using the continuity-satisfying
velocity field for the convection terms.

7. If the solution is converged, stop. Else go to step 2.

6.6.3 Discussion
The pressure correction equation is a vehicle by which the velocity and pressure fields
are nudged towards a solution that satisfies both the discrete continuity and momentum
equations. If we start with an arbitrary guess of pressure and solve the momentum
equations, there is no guarantee that the resulting velocity field will satisfy the continu-
ity equation. Indeed the b term in the continuity equation is a measure of the resulting
mass imbalance. The pressure correction equation corrects the pressure and velocity
fields to ensure that the resulting field annihilates this mass imbalance. Thus, once
we solve the pressure correction equation and correct the u and v fields using Equa-
tions 6.28, the corrected velocity fields will satisfy the discrete continuity equations
exactly. It will no longer satisfy the discrete momentum equations, and the iteration
between the two equations continues until the pressure and velocity fields satisfy both
equations.

It is important to realize that because we are solving for the pressure correction
rather that the pressure itself, the omission of the ∑nb anbunb and∑nb anbvnb terms in de-
riving the pressure correction equation is of no consequence as far as the final answers
are concerned. This is easily seen if we consider what happens in the final iteration.
In the final iteration, u , v and p satisfy the momentum equations, and the b term
in the p equation is zero. As discussed earlier, the p equation does not generate any
corrections, and u u , v v , p p holds true. Thus, the p equation plays no role
in the final iteration. Only discrete momentum equation, and the discrete continuity
equation (embodied in the b term) determine the final answer.

The dropping of the ∑nb anbunb and ∑nb anbvnb terms does have consequences for
the rate of convergence, however. The u-velocity correction in Equation 6.30, for ex-
ample, is a function of both the velocity correction term ∑nb anbunb and the pressure
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correction term. If we drop the ∑nb anbunb term, we place the entire burden of correct-
ing the u-velocity upon the pressure correction. The resulting corrected velocity will
satisfy the continuity equation all the same, but the resulting pressure is over-corrected.
Indeed, because of this over-correction of pressure, the SIMPLE algorithm is prone to
divergence unless underrelaxation is used. We underrelax the momentum equations
using underrelaxation factors αu and αv in the manner outlined in previous chapters.
In addition, the pressure correction is not applied in its entirety as in Equation 6.29.
Instead, only a part of the pressure correction is applied:

p p αpp (6.45)

The underrelaxation factor α p is chosen to be less than one in order to correct for the
over-correction of pressure. It is important to emphasize that we do not underrelax the
velocity corrections in the manner of Equation 6.45. The entire point of the pressure
correction procedure is to create velocity corrections such that the corrected velocity
fields satisfy continuity. Underrelaxing the velocity corrections would destroy this
feature.

Thus, the SIMPLE algorithm approaches convergence through a set of intermediate
continuity-satisfying fields. The computation of transported scalars such as enthalpy
or species mass fraction is therefore done soon after the velocity correction step (Step
6). This ensures that the face flow rates used in discretizing the φ transport equation
are exactly continuity satisfying every single iteration.

6.6.4 Boundary Conditions
We have already dealt with the boundary conditions for scalar transport in the previous
chapter. These apply to the momentum equations as well. We turn now to boundary
conditions for pressure. Two common boundary conditions are considered here: given
normal velocity and given static pressure. A third condition, given stagnation pressure
and flow angle, is also encountered, but we will not address it here.

At a given-velocity boundary, we are given the normal component of the velocity
vector Vb at the boundary. This type of boundary could involve inflow or outflow
boundaries or boundaries normal to which there is no flow, such a walls.

Consider the near-boundary cell shown in Figure 6.5. Out objective is to derive the
pressure correction equation for C0. Integrating the continuity equation for the cell C0
in the usual fashion, we have

Fe Fb Fn Fs 0 (6.46)

We know how to write the interior face flow rates Fe, Fn and Fs in terms of the the
pressure corrections. For Fb, no such expansion in terms of pressure correction is
necessary because Fb is known, and is given by

Fb ρbub∆y

This known flow rate is incorporated directly into the mass balance equation for cell C0.
When all boundaries are given-velocity boundaries, we must ensure that the specified
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boundary velocities satisfy overall mass balance over the entire computational domain;
otherwise the problem would not be well-posed.

At a given-pressure boundary, the pressure correction p b is set equal to zero.

6.6.5 Pressure Level and Incompressibility
For incompressible flows,where density is not a function of pressure, it is common to
encounter situations which are best modeled with given-velocity boundary conditions
on all boundaries. In such a case, the level of pressure in the domain is not set. Differ-
ences in pressure are unique, but the individual pressure values themselves are not. The
reader may verify that p and p C are solutions to the governing differential equations.

From a computational viewpoint we may interpret this situation in the following
way. We are given velocity boundary conditions that are continuity-satisfying in an
overall sense. Thus, if we divide the computational domain into N cells, and impose
a mass balance on them, only N 1 unique equations can result. Therefore we do not
have enough equations for N pressure (or pressure correction) unknowns. This situation
may be remedied by setting the pressure at one cell centroid arbitrarily; alternatively,
we may set p 0 in one cell in the domain.

We should emphasize this situation only occurs if all boundaries are given-velocity
boundaries. When the static pressure p is given on a boundary, the pressure is made
unique, and the problem does not arise. For compressible flows, where the density is a
function of pressure, it is necessary to specify pressure boundary conditions on at least
part of the domain boundary.

Let us go back to the pressure correction equation, Equation 6.44 and its behavior at
convergence. We have said that the pressure correction becomes a constant at conver-
gence. If all boundaries are given-velocity boundaries, the pressure correction has an
arbitrary level, which we are free to set equal to zero. Thus, the pressure p sees no cor-
rections at convergence.(Even if we did not set p to zero, the result is still converged;
the pressure level would rise by a constant every iteration, but this is acceptable since
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only differences of pressure are relevant with all given-velocity boundaries). If one or
more given-pressure boundaries are present, p 0 is set at at least one boundary face.
Thus the constant value predicted by the pressure correction will come out to be zero.
In this case also, the pressure correction predicts zero corrections at convergence.

6.7 The SIMPLER Algorithm
The SIMPLE algorithm has been widely used in the literature. Nevertheless, there
have been a number of attempts to accelerate its convergence, and one such algorithm
is SIMPLER (SIMPLE-Revised) [10]. One of the drawbacks of the SIMPLE algorithm
is the approximate nature of the pressure correction equation. Because the ∑nb anbunb
and ∑nb anbvnb terms are dropped in its derivation, the pressure corrections resulting
from it are too large, and require under-relaxation. This slows down convergence, since
optimal values are problem dependent and rarely know a priori. The velocity correc-
tions, however, are good, and guarantee that the corrected velocities satisfy the conti-
nuity equation. Consequently, it would seem appropriate to use the pressure correction
equation to correct velocities, while finding another way to compute the pressure.

A good way of understanding this is to consider what the SIMPLE algorithm does
when we know the velocity field, but do not know the pressure field. If we solve the
momentum equations with a guessed pressure field p , we destroy the original (good)
velocity field, and then embark on a long iterative process to recover it. A good guess
of the velocity field is no use when using the SIMPLE algorithm, unless accompanied
by a good pressure guess. We would prefer an algorithm which can recover the correct
pressure field immediately if the exact velocity field is known.

With SIMPLER, we derive the pressure equation by re-arranging the momentum
equations as follows:

ue
∑nb anbunb be

ae
de pP pE

vn
∑nb anbvnb bn

an
dn pP pN (6.48)

By defining

ûe
∑nb anbunb be

aue

v̂n
∑nb anbvnb bn

ae
(6.49)

we may write

ue ûe de pP pE
vn v̂n dn pP pN (6.50)

Furthermore, we may define

F̂e ρeûe∆y
F̂n ρnv̂n∆x (6.51)
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so that

Fe F̂e ρede∆y pP pE
Fn F̂n ρndn∆x pP pN (6.52)

Substituting Equations 6.52 into the discrete continuity equation (Equation 6.20) we
obtain the following equation for the pressure:

aPpP ∑
nb
anbpnb b

where

aE ρede∆y
aW ρwdw∆y
aN ρndn∆x
aS ρsds∆x
aP ∑

nb
anb

b F̂w F̂e F̂s F̂n (6.54)

The form of the pressure equation is identical to that of the pressure correction equa-
tion, and the aP and anb coefficients are identical to those governing the pressure cor-
rection. The b term, however, is different, and involves the velocities û and v̂ rather than
the prevailing velocities u and v . We should emphasize that although the b term looks
similar in form to that in the p equation, it does not represent the mass imbalance. An-
other important difference is that no approximations have been made in deriving the
pressure equation. Thus, if the velocity field is exact, the correct pressure field will be
recovered.

6.7.1 Overall Algorithm
The SIMPLER solution loop takes the following form:

1. Guess the velocity field.

2. Compute û and v̂.

3. Solve the pressure equation (Equation 6.54) using the guessed field and obtain
the pressure.

4. Solve the momentum equations using the pressure field just computed, to obtain
u , and v .

5. Compute the mass source term b in the pressure correction equation.

6. Solve the pressure correction equation to obtain p .

7. Correct u and v using Equations 6.28. Do not correct the pressure !

136



8. At this point we have a continuity satisfying velocity field. Solve for any scalar
φ ’s of interest.

9. Check for convergence. If converged, stop. Else go to 2.

6.7.2 Discussion

The SIMPLER algorithm has been shown to perform better than SIMPLE. This is
primarily because the SIMPLER algorithm does not require a good pressure guess
(which is difficult to provide in any case). It generates the pressure field from a good
guess of the velocity field, which is easier to guess. Thus, the SIMPLER algorithm
does not have the tendency to destroy a good velocity field guess like the SIMPLE
algorithm.

The SIMPLER algorithm solves for two pressure variables - the actual pressure and
the pressure correction. Thus, it uses one extra equation, and therefore involves more
computational effort. The pressure correction solver in the SIMPLE loop typically ac-
counts for half the computational effort during an iteration. This is because the pressure
correction equation is frequently solved with given-velocity boundary conditions. The
lack of Dirichlet boundary conditions for p causes linear solvers to converge slowly.
The same is true of pressure. Thus, adding an extra pressure equation in the SIMPLER
algorithm increases the computational effort by about 50%. The momentum equation
coefficients are needed in two places – to find û and v̂ for the pressure equation, and
later, to solve the momentum equations. To avoid computing them twice, storage for
each of the coefficient sets is required. This is also true for the pressure coefficients.

Because the pressure correction p is not used to correct the pressure, no under-
relaxation of the pressure correction in the manner of Equation 6.45 is required. The
pressure equation may itself be underrelaxed if desired, but this is not usually required.
The momentum equations must be underrelaxed to account for non-linearities and also
to account for the sequential nature of the solution procedure.

6.8 The SIMPLEC Algorithm

The SIMPLE-Corrected (SIMPLEC) algorithm [11] attempts to cure the primary fail-
ing of the SIMPLE algorithm, i.e., the neglect of the ∑nb anbunb and ∑nb anbvnb terms in
writing Equations 6.33. Instead of ignoring these completely, the SIMPLEC algorithm
attempts to approximate the neighbor corrections by using the cell correction as:

∑
nb
anbunb ue∑

nb
anb

∑
nb
anbvnb ve∑

nb
anb (6.55)

137



Thus, the velocity corrections take the form

ae ∑
nb
anb ue ∆y pP pE

an ∑
nb
anb vn ∆x pP pN (6.56)

Redefining de and dn as

de
∆y

ae ∑nb anb

dn
∆x

an ∑nb anb
(6.57)

The rest of the procedure is the same as that for the SIMPLE algorithm except for the
fact that the pressure correction need not be underrelaxed as in Equation 6.45. How-
ever, we should note that the de and dn definitions require the momentum equations
to be underrelaxed to prevent the denominator from going to zero. The SIMPLEC al-
gorithm has been shown to converge faster than the SIMPLE and does not have the
computational overhead of the SIMPLER algorithm. However, it does share with SIM-
PLE the property that a good velocity field guess would be destroyed in the initial
iterations unless accompanied by a good guess of the pressure field.

6.9 Optimal Underrelaxation for SIMPLE
It is possible to make SIMPLE duplicate the speed-up exhibited by SIMPLEC through
the judicious choice of underrelaxation factors. The SIMPLE procedure employs a
pressure correction of the type

p p αpp (6.58)

whereas the SIMPLEC algorithm employs a pressure correction of the type

p p p (6.59)

Rather than solve for p , let us make the SIMPLE algorithm solve for a variable p̂
defined as

p̂ αpp (6.60)

Then its correction equation takes the form of Equation 6.59. We may think of SIM-
PLEC as solving for p̂ rather than p .

Now let us examine the p equation (or p̂ equation) solved by SIMPLEC. The
equation has the form

aP p̂P ∑
nb
anb p̂nb b (6.61)
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with the coefficients anb having the form

anb
ρ∆y2

ae ∑nb anb
(6.62)

Let us assume for simplicity that the momentum equation coefficients have no S P terms,
so that

ae
∑nb anb
αu

(6.63)

Thus, the pressure correction coefficients in Equation 6.62 may be written as

anb
ρ∆y2

1 αu
αu ∑nb anb

(6.64)

Now we turn to the SIMPLE algorithm. If we cast its p equation in p̂ form, we
get

aP p̂P ∑
nb
anb p̂nb b (6.65)

with the coefficients anb having the form

anb
ρ∆y2

αp
αu ∑nb anb

(6.66)

If we require the anb coefficient in Equation 6.64 to be equal to that in Equation 6.66,
we conclude that

αp 1 αu (6.67)

Thus, we see that if we use Equation 6.67 in underrelaxing the momentum equations
and the pressure correction, we would essentially reproduce the iterations computed by
SIMPLEC.

6.10 Discussion
We have seen three different possibilities for a sequential solution of the continuity and
momentum equations using a pressure-based scheme. A number of other variants and
improvements of the basic SIMPLE procedure are also available in the literature. These
are, however, variations on the basic theme of sequential solution, and the same basic
advantages and disadvantages obtain. All these procedures have the advantage of low
storage, and reasonably good performance over a broad range of problems. However,
they are known to require a large number of iterations in problems with large body
forces resulting from buoyancy, swirl and other agents; in strongly non-linear cases,
divergence may occur despite underrelaxation. Many of these difficulties are a result
of the sequential nature of the momentum and continuity solutions, which are strongly
coupled through the pressure gradient term when strong body forces are present. For
such problems, the user would not find much difference in the performance of the dif-
ferent SIMPLE variants. A variety of coupled solvers have been developed which seek
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(a) (b)

Figure 6.6: Velocity Systems for Structured Bodyfitted Meshes: (a) Cartesian, and (b)
Grid-Following

to replace the sequential solution of the momentum and continuity equations through
tighter coupling of the two equations (see [8] for example). These procedures usu-
ally incur a storage penalty but exhibit substantial convergence acceleration, at least
for laminar flow problems. This area continues to be active area for new research,
especially in connection with unstructured meshes.

6.11 Non-Orthogonal Structured Meshes
When structured non-orthogonal meshes are used, the staggered mesh procedures de-
scribed above may be used in principle. However, great care must be taken in the
choice of velocity components. For example, it is not possible to use Cartesian veloc-
ity components with a staggered mesh, as illustrated in Figure 6.6(a). Here we consider
a 90 elbow. If we store the u and v velocities on the faces as shown, similar to our
practice on regular meshes, it is possible to encounter cells where the stored face veloc-
ity component is tangential to the face, making it difficult to discretize the continuity
equation correctly. If staggered meshes are used, it is necessary to use grid following
velocities, i.e., velocities whose orientation is defined with respect to the local face. In
Figure 6.6(b), for example, we use velocity components normal to the face in ques-
tion. These velocity components are guaranteed to never become tangential to the face
because they turn as the mesh turns. Any velocity set with a fixed (non-zero) angle
to the local face would do as well.(Other options, such as storing both components of
the Cartesian velocities at all faces, have been tried; though formulations of this type
can be worked out, the result is not very elegant; for example, overlapping momentum
control volumes result).

Two primary grid-following or curvilinear velocity systems have been used in the
literature for this purpose. These are the covariant velocity and the contravariant ve-
locity systems. Consider the cells P and E is Figure 6.7(a). The vectors e ξ and eη
are called the covariant basis vectors. The eξ vector is aligned along the line joining
the cell centroids. The eη vector is aligned tangential to the face. The velocity com-
ponents along these basis directions are called the covariant velocity components. On
each face, the component along the line joining the centroids is stored. Thus on Karki
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Figure 6.7: Curvilinear Velocity Components (a) Covariant, and (b) Contravariant

and Patankar [7] have use a covariant velocity formulation to develop a staggered mesh
SIMPLE algorithm for body-fitted structured meshes.

Alternatively, contravariant basis vectors may be used, as shown in Figure 6.7(b).
Here, the basis vector eξ is perpendicular to the face, and the basis vector eη is perpen-
dicular to the line joining the cell centroids. The contravariant velocities are aligned
along these basis directions. Each face stores one contravariant component, the com-
ponent perpendicular to the face.

The SIMPLE family of algorithms may be developed for a staggered mesh dis-
cretization using either of these two coordinate systems. Though these efforts have
generally been successful, curvilinear velocities are not particularly easy entities to
deal with. Since Newton’s laws of motion conserve linear momentum, the momentum
equations written in Cartesian coordinates may always be cast in conservative form.
Curvilinear coordinates do not have this property. Since covariant and contravariant ba-
sis vectors change direction with respect to an invariant Cartesian system, the momen-
tum equations written in these curvilinear directions cannot be written in conservative
form; momentum in the curvilinear directions is not conserved. As a result, additional
curvature terms appear, just as they do in cylindrical-polar or spherical coordinates.
Thus we are not guaranteed conservation. (Researchers have proposed clever cures for
this problem; see Karki and Patankar [7], for example). Furthermore, velocity gra-
dients are required in other equations, for example for production terms in turbulence
models, or for strain rates in non-Newtonian rheologies. These quantities are extremely
cumbersome to derive in curvilinear coordinates. To overcome this, researchers have
computed the flow field in curvilinear coordinates and stored both Cartesian and curvi-
linear velocities. They use Cartesian velocity components for all such manipulations.
Despite these workarounds, curvilinear velocities remain cumbersome and are difficult
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Pressure Storage Location

Velocity Storage Location

Figure 6.8: Storage Arrangement for Node-Based Unequal Order Finite Volume
Scheme

to interpret and visualize in complex domains.

6.12 Unstructured Meshes
For unstructured meshes, the staggered mesh discretization method we have derived so
far is almost entirely useless since no obvious mesh staggering is possible. In the finite
element community, a class of unequal order methods have been developed which
interpolate pressure to lower order than velocity. This has been shown to circumvent
checker-boarding. Node-based finite-volume schemes [12] have been developed which
employ the same unequal-order idea. In the work by Baliga and Patankar, for example,
triangular macro-elements are employed, as shown in Figure 6.8. Pressure is stored at
the nodes of the macroelement. The macroelement is subdivided into 4 sub-elements,
and velocity is stored on the vertices of the subelements. Though this arrangement has
been shown to prevent checkerboarding, pressure is resolved to only one-fourth the
mesh size as the velocity in two dimensions, prompting concerns about accuracy. For
cell based schemes there is no obvious counterpart of this unequal order arrangement.

6.13 Closure
In this chapter, we have developed staggered mesh based discretization techniques for
the continuity and momentum equations. Staggering was shown to be necessary to pre-
vent checkerboarding in the velocity and pressure fields. We then developed sequential
and iterative pressure-based techniques called SIMPLE, SIMPLER and SIMPLEC for
solving this set of discrete equations.

We see that the staggered discretization developed in this chapter is not easily ex-
tended to body-fitted and unstructured meshes. The use of staggered mesh methods
based on curvilinear velocities is cumbersome and uninviting for structured meshes.
For unstructured meshes, it is not easy to identify a workable staggered mesh, even
if we could use curvilinear velocity components. Because of these difficulties, efforts
have been underway to do away with staggering altogether and to develop techniques
known variously as non-staggered , equal-order, or co-located methods. These tech-
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niques store pressure and velocity at the same physical location and attempt to solve
the problem of checkerboarding through clever interpolation techniques. They also do
away with the necessity for curvilinear velocity formulations, and use Cartesian veloc-
ities in the development. We will address this class of techniques in the next chapter.

We should emphasize that the material to be presented in the next chapter changes
only the discretization practice. We may still use sequential and iterative techniques
such as SIMPLE to solve the resulting set of discrete equations.
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Chapter 7

Fluid Flow: A Closer Look

In this chapter, we turn to the problem of discretizing the continuity and momentum
equations using a non-staggered or co-located mesh. We saw in the last chapter that
storing pressure and velocity at the same location, i.e., at the cell centroids, leads to
checkerboarding in the pressure and velocity fields. We circumvented this in Cartesian
meshes by using staggered storage of pressure and velocity. We also used Cartesian
velocity components as our primary variables.

For unstructured meshes, it is not obvious how to define staggered pressure and ve-
locity control volumes. Furthermore, staggered meshes are somewhat cumbersome to
use. For Cartesian meshes, staggering requires the storage of geometry information for
the main and staggered u and v control volumes, as well increased coding complexity.
For body-fitted meshes, we saw in the previous chapter that staggered meshes could
only be used if grid-following velocities were used; we saw that this option is also not
entirely optimal. As a result, recent research has focused on developing formulations
which employ Cartesian velocity components, storing both pressure and velocity at the
cell centroid. Specialized interpolation schemes are used to prevent checkerboarding.

The change to a co-located or non-staggered storage scheme is a change in the
discretization practice. The iterative methods used to solve the resulting discrete set are
the same as those in the previous chapter, albeit with a few minor changes to account
for the change in storage scheme. For the purposes of this chapter, we will continue to
use the SIMPLE family of algorithms for the solution of the discrete equations.

7.1 Velocity and Pressure Checkerboarding
Co-located or non-staggered methods store pressure and velocity at the cell centroid.
Furthermore, we use Cartesian velocity components u and v, defined in a global coor-
dinate system. Thus, in Figure 7.1, u, v and p are stored at the cell centroid P, as are
other scalars φ . The principle of conservation is enforced on the cell P.

In the discussion that follows, let us assume an orthogonal one-dimensional uni-
form mesh. We will address two-dimensional and non-orthogonal meshes in a later
section, once the basic idea is clear. The mesh and associated nomenclature are shown
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Figure 7.1: Co-Located Storage of Pressure and Velocity

in Figure 7.2.

7.1.1 Discretization of Momentum Equation
The discretization of the u-momentum equation for the cell P follows the principles
outlined in previous chapters and yields the following discrete equation:

aPuP ∑
nb
anbunb buP pw pe (7.1)

Here, a unit area of cross section ∆y 1 has been assumed. The neighbors nb for
this co-located arrangement include the velocities at the points E andW . The pressure
at the faces e and w are not known since the pressure is stored at the cell centroids.

W P E EE

ue
e

Figure 7.2: Control Volumes for Velocity Interpolation
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Consequently, interpolation is required. Adopting a linear interpolation, and a uniform
mesh, we may write

aPuP ∑
nb
anbunb buP

pW pE
2

(7.2)

Similarly, for uE , we may write

aEuE ∑
nb
anbunb buE

pP pEE
2

(7.3)

We see that the u-momentum equation at point P does not involve the pressure at the
point P; it only involves pressures at cells on either side. The same is true for uE . Thus,
the u-momentum equation can support a checkerboarded solution for pressure. If we
retain this type of discretization for the pressure term in the momentum equation, we
must make sure that the discretization of the continuity equation somehow disallows
pressure checkerboarding.

7.1.2 Discretization of Continuity Equation
In order to discretize the continuity equation, we integrate it over the cell P as before
and apply the divergence theorem. This yields

Fe Fw 0 (7.4)

where

Fe ρeue∆y
Fw ρwuw∆y (7.5)

As we discussed in the previous chapter, we must interpolate u from the cell centroid
values to the face in order to find ue and uw. If we use a linear interpolation

ue
uP uE

2
uw

uW uP
2

(7.6)

Substituting these relations into Equation 7.4 and assuming unit ∆y yields

ρeuE ρwuW 0 (7.7)

7.1.3 Pressure Checkerboarding
Let us now consider the question of whether Equation 7.7 can support a checkerboarded
pressure field. Dividing Equations 7.2 and 7.3 by their respective center coefficients a P
and aE , we have

uP ûP
1
aP

pW pE
2

uE ûE
1
aE

pP pEE
2

(7.8)
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where

ûP
∑nb anbunb buP

aP

ûE
∑nb anbunb buE

aE
(7.9)

If we average uP and uE using Equation 7.8 to find ue in Equation 7.7 we obtain

ue
ûP ûE

2
1
aP

pW pE
4

1
aE

pP pEE
4

(7.10)

A similar equation can be written for uw:

uw
ûW ûP

2
1
aW

pWW pP
4

1
aP

pW pE
4

(7.11)

We see right away that any checkerboarded pressure field which sets pW pE and
pP pEE pWW will be seen as a uniform pressure field by ue and uw. These face
velocities are used to write the one-dimensional discrete continuity equation (Equa-
tion 7.7). Since the same type of checkerboarding is supported by the discrete mo-
mentum equations, a checkerboarded pressure field can persist in the final solution if
boundary conditions permit. Our discrete continuity equation does nothing to filter
spurious oscillatory modes in the pressure field supported by the momentum equation.

7.1.4 Velocity Checkerboarding
In addition to pressure checkerboarding, the linear interpolation of cell velocities also
introduces checkerboarding. As we have seen in the previous chapter, the resulting
discrete continuity equation, Equation 7.7, does not involve the cell-centered velocities
uP. Thus, the continuity equation supports a checkerboarded velocity field. Such a
checkerboarded velocity field implies checkerboarded momenta in the cell momentum
balance. If we enforce momentum balance on the cell, we will in effect create a pres-
sure field to offset these checkerboarded momenta; this pressure field must of necessity
be checkerboarded. In order to prevent checkerboarding in the final solution, we must
ensure that the discretization of either the momentum or the continuity equation pro-
vides a filter to remove these oscillatory modes.

7.2 Co-Located Formulation
Co-located formulations prevent checkerboarding by devising interpolation procedures
which express the face velocities ue and uw in terms of adjacent pressure values rather
than alternate pressure values. Furthermore the face velocity u e is not defined purely
as a linear interpolant of the two adjacent cell values; an additional term, called the
added dissipation prevents velocity checkerboarding.
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As we saw in the previous section, the discrete one-dimensional momentum equa-
tions for cells P and E yield

uP ûP dP
pW pE

2

uE ûE dE
pP pEE

2
(7.12)

where

dP
1
aP

dE
1
aE

(7.13)

Writing the continuity equation for cell P we have

Fe Fw 0 (7.14)

or equivalently
ρeue ρwuw 0 (7.15)

As before, unit cross-sectional area is assumed. If we interpolate ue linearly, we get

ue
uP uE

2
ûP ûE

2
dP

pW pE
4

dE
pP pEE

4
(7.16)

Instead of interpolating linearly, we use

ue
uP uE

2
dP

pW pE
4

dE
pP pEE

4
de pP pE

ûP ûE
2

de pP pE (7.17)

where
de

dP dE
2

(7.18)

A similar expression may be written for uw.
It is important to understand the manipulation that has been done in obtaining Equa-

tion 7.17. We have removed the pressure gradient term resulting from linear interpo-
lation of velocities (which involves the pressures pW , pE , pP and pEE ) and added in a
new pressure gradient term written in terms of the pressure difference p P pE . An-
other way of looking at this is to say that in writing ue, we interpolate the û component
linearly between P and E, but write the pressure gradient term directly in terms of the
adjacent cell-centroid pressures pP an pE .

This type of interpolation is sometimes referred to as momentum interpolation in
the literature. It is also sometimes referred to as an added dissipation scheme. It was
proposed, with small variations, by different researchers in the early 1980’s [13, 14, 15]
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for use with pressure-based solvers. Ideas similar to it have also been used in the com-
pressible flow community with density-based solvers. Momentum interpolation pre-
vents checkerboarding of the velocity field by not interpolating the velocities linearly.
The face velocities ue and uw are used to write the discrete continuity equation for cell
P. Since they are written in terms of adjacent pressures rather that alternate ones, a
continuity-satisfying velocity field would not be able to ignore a checkerboarded pres-
sure field. Thus, even though the momentum equation contains a pressure gradient term
that can support a checkerboarded pattern, the continuity equation does not permit such
a pressure field to persist.

Another useful way to think about momentum interpolation is to consider the face
velocity ue to be a sort of staggered velocity. The momentum interpolation formula,
Equation 7.17, may be interpreted as a momentum equation for the staggered velocity
ue. Instead of deriving the staggered momentum equation from first principles, the mo-
mentum interpolation procedure derives it by interpolating û linearly, and adding the
pressure gradient appropriate for the staggered cell. (Recall that the quantity û contains
the convection, diffusion and source contributions of the momentum equation.) By not
using an actual staggered-cell discretization, momentum interpolation avoids the cre-
ation of staggered cell geometry and makes it possible to use the idea for unstructured
meshes.

7.3 The Concept of Added Dissipation
It is useful to understand why momentum interpolation is also referred to as the added
dissipation scheme. For simplicity, let us assume that dP dE de. This would be
the case if the mesh were uniform, and the flow field, diffusion coefficients and source
terms were constant for the cells P and E. Let us consider the first of the expressions in
Equation 7.17:

ue
uP uE

2
dP

pW pE
4

pP pEE
4

dP pP pE

Let us look at the pressure terms

dP
pW pE

4
pP pEE

4
dP pP pE

Rearranging, we have

dP
pW pE

4
pP pEE

4
pP pE

dP
4

pW pE 2pP pP pEE 2pE (7.21)

Using a Taylor series expansion, we can show that

∂ 2p
∂x2

P

pW pE 2pP
∆x2 O ∆x2 (7.22)
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Similarly
∂ 2p
∂x2

E

pP pEE 2pE
∆x2 O ∆x2 (7.23)

The pressure term in the momentum interpolation scheme may thus be written as

ue
uP uE

2
dP
4

∂ 2p
∂x2

P

∂ 2p
∂x2

E
∆x2 (7.24)

or, dividing and multiplying the pressure term by ∆x, we may write

ue
uP uE

2
dP
4

∂ 3p
∂x3

e
∆x3 (7.25)

A similar expression may be written for uw:

uw
uW uP

2
dP
4

∂ 3p
∂x3

w
∆x3 (7.26)

Now, let us look at the continuity equation. If we write the continuity equation for
constant ρ , and dividing through by ∆x we get

ue uw
∆x

0 (7.27)

Substituting for ue and uw from Equations 7.25 and 7.26 we get

uE uW
2∆x

dP
4

∂ 4p
∂x4

P
∆x3 (7.28)

Using a Taylor series expansion, we may show that

uE uW
2∆x

∂u
∂x P

O ∆x2 (7.29)

so that Equation 7.28 may be written as

∂u
∂x P

dP
4

∂ 4p
∂x4

P
∆x3 0 (7.30)

We see that momentum interpolation is equivalent to solving a continuity equation with
an added fourth derivative of pressure. Even derivatives are frequently referred to in
the literature as dissipation; hence the name added dissipation scheme.

7.4 Accuracy of Added Dissipation Scheme
Let us now examine the accuracy of the momentum interpolation or the added dissipa-
tion scheme. The interpolation scheme may be written using Equation 7.21

ue
uP uE

2
dP
4

pW pE 2pP pP pEE 2pE (7.31)
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Let us consider the first term uP uE 2. Using a Taylor series expansion about e, we
may write

uP ue
∂u
∂x e

∆x
2

∂ 2u
∂x2

e

∆x2

8
O ∆x3

uE ue
∂u
∂x e

∆x
2

∂ 2u
∂x2

e

∆x2

8
O ∆x3

(7.32)

Adding the two equations and dividing by two yields

ue
uP uE

2
O ∆x2 (7.33)

Thus the truncation error in writing the first term in Equation 7.31 is O ∆x 2 . We
already saw from Equation 7.22 that the pressure term may be written as

dP
4

pW pE 2pP pP pEE 2PE
dP
4

∂ 3p
∂x3

e
∆x3 (7.34)

so that the total expression for ue is

ue
uP uE

2
dP
4

∂ 3p
∂x3

e
∆x3 O ∆x2 (7.35)

We see that the pressure term we have added is O ∆x3 , which is of higher order than
the second-order truncation error of the linear interpolation. Consequently, the added
dissipation term does not change the formal second-order accuracy of the underlying
scheme.

7.5 Discussion
Thus far we have been looking at how to interpolate the face velocity in order to cir-
cumvent the checkerboarding problem for co-located arrangements. We have seen that
momentum interpolation is equivalent to solving the continuity equation with an extra
dissipation term for pressure. Adding this dissipation term does not change the formal
accuracy of our discretization scheme since the term added has a dependence O ∆x 3

whereas the other terms have a truncation error of O ∆x 2 . Our intent is to write the
continuity equation using this interpolation for the face velocity. The discretization of
the momentum equations retains the form of Equation 7.1.

An extremely important point to be made is that the discrete continuity equation
(Equation 7.14) is written in terms of the face velocities ue and uw. It is not written
directly in terms of the cell-centered velocities uP and uE . Thus, at convergence, it is the
face velocities that directly satisfy the discrete continuity equation, not the cell-centered
velocities. In a co-located formulation, the cell-centered velocities directly satisfy the
discrete momentum equations. They satisfy the continuity equations only indirectly
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through their role in defining ue and uw. Conversely, in a co-located formulation, the
face velocities ue and uw directly satisfy the continuity equation, but do not satisfy any
discrete momentum equation since no direct momentum conservation over a staggered
cell is ever written for them. They satisfy momentum conservation only indirectly, in
the sense that they satisfy the momentum interpolation formula.

To complete the development, let us look at regular two-dimensional meshes and
derive the equivalent forms for the face velocity interpolation. Though the properties
of the momentum interpolation scheme are less clearly evident in 2D, everything we
have said about the one-dimensional case is also true in two dimensions. We will use
this development as a stepping stone to developing a SIMPLE algorithm for solving
the discrete set of equations.

7.6 Two-Dimensional Co-Located Variable Formulation

Let us generalize our development to two-dimensional regular meshes before consid-
ering how to solve our discrete set of equations. We consider the cell P in Figure 7.1.

7.6.1 Discretization of Momentum Equations

Using the procedures described earlier, we may derive the discrete u- and v-momentum
equations for the velocities uP and vP:

auPuP ∑
nb
aunbunb buP ∆y

pW pE
2

avPvP ∑
nb
avnbvnb bvP ∆x

pS pN
2

(7.36)

Here, the coefficients auP and aunb are the coefficients of the u-momentum equation for
cell P. Similarly, avP and avnb are the coefficients of the v-momentum equation. We
note that the pressure gradient terms involve pressures 2∆x and 2∆y apart respectively.
Similar discrete equations may be written for the neighboring cells.

7.6.2 Momentum Interpolation

Consider the face e in Figure 7.1, and the u momentum equations for the cells P and E.
Dividing the discrete momentum equations by the center coefficients we obtain:

uP ûP duP
pW pE

2

uE ûE duE
pP pEE

2
(7.37)
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where

duP
∆y
auP

duE
∆y
auE

(7.38)

The factor ∆y appears because the pressure gradient term is multiplied by it in a two-
dimensional mesh. By analogy we may define equivalent quantities at other faces:

duW
∆y
auW

dvN
∆x
avN

dvS
∆x
avS

(7.39)

Using momentum interpolation for the face velocity u e, we obtain

ue ûe de pP pE (7.40)

where

ûe
ûP ûE

2

de
duP duE

2
(7.41)

By analogy, we may write face velocities for the other faces as:

uw ûw dw pW pP
vn v̂n dn pP pN
vs v̂s ds pS pP (7.42)

with

dw
duW duP

2

dn
dvP dvN

2

ds
dvS dvP

2
(7.43)

7.7 SIMPLE Algorithm for Co-Located Variables
Having defined the face velocities as momentum-interpolants of cell centered values,
we now turn to the question of how to write the discrete continuity equation, and how
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to solve the discrete set. In keeping with our philosophy of using sequential iterative
solutions, we wish to use the SIMPLE algorithm. We must now devise a way to for-
mulate a pressure correction equation that can be used with the co-located variables.
The procedure is similar to that adopted in the previous chapter, albeit with a few small
changes.

7.7.1 Velocity and Pressure Corrections
As before, let u and v denote the solution to the discrete momentum equations using
a guessed pressure field p . The face velocities ue, uw, vn and vs found by interpolating
the u and v to the face using momentum interpolation are not guaranteed to satisfy
the discrete continuity equation. Thus,

Fe Fw Fn Fs 0 (7.44)

The face mass flow rates F are defined in terms of the momentum-interpolated face
velocities as

Fe ρeue∆y
Fn ρnvn∆x (7.45)

Similar expressions may be written for Fw and Fs . We wish to correct the face ve-
locities (and the face flow rates) such that the corrected flow rates satisfy the discrete
continuity equation. Thus, we propose face velocity corrections

ue ue ue
vn vn vn (7.46)

and the cell pressure corrections

pP pP pP (7.47)

Correspondingly, we may write face flow rate corrections

Fe Fe Fe
Fn Fn Fn (7.48)

where

Fe ρe∆yue
Fn ρn∆xvn (7.49)

We now seek to express u and v in terms of the cell pressure corrections p , and to
use these expressions to derive a pressure correction equation. From our face velocity
definitions, we write

ue ûe de pP pE
uw ûw dw pW pP
vn v̂n dn pP pN
vs v̂s ds pS pP (7.50)
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In keeping with the SIMPLE algorithm, we approximate Equations 7.50 as

ue de pP pE
uw dw pW pP
vn dn pP pN
vs ds pS pP (7.51)

by dropping the û and v̂ terms. This is analogous to dropping the ∑nb anbunb terms in
the staggered formulation.

The corresponding face flow rate corrections are

Fe ρe∆yde pP pE
Fw ρw∆ydw pW pP
Fn ρn∆xdn pP pN
Fs ρs∆xds pS pP (7.52)

We notice that the velocity corrections in Equations 7.51 correct the face velocities,
but not the cell-centered velocities. For later use, we write the cell-centered velocity
corrections by analogy:

uP duP
pW pE

2

vP dvP
pS pN

2
(7.53)

7.7.2 Pressure Correction Equation
To derive the pressure correction equation for the co-located formulation, we write the
continuity equation in terms of the corrected face flow rates F as before:

Fe Fe Fw Fw Fn Fn Fs Fs 0 (7.54)

Substituting from Equations 7.51 and 7.49 for the F values, we obtain the pressure
correction equation:

aPpP ∑
nb
anbpnb b

with

aE ρede∆y
aW ρwdw∆y
aN ρndn∆x
aS ρsds∆x
aP aE aW aN aS
b Fw Fe Fn Fs (7.56)

We see that the pressure correction equation has the same structure as that for the
staggered grid formulation. The source term in the pressure correction equation is the
mass imbalance resulting from the solution of the momentum equations.
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7.7.3 Overall Solution Procedure
The overall SIMPLE solution procedure for co-located meshes takes the following
form:

1. Guess the pressure field p .

2. Solve the u and v momentum equations using the prevailing pressure field p to
obtain u and v at cell centroids.

3. Compute the face mass flow rates F using momentum interpolation to obtain
face velocities.

4. Solve the p equation.

5. Correct the face flow rates using Equation 7.48.

6. Correct the cell-centered velocities uP and vP using Equation 7.50.

7. Correct the cell pressure using Equation 7.47. In keeping with the SIMPLE
algorithm, underrelax the pressure correction as:

p p αpp

8. Solve for other scalars φ if desired.

9. Check for convergence. If converged, stop. Else go to 2.

7.7.4 Discussion
We see that the overall SIMPLE procedure is very similar to that for staggered meshes.
However, we should note a very important difference. The pressure correction equation
contains a source term bwhich is the mass imbalance in the cell P. The computed pres-
sure corrections are designed to annihilate this mass imbalance. Thus, we are assured
corrected face flow rates in step 5 will satisfy the discrete continuity equation identi-
cally at each iteration of the SIMPLE procedure. However, the cell-centered velocities
either before or after the correction in step 6 are never guaranteed to satisfy the discrete
continuity equation. This is because the flow rates F are not written directly using u P
and vP; the momentum-interpolated values are used instead. Thus, in a co-located for-
mulation, the cell-centered velocities satisfy the discrete momentum equations, but not
the discrete continuity equation. We should also note that the cell-velocity correction
in step 7 is designed to speed up convergence, but does nothing to make u P and vP
satisfy the discrete continuity equation. By the same token, the face flow rates (and by
implication the face velocities) satisfy the discrete continuity equation at step 5 in each
iteration, and also at convergence. However, they do not satisfy a discrete momentum
equation directly. This curious disconnect between the cell-center and face velocities
is an inherent property of co-located schemes.

The solution of passive scalars φ in step 8 employs the continuity-satisfying face
flow rates F in discretizing the convective terms. The cell-centered velocities are never
used for this purpose since they do not satisfy the discrete continuity equation for the
cell.
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7.8 Underrelaxation and Time-Step Dependence
We have thus far said very little about the role of underrelaxation in developing our
co-located formulation. Majumdar [16] has shown that unless care is taken in un-
derrelaxing the face velocities, the resulting co-located formulation is underrelaxation
dependent. That is, the final solution depends on the underrelaxation employed, and
different underrelaxation factors may lead to different solutions. This is clearly ex-
tremely undesirable.

Consider the face velocity ue, which may be written as

ue ûe de pP pE (7.58)

Recall that de involves the averages of 1 auP and 1 auE , the center coefficients of the
momentum equations at points P and E. Similarly, û e also contains auP and auE in the
denominator. Let us say that ûe and de in Equation 7.40 corresponds to un-underrelaxed
values of auP and auE .

If the momentum equations are underrelaxed, the cell-centered velocities satisfy

uP α ûP duP
pW pE

2
1 α uP

uE α ûE duE
pE pEE

2
1 α uE (7.59)

Using momentum interpolation as before, we obtain

ue α ûe de pP pE 1 α
uP uE

2
(7.60)

In order for a variable φ to be underrelaxation-independent at convergence, the
underrelaxation expression must have the form

αφ 1 α φ (7.61)

At convergence, φ φ , and the above expression recovers φ regardless of what un-
derrelaxation is used.

We see that the underrelaxed value of ue does not have this form. The underrelaxed
face velocity has the form

αue 1 α ulinear (7.62)

where ulinear is the prevailing linearly interpolated face value. Since ue is never equal
to ulinear, not even at convergence, the value of ue is underrelaxation dependent.

The remedy is to use an underrelaxation of the form

ue α ûe de pP pE 1 α ue (7.63)

Here ûe and de are computed using un-underrelaxed momentum equations for cells P
and E. The face velocity is then underrelaxed separately to obtain the desired form. We
note that the interpolation requires the storage of the face velocity u e, since we cannot
underrelax ue without storing it.
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Figure 7.3: Cell Cluster for Unstructured Mesh

Similar arguments may be made about time-step dependence of co-located schemes.
Unless remedied, the steady state obtained by co-located formulations will depend on
the time step taken during the preceding unsteady process. Recall that the unsteady
schemes we used for scalar transport (and indeed all reasonable time-stepping schemes)
yield steady state solutions that are independent of the time-steps taken in getting to
steady state. A remedy similar to that for underrelaxation may be devised.

We should note that the difference between the momentum-interpolated and linearly-
interpolated face value decreases as ∆x3, as shown by our error analysis of the added
dissipation scheme. Thus, even if we did not take steps to remedy the situation, we
expect the dependence to disappear progressively as the mesh is refined.

7.9 Co-Located Formulation for Non-Orthogonal and
Unstructured Meshes

The co-located formulation presented above can be applied readily to non-orthogonal
and unstructured meshes. Consider the cells C0 and C1 in Figure 7.3. In keeping with
the co-located formulation, we store the Cartesian velocities u and v and the pressure
p at the cell centroids. We note that the direction eξ is aligned with the line joining the
centroids, and for general non-orthogonal meshes, is not parallel to the face area vector
A f . The vector eη is any direction tangential to the face.

The procedures for discretizing the u and v momentum equations on the cell are
similar to those adopted in previous chapters for the convection-diffusion equation.
The only term that needs special consideration is the pressure gradient term. Since the
cell momentum equations are derived by integrating the governing equation over the
cell, the pressure gradient term is also integrated over the cell. Applying the gradient
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theorem, we may write

∆ 0

∇pd
A
pdA (7.64)

Assuming that the pressure at the face centroid prevails over the face, the pressure
gradient term in the u and v momentum equations may be written as

∑
f
p fA f (7.65)

The face area vector is given by

A f Axi Ayj (7.66)

The pressure gradient terms in the u and v momentum equations are

i
∆ 0

∇pd i ∑
f
p fA f ∑

f
p f Ax

j
∆ 0

∇pd j ∑
f
p fA f ∑

f
p f Ay (7.67)

In keeping with our co-located mesh technique, p f is interpolated linearly to the
face. For a uniform mesh this interpolation would take the form

p f
p0 p1

2
(7.68)

For non-uniform meshes, we may use the reconstructed value

p f
p0 ∇p0 r0 p1 ∇p1 r1

2
(7.69)

where r0 and r1 are the distances from the cell centroids of cells C0 andC1 to the face
centroid. In either event, p f may be written in terms of the cell-centroid values of the
pressure. Since

∑
f

A f 0 (7.70)

it is clear that the summation in Equation 7.65 eliminates the cell pressure p 0. Thus, as
with regular meshes, the momentum equations can support a checkerboarded pressure
field. If ∇p0 and ∇p1 are computed using the same type of linear assumptions, the
reconstructed pressure value from Equation 7.69 will also behave in the same way.

For future use, let us write the pressure gradient term in the cell as

∑
f
p fA f ∇p0∆ 0 (7.71)

where ∇p0 denotes the average pressure gradient in the cell.
Having discretized the pressure gradient term, the discrete momentum equations

for the cellC0 may now be written:

au0u0 ∑
nb
aunbunb bu0 ∇p0 i∆ 0

av0v0 ∑
nb
avnbvnb bv0 ∇p0 j∆ 0 (7.72)
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Here, au0 and av0 denote the center coefficients of the u and v momentum equations and
bu0 and bv0 the source terms. The pressure gradient terms sum the face pressures on all
the faces of the cell.

7.9.1 Face Normal Momentum Equation
Let us consider the face f between the cells C0 and C1. Since it is the face normal
velocity that appears in the discrete continuity equation for cells C0 and C1, it is nec-
essary to understand the form taken by the momentum equation for the velocity in the
face normal direction. The face normal vector n is given by

n
A f
A f

nxi nyj (7.73)

LetVn
0 denote the component of the cell-centered velocity at cellC0 in the direction of

the face normal n. This velocity is given by

Vn
0 V0 n u0nx v0ny (7.74)

In a co-located variable formulation, the coefficients of the momentum equations
are equal to each other when there are no body forces present, and for most boundary
conditions. This is because the flow rates governing convection are the same for all
φ ’s. The diffusion coefficient for the u and v momentum equations is the same, and is
equal to viscosity µ . Away from the boundaries, the only difference between the center
coefficients au0 and av0 occurs because of source terms with S p components which act
preferentially in the x or y directions. At Dirichlet boundaries, the coefficient modifi-
cations for both velocity directions are the same; the same is true at inlet and outflow
boundaries. The main difference occurs at symmetry boundaries aligned with either
the x or y directions. But for these exceptions, the u momentum coefficient set ( a u0 and
aunb) are equal to the coefficients of the v momentum equation ( a v0 and avnb).

Under these circumstances, the momentum equation in the cell C0 for the velocity
in the face normal direction may be written as:

an0Vn
0 ∑

nb
annbV

n
nb bn0 ∇p0 n (7.75)

where

an0 au0 av0
annb aunb avnb (7.76)

The pressure gradient term may be written as

∑
f
p f A f

∂ p
∂n 0

∆ 0 ∇p0 n∆ 0 (7.77)

We note further that
bn0 bu0nx bv0ny (7.78)
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Dividing Equation 7.75 by an0, we may write

Vn
0 V̂ n

0
∆ 0
an0

∇p0 n (7.79)

Using similar procedures, we may write, for cell C1

Vn
1 V̂ n

1
∆ 1
an1

∇p1 n (7.80)

Here

V̂ n
0 û0nx v̂0ny
V̂ n

1 û1nx v̂1ny (7.81)

7.9.2 Momentum Interpolation for Face Velocity
The momentum interpolation procedure is applied to the normal velocity at the face.
Let the linearly interpolated face normal velocity be given by V f . On a uniform mesh

V f
Vn

0 Vn
1

2
(7.82)

For non-uniform meshes, face values of u and v may be reconstructed to the face and
averaged in the manner of Equation 7.69, and a face normal velocity found using Equa-
tion 7.74.

The momentum-interpolated face normal velocity is given by

Vf V f
∆ f
anf

∇p n ∂ p
∂n f

(7.83)

Here, the quantities ∆ f and anf represent the cell volume and center coefficient associ-
ated with the face. These may be chosen in a number of different ways, as long as the
associated truncation error is kept O ∆x3 . For the purposes of this chapter, we choose
them as

∆ f
∆ 0 ∆ 1

2

anf
an0 an1

2
(7.84)

The pressure gradient ∇p is the mean pressure gradient at the face and is given by

∇p
∇p0 ∇p1

2
(7.85)

The quantity ∂ p ∂n f is the face value of the pressure gradient. In writing Equa-
tion 7.83 we are removing the mean normal pressure gradient, and adding in a face
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pressure gradient term written. We intend to write this face pressure gradient in terms
of the adjacent pressure values p0 and p1, just like we did for regular meshes.

We realize however, that the normal gradient of pressure cannot be written purely
in terms of p0 and p1 for general non-orthogonal meshes; other neighboring values
would be involved. Only the gradient ∂ p ∂ξ may be written in terms of p 0 and p1
alone. Thus, we decompose the normal gradient into the directions ξ and η to obtain,
as in previous chapters:

∂ p
∂n f

n n
n eξ

∂ p
∂ξ f

n n
n eξ

eξ eη
∂ p
∂η f

(7.86)

We now write the gradient ∂ p ∂η f in terms of the mean pressure gradient:

∂ p
∂n f

n n
n eξ

p1 p0
∆ξ

n n
n eξ

eξ eη∇p eη (7.87)

Using
∇p eη ∇p n ∇p eξ (7.88)

and combining Equations 7.83 and 7.87, we get

Vf V f
∆ f
anf

n n
n eξ

∇p eξ
p1 p0
∆ξ

(7.89)

Thus, our manipulation results in adding a dissipation associated with the gradient
∂ p ∂ξ rather than ∂ p ∂n, since this the only gradient that can be directly associated
with the adjacent pressure difference p1 p0.

Rearranging terms, we may write

Vf V̂f d f p0 p1 (7.90)

where

V̂f V f df∇p eξ∆ξ

d f
∆ f

∆ξanf

n n
n eξ

(7.91)

7.10 The SIMPLE Algorithm for Non-Orthogonal and
Unstructured Meshes

The procedure for deriving the pressure correction closely parallels that for regular
meshes. The face flow rate is defined as

Ff ρ fV f A f ρ fVf A f (7.92)

and represents the outflow from cell C0. As before, let u and v be the solutions
to the cell momentum equations using a guessed or prevailing pressure field p . As
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before, the discrete continuity equation for the cellC0 is not satisfied by u and v . We
postulate face flow rate corrections F such that

∑
f
Ff Ff 0 (7.93)

where F are the face mass flow rates computed from the momentum-satisfying veloc-
ities u and v . As before, we postulate face normal velocity corrections

Vf d f p0 p1 (7.94)

Here the correction to V̂f has been dropped in keeping with the SIMPLE algorithm.
The corresponding face flow rate corrections are

Ff ρ f d f A f p0 p1 (7.95)

We also postulate a cell pressure correction

p0 p0 p0 (7.96)

As with regular meshes, we define cell velocity corrections

u0
∆ 0
au0

∑
f
p f Ax

v0
∆ 0
av0

∑
f
p f Ay (7.97)

with face pressure corrections

p f
p0 p1

2
(7.98)

Substituting Equations 7.94 and 7.96 into the discrete continuity equation (Equation 7.93)
yields a pressure correction equation for the cell center pressure. We may write this in
the form

aPpP ∑
nb
pnb b

where

anb ρ f d f A f

aP ∑
nb
anb

b ∑
f
Ff (7.100)

7.10.1 Discussion
The broad structure of the pressure correction equation is the same as for regular
meshes. The overall SIMPLE algorithm takes the same form, and is not repeated here.
However a few important points must be made.
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In writing our added dissipation term, we have chosen to add a dissipation involving
the term ∂ p ∂ξ , and to write this gradient explicitly in terms of p 0 p1 . The total
gradient driving the face normal velocity, however, also contains a pressure gradient
tangential to the face. But because it is not easy to write this explicitly, we have chosen
to leave it embedded in the V̂f term in Equation 7.91. The accuracy of this omission
is not a concern since the added dissipation scheme is O ∆ξ 3 accurate. However, we
should note that this choice does have consequences for convergence.

The primary consequence of this choice is that the pressure correction equation
ignores pressure corrections due to ∂ p ∂η . The ∂ p ∂η term is proportional to the
non-orthogonality of the mesh. For orthogonal meshes (e η eξ 0), the term drops
out altogether. But when the mesh is not orthogonal, the pressure correction equation
attributes to ∂ p ∂ξ the corrections that should have been attributed to ∂ p ∂η . The
final answer is the same whether we include the corrections due to ∂ p ∂η or not; only
the rate of convergence changes. Our experience shows that this approximation in the
pressure correction equation is tolerable for most reasonable meshes. Since we are
dropping the corrections to V̂f in keeping with the SIMPLE algorithm anyway, we may
think of this as an additional approximation to the coefficients of pressure correction
equation.

In the interest of clarity, one important aspect has been pushed to the background:
the linear interpolation of face pressure. For many flows, the pressure field is smooth
and a linear interpolation is adequate. In other cases, the presence of strong body force
terms, such as in swirling or buoyant flows, means that the cell pressure gradient is
steeper than that implied by linear interpolation. Since a linear interpolation underpre-
dicts the cell pressure gradient, the flow field must distort itself to provide the extra
momentum sources required to balance the body force. This can lead to distortions in
the cell-centered velocities. Improvement of co-located schemes for large-body force
problems continues to be an active area of research.

7.11 Closure
In this chapter, we have developed a co-located formulation for structured and unstruc-
tured meshes. We have seen that the primary difficulty has to do with the computation
of the face normal velocity, which is used to write the discrete continuity equation. To
circumvent checkerboarding resulting from linear interpolation of the face normal ve-
locity, we developed a momentum interpolation or added dissipation scheme. We saw
that the idea is easily extended to unstructured meshes and that a SIMPLE algorithm
may be developed using it.

At this point, we have a complete procedure capable of computing the convection
and diffusion of scalars, as well the underlying flow field. The development has been
done for general orthogonal and non-orthogonal meshes, both structured and unstruc-
tured. The scheme preserves the basic conservation principle regardless of cell shape.
Indeed we have made no assumptions about cell shape save that the cell be an arbitrary
convex polyhedron. We turn now to the problem of solving general unstructured sets
of algebraic equations which result from the unstructured mesh discretizations we have
seen in this and preceding chapters.
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Chapter 8

Linear Solvers

As we have seen in the earlier chapters, implicit schemes result in a system of linear
equations of the form

Ax b (8.1)

Here A is a N N matrix and x is a vector of the unknowns. The efficient solution of
such systems is an important component of any CFD analysis.

Linear systems also arise in numerous other engineering and scientific applications
and a large number of techniques have been developed for their solution. However, the
systems of equations that we deal with in CFD have certain distinguishing characteris-
tics that we need to bear in mind while selecting the appropriate algorithms.

One important characteristic of our linear systems is that they are very sparse, i.e.,
there are a large number of zeroes in the matrix A. Recall that the discrete equation at
a cell has non-zero coefficients for only the neighboring cells. Thus for a two dimen-
sional structured quadrilateral grid, for example, out of the N 2 entries in the matrix,
only about 5 N of them are non-zero. It would seem to be a good idea to seek solution
methods that take advantage of the sparse nature of our matrix.

Depending on the structure of the grid, the matrix might also have specific fill
pattern, i.e the pattern of location of the non-zero entries. The system of equations
resulting from a one-dimensional grid, for example, has non-zero entries only on the
diagonal and two adjacent “lines” on either side. For a mesh of 5 cells, the matrix has
the form

A

x x 0 0 0
x x x 0 0
0 x x x 0
0 0 x x x
0 0 0 x x

(8.2)

Here x denote the non-zero entries. As we shall see shortly, linear systems involving
such matrices, known as tri-diagonal matrices, can be solved easily and form the basis
of some solution methods for more general matrices as well. We also note that two
and three-dimensional structured grids similarly result in banded matrices, although
the exact structure of these bands depends on how the cells are numbered. Once again,
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it would seem advantageous to exploit the band structure of our matrix, both for storage
and solution techniques.

Another important characteristic of our linear systems is that in many instances they
are approximate. By this we mean that the coefficients of the matrix and/or the source
vector b are themselves subject to change after we have solved the equation. This
maybe because of coupling between different equations (e.g., the mass flux appearing
in convective coefficients of the energy equation), variable properties (temperature de-
pendent thermal conductivity, for example) or other non-linearities in the governing
equations. Whatever the underlying reason, the implication for the linear solver is that
it may not be really worthwhile to solve the system to machine accuracy. Since we are
going to recompute the coefficient matrix and solve the linear problem once again, it is
usually sufficient if we obtain only an approximate solution to any given linear system.
Also, as we are iterating, we usually have a good initial guess for the unknown and
linear solvers that can take advantage of this are obviously desirable.

8.1 Direct vs Iterative Methods
Linear solution methods can broadly be classified into two categories, direct or itera-
tive. Direct methods, such as Gauss elimination, LU decomposition etc., typically do
not take advanatage of matrix sparsity and involve a fixed number of operations to ob-
tain the final solution which is determined to machine accuracy. They also do not take
advantage of any initial guess of the solution. Given the characteristics of the linear
systems outlined above, it is easy to see why they are rarely used in CFD applications.

Iterative methods on the other hand, can easily be formulated to take advantage
of the matrix sparsity. Since these methods successively improve the solution by the
application of a fixed number of operations, we can stop the process when the solution
at any given outer iteration 1 has been obtained to a sufficient level of accuracy and
not have to incur the expense of obtaining the machine-accurate solution. As the outer
iterations progress and we have better initial guesses for the iterations of the linear
solver, the effort required during the linear solution also decreases. Iterative methods
are therefore preferred and we shall devote the bulk of this chapter to such methods.

8.2 Storage Strategies
As we have already noted, a large number of the entries of our coefficient matrix are
zero. Consequently, it is very inefficient to use a two dimensional array structure to
store our matrix. In this section we consider some smarter ways of storing only the
non-zero entries that will still allow us to perform any of the matrix operations that
the solution algorithm might require. The exact way of doing this will depend on the
nature of the grid.

1To distinguish the iterations being performed because of equation non-linearity and/or inter equation
coupling from the iterations being performed to obtain the solution for a given linear system, we use the term
“outer iteration” for the former and “inner iteration” or simply iteration for the latter.
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Figure 8.1: Storage Scheme for Unstructured Mesh Coefficient Matrix

For a one-dimensional grid of N cells, for example, we could store the diagonal and
the two lines parallel to it using three one-dimensional arrays of length N. Following
the notation we have used in the previous chapters, we label these arrays AP, AE and
AW, respectively. The non-zero entries of the matrix A can then be obtained as

A i i AP(i) (8.3)
A i i 1 AW(i) (8.4)
A i i 1 AE(i) (8.5)

For a two dimensional structured grid of NI NJ cells, it is usually convenient
to refer to the cells using a double index notation and therefore we could use 5 two
dimensional arrays of dimension NI NJ to store the AP, AE, AW, AN and AS
coefficients. Alternatively, one might prefer to number the cells using a single index
notation and store coefficients using 5 one-dimensional arrays of size NI NJ instead.
In either case, because of the grid structure we implicitly know the indices of the neigh-
boring cells and thus the position of these coefficients in the matrix A. It is therefore
easy to interpret any matrix operation involving the coefficient matrix A in terms of
these coefficient arrays.

For unstructured grids however, the connectivity of the matrix must be stored ex-
plicitly. Another difficulty is caused by the fact that the number of neighbors is not
fixed. Therefore we cannot use the approach mentioned above of storing coefficients
as aP, aE , aW etc. arrays. We will look at one strategy that is often used in these cases.

Consider a mesh of N cells and let ni represent the number of neighbors of cell i.
The total number of neighbor coefficients that we need to store is then given by

B
N

∑
i 1

ni (8.6)

We allocate two arrays of length B, one of integers (labelled NBINDEX) and one of
floating point numbers (labelled COEFF). We also allocate one other integer array of
length N 1, labelled CINDEX which is defined as

CINDEX(1) 1 (8.7)
CINDEX(i) CINDEX(i-1) ni 1 (8.8)
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TDMA(AP,AE,AW,B,X)

for i = 2 to N

r = AW(i)/AP(i-1);
AP(i) = AP(i) - r*AE(i-1);
B(i) = B(i) - r*B(i-1);

X(N) = B(N)/AP(N);
for i = N-1 down to 1

X(i) = (B(i) - AW(i)*X(i+1))/AP(i);

Figure 8.2: Tri-Diagonal Matrix Algorithm

The idea is that the indices of the neighbours of cell i will be stored in the array
NBINDEX at locations locations j that are given by CINDEX(i) j CINDEX(i+1).
The corresponding coefficients for these neighbors are stored in the corresponding lo-
cations in the COEFF array. Finally the center coefficient is stored in a separate array
AP of length N. This is illustrated in Fig. 8.1 which shows the contents of the CINDEX
and NBINDEX for a two dimensional unstructured grid.

8.3 Tri-Diagonal Matrix Algorithm

Although the bulk of this chapter is concerned with iterative solution techniques, for
the tridiagonal linear system arising out of a one-dimensional problem there is a partic-
ularly simple direct solution method that we consider first. The idea is essentially the
same as Gaussian elimination; however the sparse, tri-diagonal pattern of the matrix
allows us to obtain the solution in O N operations. This is accomplished in two steps.
First, the matrix is upper-triangularized, i.e., the entries below the diagonal are suc-
cessively eliminated starting with the second row. The last equation thus has ony one
unknown and can be solved. The solution for the other equations can then be obtained
by working our way back from the last to the first unknown, in a process known as
back-substitution. Using the storage strategy described by Eq. 8.3, the algorithm can
be written in the form shown in Fig. 8.3
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Figure 8.3: Structured Grid for Line by Line TDMA

8.4 Line by line TDMA
Linear systems arising from two or three dimensional structured grids also have a reg-
ular fill pattern. Unfortunately, there are no simple methods analogous to the TDMA
that we saw in the previous section for the direct solution of such systems. However,
using the TDMA we can devise iterative methods. Consider, for example, the two di-
mensional structured grid shown in Fig. 8.3. We will assume that the coefficient matrix
is stored using the strategy discussed in Sec. 8.2, i.e, in 5 two dimensional arrays AP,
AE, AW, AN and AS. The equation at point I J is then given by

AP(I,J) X(I,J) AE(I,J) X(I+1,J) AW(I,I) X(I-1,J)

AN(I,J) X(I,J+1) AS(I,J) X(I,J-1) B(I,J) (8.9)

We also assume that we have a guess for the solution everywhere. We rewrite this
equation as

AP(I,J) X(I,J) AE(I,J) X(I+1,J) AW(I,I) X(I-1,J)

B(I,J) AN(I,J) X (I,J+1) AS(I,J) X (I,J-1) (8.10)

where the superscript denotes guessed values. The right hand side of Eq. 8.10 is thus
considered to be known and only X(I,J), X(I+1,J) and X(I-1,J) are consid-
ered to be unknowns. Writing similar equations for all the cells i J i 1 NI (shown
by the dotted oval in Fig. 8.3 we obtain a system which has the same form as the tri-
diagonal system which we can then solve using TDMA. This gives us values for X(i)
for all cells i along j J line. However, unlike the one-dimensional problem, this is
not the exact solution but only an approximate one since we had to guess for values
of X(i,J+1) and X(i,J-1) in building up the tri-diagonal system. We can now
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for j = 1 to NJ

for i = 1 to NI

AP1D(i) = AP(i,j);
AE1D(i) = AE(i,j);
AW1D(i) = AW(i,j);
B1D(i) = B(i,j);
if (j > 1) B1D(i) = B1D(i) - AS(i,j)*X(i,j-1);
if (j < NJ) B1D(i) = B1D(i) - AN(i,j)*X(i,j+1);

TDMA(AP1D,AE1D,AW1D,B1D,X1D);
for i = 1 to NI

X(i,j) = X1D(i);

Figure 8.4: Line By Line TDMA Algorithm along j lines

apply the same process along the next line, j J 1. In doing so we will use the re-
cently computed values whenever X(i,J)’s are required. The overall procedure can
be described with the pseudocode shown in Fig. 8.4

Once we have applied the process for all the j lines, we will have updated the value
of each X i j . As noted above these are only approximate values but hopefully they
are better approximations than our initial guess. As in all iterative methods, we will
try to improve the solution by repeating the process. To this end, we could apply the
algorithm in Fig. 8.4 again. However, we notice that visiting j lines in sequence from
1 to NJ means that all cells have seen the influence of the boundary at y 0 but only
the cells at j NJ have seen influence of y 1 boundary. If we repeat the process in
Fig. 8.4 again, this time the cells at j NJ 1 will see this influence (since they will
use the values obtained at j NJ during the present update) but it will takes several
repetitions before cells near J 1 see any influence of the boundary at y 1. One easy
way of removing this bias is to visit the j lines in the reverse order during the second
update. With this symmetric visiting sequence we ensure that all cells in the domain
see the influence of both boundaries as soon as possible.

The sequence of operations whereby all the values of X i j are updated once is
referred to as a sweep. An iteration is the sequence that is repeated multiple number
of times. Thus for the line by line TDMA, an iteration may consist of two sweeps,
first visiting all j lines in increasing order of their index and then in decreasing order
as described above. Of course, it is not mandatory to apply the TDMA for a constant
j line. We could apply the same process along a constant i, considering only the j
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direction neighbours implicitly. Depending on the coordinate direction along which
information transfer is most critical, sweeping by visiting i or j lines might be the most
optimal. In general cases, however, it is useful to combine both. Thus one iteration
of the line by line TDMA would consist of visiting, say each of the i lines first in
increasing order and then in decreasing order followed by similar symmetric sweeps
along j lines (and k lines in three dimensional problems).

8.5 Jacobi and Gauss Seidel Methods
For matrices resulting from unstructured grids, like the one shown in Fig. 8.1, of course,
no line-by-line procedure is possible. Instead, we must use more general update meth-
ods. The simplest of these are the Jacobi and Gauss-Seidel methods. In both cases, the
cells are visited in sequence and at each cell i the value of xi is updated by writing its
equation as

Ai ixi b ∑Ai nbxnb (8.11)
where the summation is over all the neighbors of cell i. The two methods differ in the
values of the neighboring xi that are employed. In case of the Jacobi method, the “old”
values of xi are used for all the neighbors whereas in the Gauss-Seidel method, the
latest values of xi are used at all the neighbours that have already been updated during
the current sweep and old values are used for the neighbours that are yet to be visited.
As in the case of the line by line TDMA, the order of visiting the cell is reversed for
the next sweep so as to avoid directional bias.

In general the Gauss-Seidel method has better convergence characteristics than the
Jacobi method and is therefore most widely used although the latter is sometimes used
on vector and parallel hardware. Using the storage scheme outlined in Sec. 8.2, one
iteration of the Gauss-Seidel method can be expressed in the pseudo-code shown in
Fig. 8.5.

8.6 General Iterative Methods
The general principle in all iterative methods is that given an approximate solution x k,
we seek to obtain a better approximation xk 1 and then repeat the whole process. We
define the error at any given iteration as

ek x xk (8.12)

where x is the exact solution. Of course, since we don’t know the exact solution, we
also don’t know the error at any iteration. However, it is possible to check how well
any given solution satisfies the equation by examining the residual r, defined as

rk b Axk (8.13)

As the residual approaches zero, the solution approaches the exact solution. We can
determine the relation between them using Eqs. 8.12 and 8.13 as

Aek rk (8.14)
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Gauss Seidel(AP,COEFF,CINDEX,NBINDEX,B,X)

for sweep = 1 to 2

if (sweep = 1)
IBEG = 1, IEND = N, ISTEP = 1;

else
IBEG = N, IEND = 1, ISTEP = -1;

for i = IBEG to IEND stepping by ISTEP

r = B(i);
for n = CINDEX(i) to CINDEX(i+1)-1

j = NBINDEX(n);
r = r - COEFF(n)*X(j);

X(i) = r/AP(i);

Figure 8.5: Symmetric Gauss-Seidel Sweep
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Thus the error satisfies the same set of equations as the solution, with the residual r
replacing the source vector b. This is an important property that we will make use of
in devising multigrid schemes.

Using Eq. 8.14 and the definition of the error we obtain

x xk A 1rk (8.15)

Most iterative methods are based on approximating this expression as

xk 1 xk Brk (8.16)

where B is some approximation of the inverse of A that can be computed inexpensively.
For example, it can be shown that the Jacobi method is obtained when B D 1, where
D is the diagonal part of the matrix A.

Another way of expressing any iterative scheme that we will find useful in later
analysis is

xk 1 Pxk gk (8.17)

where P is known as the iteration matrix. For the Jacobi method the iteration matrix
is given by P D 1 L U while for the Gauss-Seidel method it is P D L 1U.
Here D, L and U are the diagonal, strictly lower and upper triangular parts of A ob-
tained by splitting it as

A D L U (8.18)

8.7 Convergence of Jacobi and Gauss Seidel Methods
Although the Jacobi and Gauss-Seidel methods are very easy to implement and are
applicable for matrices with arbitrary fill patterns their usefulness is limited by their
slow convergence characteristics. The usual observation is that residuals drop quickly
during the first few iterations but afterwards the iterations “stall”. This is specially
pronounced for large matrices.

To demonstrate this behavior, let us consider the following 1D Poisson equation
over a domain of length L.

∂ 2φ
∂x2 s x (8.19)

and specified Dirichlet boundary conditions φ 0 φ0 and φ L φL. Recall that this
equation results from our 1d scalar transport equation in the pure diffusion limit if we
choose a diffusion coefficient of unity. If we discretize this equation on a grid of N
equispaced control volumes using the method outlined in Chapter 3 we will obtain a
linear system of the form

1
h

3 1 0 0 0 0
1 2 1 0 0 0
...

0 0 0 1 2 1
0 0 0 0 1 3

φ1
φ2
...

φN 1
φN

hs1
2φ0
h

hs2
...

hsN 1
hsN

2φL
h

(8.20)
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Figure 8.6: Fourier Modes on N 64 grid

where h L
N and hsi represents the source term integrated over the cell.

Another simplification we make is to choose φ0 φL 0 as well as s x 0. Thus
the exact solution to this problem is simply φ x 0. We can now study the behavior of
iterative schemes by starting with arbitrary initial guesses; the error at any iteration is
then simply the current value of the variable φ . In order to distinguish the convergence
characteristics for different error profiles we will solve the problem with initial guesses
given by

φi sin
kπxi
L

(8.21)

Equation 8.21 represents Fourier modes and k is known as the wavenumber. Figure
8.6 shows these modes over the domain for a few values of k. Note that for low val-
ues of k we get “smooth” profiles while for higher wavenumbers the profiles are very
oscillatory.

Starting with these Fourier modes, we apply the Gauss Seidel method for 50 iter-
ations on a grid with N 64. To judge how the solution is converging we plot the
maximum φi (which is also the maximum error). The results are shown in Fig. 8.7(a).
We see that when we start with an initial guess corresponding to k 1, the maximum
error has reduced by less than 20% but with a guess of k 16 Fourier mode, the error
reduces by over 99% even after 10 iterations.

In general cases, our initial guess will of course contain more than one Fourier
mode. To see what the scheme does in such cases we start with an initial guess consist-
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Figure 8.7: Convergence of Gauss-Seidel method on N 64 grid for (a) initial guesses
consisting of single wavenumbers (b) initial guess consisting of multiple modes

ing of k 2 8 and 16 modes i.e.

φi
1
3

sin
2πxi
L

sin
8πxi
L

sin
16πxi
L

(8.22)

In this case we see from Fig. 8.7(b) that the error drops rapidly at first but then stalls.
Another way of looking at the effect of the iterative scheme is to plot the solution

after 10 iterations as shown in Fig. 8.8. We see that the amplitude is not significantly
reduced when the initial guess is of low wave number modes but it is greatly reduced
for the high wave number modes. Interesting results are obtained for the mixed mode
initial guess given by Eq. 8.22. We see that the oscillatory component has vanished
leaving a smooth mode error profile.

These numerical experiments begin to tell us the reasons behind the typical be-
havior of the Gauss-Seidel scheme. It is very effective at reducing high wavenumber
errors. This accounts for the rapid drop in residuals at the beginning when one starts
with an arbitrary initial guess. Once these oscillatory components have been removed
we are left with smooth error profiles on which the scheme is not very effective and
thus convergence stalls.

Using our sample problem we can also verify another commonly observed short-
coming of the Gauss-Seidel iterative scheme viz. that the convergence deteriorates
as the grid is refined. Retaining the same form of initial guess and using k 2, we
solve the problem on a grid that is twice as fine, ie., N 128. The resulting conver-
gence plot shown in Fig. 8.9 indicate that the convergence becomes even worse. On
the finer grid we can resolve more modes and again the higher ones among those con-
verge quickly but the lower modes appear more “smooth” on the finer grid and hence
converge slower. We also note from Fig. 8.9 that the converse is also true, ie., on a
coarse grid with N 32, the convergence is quicker for the same mode. It appears that
the same error profile behaves as a less smooth profile when solved on a coarser grid.
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Figure 8.8: Initial and final solutin after 10 Gauss-Seidel iterations on N 64 grid for
(a) initial guesses consisting of k 2 (b) initial guesses consisting of k 8 (c) initial
guess consisting of multiple modes

Some of the methods for accelerating convergence of iterative solvers are based upon
this property.

8.8 Analysis Of Iterative Methods
For simple linear systems like the one we used in the examples above and for simple
iterative schemes like Jacobi, it is possible to understand the reasons for the conver-
gence behaviour analyically. We will not go into details here but briefly describe some
of the important results. Using the iterative scheme expressed in the form Eq. 8.16, we
can show that the error at any iteration n is related to the initial error by the following
expression

en Pne0 (8.23)

In order for the error to reduce with iterations, the spectral radius of the iteration matrix
(which is the largest absolute eigenvalue of the matrix) must be less than one and the
rate of convergence depends on how small this spectral radius is.

The eigen values of the Jacobi iteration matrix are closely related to the eigen values
of matrix A and the two matrices have the same eigen vectors. Now, if we choose the
matrix linear system to be 2

1
h

2 1 0 0 0 0
1 2 1 0 0 0
...

0 0 0 1 2 1
0 0 0 0 1 2

φ1
φ2
...

φN 1
φN

hs1
φ0
h

hs2
...

hsN 1
hsN

φL
h

(8.24)

2 This is the system one obtains using a finite difference discretization of Eq. 8.19 with an equispaced
mesh consisting of N interior nodes and is only slightly different from the system we used in the previous
section. Both the systems have similar convergence characteristics; the reason for choosing this form instead
of Eq. 8.20 is that it is much easier to study analytically.
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Figure 8.9: Convergence of Gauss-Seidel method on different sized grids for initial
guess corresponding to k 2 mode

we can find analytical expression for the eigenvalues of the corresponding Jacobi iter-
ation matrix. They are given by

λk 1 sin2 kπ
2N k 1 2 N (8.25)

The eigenvectors of the Jacobi iteration matrix, w k turn out to be the same as the Fourier
modes we used in the previous section as starting guesses. The j th component of the
eigen vector corresponding to the eigenvalue λ k is given by

wk j sin jkπ
N

j 1 2 N (8.26)

Now, if our initial error is decomposed into Fourier modes, we can write it in terms of
these eigenvectors as

e0 ∑αkwk (8.27)

Substituing this expression in Eq. 8.16 and using the definition of eigenvalue, we obtain

en ∑αkλ
n
k wk (8.28)

We see from this expression that the k th mode of the initial error is reduced by a factor
λ nk . From Eq. 8.25 we note that the largest eigenvalue occurs for k 1 and therefore
it is easy to see why the lower modes are the slowest to converge. Also note that the
magnitude of the largest eigenvalue increases as N increases; this indicates the reason
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behind our other observation that convergence on coarser grids is better than that on
finer grids for the same mode.

Although we have analyzed the convergence behaviour of a very simple scheme on
a simple matrix, these conclusions hold true in general. The eigenvalues of the ma-
trix A as well as that of the iteration matrix play an important role in determining the
convergence characteristics. Our insistence on maintaining diagonal dominance and
positive coefficients is motivated by the requirement of keeping the spectral radius be-
low unity. Practices such as linearizing source terms and underrelaxation that we need
in order to handle non-linearities also help in reducing the spectral radius. However in
many cases, e.g., the pressure correction equation, we must handle stiff linear systems,
i.e., those with spectral radius close to 1.

Many iterative schemes have been devised to handle stiff systems. They usually in-
volve some form of preconditioning to improve the eigenvalues of the iteration matrix.
In general, these methods are a lot more complicated to implement compared to the
simple Jacobi and Gauss-Seidel methods we have studied so far. We will not discuss
any of them here but rather look at another strategy, which is based on the improved
convergence characteristics of the simple iterative schemes on coarser meshes.

8.9 Multigrid Methods
We saw in the previous section that the reason for slow convergence of Gauss-Seidel
method is that it is only effective at removing high frequency errors. We also ob-
served that low frequency modes appear more oscillatory on coarser grids and then the
Gauss-Seidel iterations are more effective. These observations suggest that we could
accelerate the convergence of these iterative linear solvers if we could somehow involve
coarser grids.

The two main questions we need to answer are (1) what problem should be solved
on the coarse grid and (2) how should we make use of the coarse grid information in the
fine grid solution. Certain constraints can be easily identified. We know that in general
the accuracy of the solution depends on the discretization; therefore we would require
that our final solution be determined only by the finest grid that we are employing.
This means that the coarse grids can only provide us with corrections or guesses to
the fine grid solution and as the fine grid residuals approach zero (i.e., the fine grid
solution approaches the exact answer) the influence of any coarse levels should also
approach zero. One consequence of this requirement is that it is enough to solve only
an approximate problem at the coarse levels since its solution will never govern the
final accuracy we achieve.

One strategy for involving coarse levels might be to solve the original differential
equation on a coarse grid. Once we have a converged solution on this coarse grid,
we could interpolate it to a finer grid. Of course, the interpolated solution will not in
general satisfy the discrete equations at the fine level but it would probably be a better
approximation than an arbitrary initial guess. We can repeat the process recursively on
even finer grids till we reach the desired grid.

The disadvantage with this strategy, known as nested iteration is that it solves the
problem fully on all coarse grids even though we are only interested in the finest grid
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solution. It also does not make use of any guess we might have for the finest level grid
from previous outer iterations. More importantly however, the physical problem may
not be well resolved on the coarse grid and thus the solution on coarse grid may not
always be a good guess for the fine grid solution. Smooth error modes may arise only
on the finer grids and then the convergence will still be limited by them.

8.9.1 Coarse Grid Correction
A more useful strategy, known as coarse grid correction is based on the error equation
(Eq. 8.14). Recall that the error e satisfies the same set of of equations as our solution
if we replace the source vector by the residual:

Ae r (8.29)

Note also that solving Eq. 8.1 with an initial guess x0 is identical to solving Eq. 8.29
with the residual r0 b Ax0 and an initial guess of zero error. Now suppose that
after some iterations on the finest grid we have a solution x. Although we don’t know
the error we do know that the error at this stage is likely to be smooth and that further
iterations will not reduce it quickly. Instead we could try to estimate it by solving
Eq. 8.29 on a coarser grid. We expect that on the coarser grid the smooth error will be
more oscillatory and therefore convergence will be better. When we have obtained a
satisfactory solution for e we can use it to correct our fine grid solution.

Of course, even on the coarse level the error (which of course now is the error
in Eq. 8.29, i.e., the error in the estimation of the fine grid error) will have smooth
components. We can now view Eq. 8.29 as a linear problem in its own right. We can
thus apply the same strategy for its solution that we used for the finest grid, i.e., solve
for its error on an even coarser mesh. This can be continued recursively on successively
coarser meshes till we reach one with a few number (2-4) of cells. At this stage we
can simply solve the linear analytically, although using Gauss-Seidel iteration usually
suffices as well.

We still have to specify exactly what we mean by solving Eq. 8.29 on a coarse grid
and how exactly we intend to use the errors estimated from the coarse levels but we can
already see that the strategy outlined above has the desired properties. First of all, note
that if the fine grid solution is exact, the residual will be zero and thus the solution of the
coarse level equation will also be zero. Thus we are guaranteed that the final solution
is only determined by the finest level discretization. In addition, since we start with
a zero initial guess for the coarse level error, we will achieve convergence right away
and not waste any time on further coarse level iterations. Another useful characteristic
of this approach is that we use coarse level to only estimate fine level errors. Thus any
approximations we make in the coarse level problem only effect the convergence rate
and not the final finest grid solution.

8.9.2 Geometric Multigrid
Having developed a general idea of how coarse grids might be used to accelerate con-
vergence, let us now look at some details. To distinguish between the matrices and
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Figure 8.10: Coarsening for 1D grid

vectors at different grid levels, we shall employ a parenthicated superscript, starting
with (0) for the finest grid and increasing it as the grid is coarsened ; a second super-
script, if present, will denote the iteration number. Thus the problem to be solved at the
level l is given by

A l x l b l (8.30)

and the residual at level l after k iterations is

r l k b l A l x l k (8.31)

We have already seen how to discretize and iterate on the finest level (l 0) grid of
N cells and compute the residual r 0 . We also know that for coarse levels (l 0),
the unknown x l represents the estimate of the error at the l 1 level and that the
source vector b l is somehow to be based on the residual r l 1 . After doing some
iterations on the coarse grid (and perhaps recursively repeating the process at further
coarse levels) we would like to make use of the errors calculated at level l to correct the
current guess for solution at the finer level. The next step is to define the exact means
of doing these coarse grid operations and the intergrid transfers.

The simplest way of obtaining the coarse grid for our sample 1D problem is to
merge cells in pairs to obtain a grid of N 2 cells, as shown in Fig. 8.10. The resulting
grid is similar to the original grid, with a cell width of 2h. We can now apply our usual
discretization procedure on the differential equation (remembering that the unknown is
a correction to the fine level unknown) and obtain the linear system of the same form
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as 8.20. The coarse level matrix is given by

A 1 1
2h

3 1 0 0 0 0
1 2 1 0 0 0
...

0 0 0 1 2 1
0 0 0 0 1 3

(8.32)

We also note from Fig. 8.10 that the cell centroid of a coarse level cell lies midway
between the centroids of its parent fine level cells. The source term for the coarse level
cell can thus be obtained by averaging the residuals at the parent cells:

b l 1
i

1
2

r l2i 1 r l2i (8.33)

This operation of transfering the residual from a fine level to the coarse level is known
as restriction and is denoted by the operator I l 1

l defined as

b l 1 Il 1
l r l (8.34)

For our equispaced grid we used averaging as the restriction operator; in the general
case we will need to use some form of interpolation operator.

We already know that the starting guess for the coarse level unknowns x l 1 0 is
zero. Thus we now have all the information to iterate the coarse level system and obtain
an esitmate for the error. The process of transfering this correction back to the finer
level is known as prolongation and is denoted by the operator I ll 1. The correction of
the solution at the fine level using the coarse level solution is written as

x l x l Ill 1x l 1 (8.35)

The simplest prolongation operator that we can use on our 1D grid (Fig. 8.10) is to
apply the correction from a coarse level cell to both the parent fine level cells, i.e. use a
zeroth order interpolation. A more sophisticated approach is to use linear interpolation;
for example, for cell 2 at the fine level we use

x 0
2 x 0

2
3
4x

1
1

1
4x

1
2 (8.36)

The strategy outlined in this section is known as geometric multigrid because we
made use of the grid geometry and the differential equation at the coarse levels in order
to arrive at the linear system to be solved. In the one dimensional case, of course,
the coarse level cells had the same type of geometry as those at the fine level and this
made the discretization process straightforward. For multidimensional cases, however,
the cell shapes obtained by agglomerating fine level cells can be very different. As
shown in Fig. 8.11 the coarse level cells may not even be convex. With such nested
grid hierarchies it may not be feasible to discretize the original differential equation on
the coarse level cells.
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(a) l=0 (b) l=1 (c) l=2

Figure 8.11: Nested Coarsening For 2D grid

(a) l=0 (b) l=1 (c) l=2

Figure 8.12: Independent Coarsening For 2D grid
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One approach to get around this problem is to use a sequence of non-nested, inde-
pendent grids, as shown in Fig. 8.12. In this case there are no common faces between
any two grids. The main problem with this approach is that the prolongation and re-
striction operators become very complicated since they involve multidimensional in-
terpolation. Also, in some instances, for example, the pressure correction equation that
we derived algebraically, we may not have a formal differential equation that can be
discretized to obtain the coarse level system. For these reasons, it is useful to devise
methods of obtaining coarse grid linear systems that do not depend on the geometry or
the differential equation. We will look at such algebraic multigrid methods in the next
section.

8.9.3 Algebraic Multigrid
The general principles behind algebraic multigrid methods are the same as those for
the geometric multigrid method we saw in the last section. The main difference is that
the coarse level system is derived purely from the fine level system without reference
to the underlying grid geometry or physical principle that led to the fine level system.
Instead of thinking in terms of agglomerating two or more fine level cells to obtain the
geometry of a coarse level cell, we speak of agglomerating the equations at those cells
to directly obtain the linear equation corresponding to that coarse cell.

We will see shortly how to select the equations to be agglomerated in the general
case. For the moment let us just consider the 1D grid and the coarse grid levels, shown
in Fig. 8.10, that we used in the geometric multigrid section above. Let i and i 1 be
the indices of the fine level equations that we will agglomerate to produce the coarse
level equation with index I. For instance, cells 1 and 2 at level 0 are combined to obtain
the equation for cell 1 at level 1. Writing out the error equation (Eq. 8.14) for indices i
and i 1 we have

A 0
i i 1e

0
i 1 A 0

i i e
0
i A 0

i i 1e
0
i 1 r 0

i (8.37)

A 0
i 1 ie

0
i A 0

i 1 i 1e
0
i 1 A 0

i 1 i 2e
0
i 2 r 0

i 1 (8.38)

Now, the multigrid principle is that the errors at level l are to be estimated from the
unknowns at level l 1. We assume that the error for both the parent cells i and i 1 is
the same and is obtained from x 1

I . Likewise, e 0
i 1 x 1

I 1 and e 0
i 2 x 1

I 1. Substituting
these relations and adding Eqs. 8.37 and 8.38 gives us the required coarse level equation
for index I:

A 0
i i 1x

1
I 1 A 0

i i A 0
i i 1 A 0

i 1 i A 0
i 1 i 1 x

1
I A 0

i 1 i 2x
1
I 1 r 0

i r 0
i 1 (8.39)

Thus we see that the coefficients for the coarse level matrix have been obtained by
summing up coefficients of the fine level matrix and without any use of the geometry
or differential equation. The source term for the coarse level cells turn out be the sum of
the residuals at the constituent fine levels cells. This is equivalent to the use of addition
as the restriction operator. Our derivation above implies zeroth order interpolation as
the prolongation operator.

185



8.9.4 Agglomeration Strategies
In the 1D case that we have seen so far, agglomeration was a simple matter of com-
bining equations at cells 2i and 2i 1 to obtain the coarse level system of equations.
For linear systems resulting from two or three dimensional structured grids, the same
idea can be applied in one or more directions simultaneously. Besides simplifying the
book-keeping this practice has the additional advantage of maintaining the penta- or
equations at a time to obtain septa-diagonal form of the linear system. This permits the
use of relaxation methods such as line-by-line TDMA on the coarse level systems as
well as the fine level systems.

For unstructured grids, however, we need to devise more general agglomeration
criteria. One useful practice is to try to combine cells that have the largest mutual
coefficients. This creates coarse level grids 3 that allow the optimal transfer of boundary
information to interior regions and thus accelerates convergence.

To implement such a coarsening procedure, we associate a coarse index with each
fine level cell and initialize it to zero. We also initialize a coarse level cell counter
C 1 We then visit the cells (or equations) in sequence, and if has not been grouped
(i.e., its coarse index is 0), group it and n of its neighbours for which the coefficient
Ai j is the largest (i.e, assign them the coarse level indexC) and increment C by 1.

We have already seen that the coefficients of the coarse level matrix are obtained by
summing up appropriate coefficients of the fine level matrix. Proceeding in the same
manner that we used to derive Eq. 8.39 we can show that

A l 1
I J ∑

i GI
∑
j GJ

Ali j (8.40)

where GI denotes the set of fine level cells that belong to the coarse level cell I. Also,
as we have seen before, the source vector for the coarse level equation is obtained by
summing up the residuals of the constituent fine level cells

b l 1
I ∑

i GI

r li (8.41)

The coarse level matrices can be stored using the same storage strategies outlined
in Sec. 8.2 for the finest level. Best multigrid performance is usually observed for
n 2, i.e., a coarse level grid that consists of roughly half the number of cells as the
finest level. If such a division is continued till we have just 2 or 3 cells at the coarsest
level, the total memory required for storing all the coarse levels is roughly equal to that
required for the finest level.

The linear systems encountered in CFD applications are frequently stiff. This stiff-
ness is a result of a number of factors: large aspect-ratio geometries, disparate grid
sizes typical of unstructured meshes, large conductivity ratios in conjugate heat trans-
fer problems, and others. The agglomeration strategy outlined above is very effective
in accelerating the convergence rate of the linear solver.

3Even though we are not concerned with the actual geometry of the coarse level grids in algebraic multi-
grid, it is nevertheless quite useful to visualize the effective grids resulting from the coarsening in order to
understand the behaviour of the method.
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Figure 8.13: Conduction in composite domain: multigrid coarsening

Consider the situation depicted in Fig. 8.13. A composite domain consists of a
low-conductivity outer region surrounding a highly conducting inner square domain.
The ratio of conductivities is 1000; a ratio of this order would occur for a copper block
in air. The temperature is specified on the four external walls of the domain. Con-
vergence of typical linear solvers is inhibited by the large anisotropy of coefficients
for cells bordering the interface of the two regions. Coefficients resulting from the
diffusion term scale as kA ∆x, where A is a typical face area and ∆x is a typical cell
length scale. For interface cells in the highly conducting region, coefficients to inte-
rior cells are approximately three orders of magnitude bigger than coefficients to cells
in the low-conducting region. However, Dirichlet boundary conditions, which set the
level of the temperature field, are only available at the outer boundaries of the domain,
adjacent to the low-conducting region. Information transfer from the outer boundary
to the interior region is inhibited because the large-coefficient terms overwhelm the
boundary information transferred through the small-coefficient terms. An agglomer-
ation strategy which clusters cell neighbors with the largest coefficients results in the
coarse levels shown in Fig. 8.13. At the coarsest level, the domain consists of a single
cell in the high-conducting region, and another in the low-conducting region. The as-
sociated coefficient matrix has coefficients of the same order. The temperature level of
the inner region is set primarily by the multigrid corrections at this level, and results in
very fast convergence.
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Figure 8.14: Orthotropic conduction: multigrid coarsening

Another example is shown in Fig. 8.14. The problem involves orthotropic conduc-
tion in a triangular domain with temperature distributions given on all boundaries [17].
The material has a conductivity kηη 0 in the η direction, aligned at π 3 radians from
the horizontal; the conductivity kξξ in the direction perpendicular to η is zero. Mesh
agglomeration based on coefficient size results in coarse-level meshes aligned with η
as shown. Since all faces with normals in the ξ direction have zero coefficients, the
primary direction of information transfer is in the η direction. Thus, the coarse level
mesh correctly captures the direction of information transfer.

We should note here that the coefficient based coarsening strategy are dersirable
even on structured grids. Athough coarse levels created by agglomerating complete
grid lines in each grid direction have the advantage of preserving the grid structure and
permitting the use of the same line-by-line relaxation schemes as used on the finest
level, they do not always result in optimal multigrid acceleration in general situations
since coefficient anisotropies are not always aligned along lines.

Algebraic multigrid methods used with sequential solution procedures have the
advantage that the agglomeration strategy can be equation-specific; the discrete coef-
ficients for the specific governing equation can be used to create coarse mesh levels.
Since the coarsening is based on the coefficients of the linearized equations it also
changes appropriately as the solution evolves. This is specially useful for non-linear
and/or transient problems. In some applications, however, the mutual coupling be-
tween the governing equations is the main cause of convergence degradation. Geomet-
ric multigrid methods that solve the coupled problem on a sequence of coarser meshes
may offer better performance in such cases.

188



8.9.5 Cycling Strategies and Implementation Issues
The attractiveness of multigrid methods lies in the fact that significant convergence
acceleration can be achieved just by using simple relaxation sweeps on a sequence of
coarse meshes. Various strategies can be devised for the manner in which the coarse
levels are visited. These cycling strategies can be expressed rather compactly using
recursion and this makes it very easy to implement them, specially using a computer
language such as C that allows recursion (i.e., a function is allowed call itself).

Mutigrid cycles can broadly be classified into two categories – (1) fixed cycles that
repeat a set pattern of coarse grid visits and (2) flexible cycles that involve coarse grid
relaxations as and when they are needed. We will look at both of these ideas next.
The general principles of these cycling strategies are applicable for both geometric and
algebraic multigrid methods but we shall concentrate on the latter.

Fixed Cycles

We have seen that the coarse level source vector is computed from the residuals at the
previous fine level and thus it changes every time we visit a coarse level. However, the
coarse level matrix is only a function of coefficients of the fine level matrix and thus
remains constant. The starting point in all fixed grid methods therefore is to compute
all the coarse level coefficients. With algebraic multigrid it is usually desirable to keep
coarsening the grid till there are only two or three cells left; for geometric multigrid the
coarsest possible grid size might be dictated by the minimum number of cells required
to reasonably discretize the governing equation.

The simplest fixed cycle is known as the V cycle and consists of two legs. In the
first leg we start with the finest level and perform a fixed number of relaxation sweeps,
then transfer the residuals to the next coarse level and relax on that level, continuing
till we reach the coarsest level. After finishing sweeps on the coarsest level we start
the upward leg, using the solution from the current level to correct the the solution
at the next finer level, then perfoming some relaxation sweeps at that finer level and
continuing the process till we reach the finest level. The two parameters defining the
V-cycle are the number of sweeps performed on the down and up legs, ν 1 and ν2
respectively. The two need not be equal; in many applications it is most efficient to
have ν1 0, i.e., to not do any sweeps on the down leg but to simply keep injecting the
residuals till the coarsest level. The coarsest level then establishes an average solution
over the entire domain which is then refined by relaxation sweeps on the upward leg.
We should note that since the coarse grids only provide an estimate of the error, it is
generally a good idea to always have non-zero ν 2 in order to ensure that the solution
satisfies the discrete equation at the current level. This cycle is graphically illustrated
in Fig. 8.15(a) where each circle represents relaxation sweeps and the up and down
arrows represent prolongation and restriction operators, respectively.

For very stiff systems, the V-cycle may not be sufficient and more coarse level
iterations are called for. This can be achieved by using a µ cycle. It is best understood
through a recursive definition. One can think of the V-cycle as a fixed grid cycle where
the cycle is recursively applied at each coarse grid if we haven’t reach the coarsest
grid. The µ-cycle can then be thought of as a cycle which is recursively applied µ
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Figure 8.15: Relaxation and Grid Transfer Sequences for Some Fixed Cycles

times at each successive level. The commonly used version is the one corresponding to
µ 2, which is also known as the W-cycle. It is illustrated in Fig. 8.15(b). Because of
the recursiveness, a W-cycle involves a lot of coarse level relaxation sweeps, specially
when the number of levels is large. A slight variant of the W-cycle, known as the F-
cycle, involves somewhat less coarse level sweeps but still more than the V-cycle. It can
be thought of as a fixed cycle where one recursively applies one fixed cycle followed
by a V-cycle at each successive level. It is illustrated in Fig. 8.15(c).

All the fixed grid cycles we have seen so far can be expressed very compactly in the
recursive pseudocode shown in Fig. 8.16 The entire linear solver can then be expressed
using the code shown in Fig. 8.17.

Here α is the termination criterion which determines how accurately the system is
to be solved and nmax is the maximum number of fixed multigrid cycles allowed. x
represents some suitable norm of the vector x. Usually the L-2 norm (i.e., the RMS
value) or the L-∞ norm (i.e., the largest value) is employed.

Flexible Cycles

For linear systems that are not very stiff, it is not always economical to use all multigrid
levels all the time in a regular pattern. For such cases the use of flexible cycles is
preferred. Here, we monitor the residuals after every sweep on a given grid level and if
the ratio is above a specified rate β , we transfer the problem to the next coarse level and
continue sweeps at that level. If the ratio is below β we continue sweeps at the current
level till the termination criterion is met. When we meet the termination criterion at
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Fixed Cycle(l, cycle type)

Perform ν1 relaxation sweeps on A l x l b l ;
if (l lmax)

r l b l A l x l ;
b l 1 Il 1

l r l ;
x l 1 0;
Fixed Cycle(l+1, cycle type);
if (cycle type = µ CYCLE)

Fixed Cycle(l+1, W CYCLE) µ 1 times;
else if (cycle type = F CYCLE)

Fixed Cycle(l+1, V CYCLE);
x l x l Ill 1x l 1 ;

Perform ν2 relaxation sweeps on A l x l b l ;

Figure 8.16: Fixed Cycle Algorithm

Solve(A 0 , x 0 , x 0 , α , cycle type)

Compute r0 b 0 A 0 x 0 ;
Compute all coarse level matrices;
for n = 1 to nmax

Fixed Cycle(0,cycle type);
Compute rn b 0 A 0 x 0 ;
if rn r0 α

return;

Figure 8.17: Driver Algorithm for Fixed Cycle
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Flexible Cycle(l)

Compute r0 b l A l x l ;
Set rold r0;
if total number of sweeps on level l not exhausted

Perform ν1 relaxation sweeps on A l x l b l ;
Compute r b l A l x l ;
if r r0 α

return;
else if r rold β and (l lmax)

Compute A l 1 if first visit to level l+1;
r l b l A l x l ;
b l 1 Il 1

l r l ;
x l 1 0;
Flexible Cycle(l+1);
x l x l Ill 1x l 1 ;

else

rold r;

Figure 8.18: Flexible Cycle Algorithm

any level, and we are not already at the finest level, the solution at that level is used
to correct the solution at the next finer level and the process continues. In practical
implementation, a limit is imposed on the number of relaxation sweeps allowed at any
level. The flexible cycle can also be described compactly in a recursive form, as shown
in Fig. 8.18

8.10 Closure
In this chapter, we examined different approaches to solving the linear equation sets
that result from discretization. We saw that the only viable approaches for most fluid
flow problems were iterative methods. The line-by-line TDMA algorithm may be used
for structured meshes, but is not suitable for unstructured meshes. However, methods
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like Gauss-Seidel or Jacobi iteration do not have adequate rates of convergence. We
saw that these schemes are good at reducing high frequency errors, but cannot reduce
low-frequency errors. By the same token, they are also inadequate on fine meshes.
To accelerate these schemes, we examined geometric and algebraic multigrid schemes,
which use coarse mesh solutions for the error to correct the fine mesh solution. These
schemes have been shown in the literature to substantially accelerate linear solver con-
vergence, and are very efficient way to solve unstructured linear systems.
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