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ABSTRACT 

 

As observed by Needleman and co-workers [1], it is still not clear to what extent the initially elastic 
cohesive surfaces are more appropriate than the initially rigid cohesive surfaces for a given 
application. In this work, an analysis where the initially elastic model is approached asymptotically 
to the initially rigid is proposed. The purpose of this analysis is to gain more insight into the 
numerical mechanisms that lead to different results using different approaches. It was found that 
convergence is only achieved when the initial cohesive stiffness is much higher than the bulk 
stiffness. When a relative low value of this cohesive stiffness is chosen, crack tip speed is delayed 
and branching is artificially increased. GM R&D report # 9650, Aug. 2003. 
 

 



 

Introduction 

Cohesive Models have been gaining significant importance in the modeling of crack propagation in 

recent years. The most commonly used technique to incorporate the cohesive zone model into a 

finite element analysis is the discrete representation of the crack which is accomplished by 

introducing cohesive surfaces along inter-element boundaries. Within this framework, these 

cohesive interfaces can be classified into two approaches: the intrinsic potential-based law used by 

Xu and Needleman [2], and the extrinsic linear law developed by Camacho and Ortiz [3]. The 

disti+nction between these two approaches is associated with the way the crack initiation and 

evolution is modeled.  

 

In the intrinsic approach, zero-thickness interface elements are embedded between volumetric 

elements from the beginning of the analysis. The tensile and shear traction in the interface elements 

are calculated from the constitutive cohesive law. The interface between two surfaces is intact until 

the interface traction reaches the maximum value. Once the maximum traction is reached, the 

interface starts failing and the traction reduces to zero up as the displacement increases up to a 

critical value according to the traction-displacement relationship. The propagation of a crack can 

thus be simulated as the consecutive failure of interface elements. These cohesive laws are often 

called “initially elastic” laws and they can have different shapes, such as exponential [2], 

trapezoidal [4] and bi-lineal [5,6].  

 

In the extrinsic approach, interface elements are introduced in the mesh only after the corresponding 

interface is predicted to start failing. Beginning the calculation with a regular mesh, the stress acting 

along the interface between two volumetric elements is monitored at any time to evaluate where 

crack will initiate. Once the stress reaches a critical value, a zero-thickness interface element is 

inserted by duplicating the nodes. Unlike the initially elastic interface elements, the initial cohesive 

response is rigid and the initial cohesive traction is equal to the critical stress [3]. Then, the interface 

opens in accordance with a prescribed traction-separation relation called “initially rigid” cohesive 

law. 

 

 

Recently, Falk et al. [1] have demonstrated that the prediction of crack branching strongly depends 

on whether the initially rigid or initially elastic approach is used. The reason why the initially rigid 

approach showed absence of crack branching is unclear. The purpose of this work is to study this 

issue using a bi-lineal initially elastic cohesive law where the initial stiffness is varied from low to 

high values without affecting the maximum cohesive traction or the cohesive energy. In this way, 

the initially elastic model is approached asymptotically to the initially rigid and, therefore, a 

detailed analysis of the material behavior can be carried out.  
 

 

2. Approach used by M. Falk, A. Needleman and J. Rice[1] 
 

In [1], Falk and co-workers compare the extrinsic approach proposed by Camacho and Ortiz [5] 

with the intrinsic approach proposed by Xu and Needleman [2]. As explained in [3], using the 

extrinsic approach, new fracture surfaces are created by splitting nodes according to a brittle 

fracture criterion. In quadratic triangular elements, mid-side nodes can only be split in one way, 

namely along the unique element boundary crossing that node. By contrast, interior corner nodes 



 

can potentially open up along multiple fracture paths, all of which need to be evaluated in turn. To 

this end, Camacho and Ortiz [3] begin the process by computing the traction t acting at the node 

across all potential fracture surfaces. If this traction satisfies the fracture criterion, the nodes 

involved in that surface are split in order to create two new surfaces. The details of the computation 

are given in [3]. As previously mentioned, this kind of interface element is called “initially rigid” 

cohesive element. 

 

For the intrinsic approach, potential cohesive surfaces are introduced along all boundaries in a finite 

element mesh where cracks may initiate and propagate. When these “initially elastic” cohesive 

surfaces are introduced along all finite element boundaries, the mechanical response clearly depends 

on the mesh spacing, as well as on physical parameters. In fact, the exponential formulation 

proposed by Needleman has the feature that the cohesive surfaces contribute to the linear elastic 

response of the body. For example, the normal traction of this law is given by the following 

expression: 
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where 
maxT is the maximum cohesive strength, 

nu is the normal displacement, 
tu is the tangential 

displacement and 
max

is the maximum separation. The initial stiffness (or spring constant in this 

law) will be given by 
0max /eTk , which is fixed by a given cohesive energy GIc and maximum 

strength 
maxT . As explained in the next section, when all the finite element boundaries are taken to 

be cohesive surfaces, the cohesive contribution to the overall stiffness has to be small compared to 

that of the volumetric constitutive relation. If h is the mesh spacing (or element size), then the 

following inequality should be satisfied  
 

hEeT // maxmax
     (2) 

 

On the other hand, the length of the cohesive element has to be small enough to resolve the cohesive 

zone length.  This cohesive zone length lcz is a measure of the length over which the cohesive 

constitutive relation plays a role. In the cohesive law proposed by Needleman [1,2] the cohesive 

element length should satisfied the following expression: 
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As shown in [1], conditions (2) and (3) cannot be satisfied simultaneously; consequently it is not 

possible to resolve the cohesive zone without affecting the compliance of the solid. In order to 

overcome this difficulty, Falk and co-workers have been forced to introduce an independent 

distance between cohesive surfaces, lc. In other words, the cohesive interfaces have not been 

included in every element boundary. Instead, they have been placed with a distance lc between each 

other, independently of h. It should be noted that the numerical simulations presented in their work, 

have been obtained using two different codes [1]. 

  



 

 

3. Approach used in this work 
 

The results presented in this report have been obtained using the finite element code FEAP, 

originally written by Zienkiewicz and Taylor [7] and modified later by Espinosa and co-workers [8-

10]. FEAP is an explicit finite element program for structural/continuum mechanics problems. Due 

to its explicit nature, it is especially efficient to solve transient dynamic problems. Six-node 

quadratic triangular continuum elements and four-node zero thickness interface cohesive elements 

are used. A detailed description of the material continuum models, contact algorithms and other 

features of this code can be found in previous works [8-10].  

 

In the present work, the technique used for the automatic insertion of interface elements in the 6-

node triangular mesh is similar to that given in [11]. Figure 1(a) shows the interface elements 

embedded between the six-node triangular elements. Figure 1(b) shows a typical calculation 

showing crack propagation and branching following the element boundaries.  

 

 

3.1 Cohesive law 

 

The bi-linear cohesive law [5, 6] is proposed for this analysis. The normal and tangential tractions 

are given by the following expressions:   
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where tn /2  and 
222

// ttnn uu is monotonically increasing and it has the 

form ,max max .  

  
     (a)                           (b)  

Figure 1: (a) Finite element mesh used with embedded “zero-thickness” cohesive elements. The continuum elements 

were shrunk for illustration purposes.  (b) Typical calculation showing the crack evolution, the black solid lines indicate 

the creation of the new surfaces as the interface elements fail. 
 



 

 

 

3.1.1 Initially elastic cohesive approach: Equation (4) describes an initially elastic cohesive law. 

The traction across the cohesive surface is a continuous function of the displacement jump that 

starts from zero when the displacement jump is zero and increases monotonically up to a critical 

value. Due to the finite stiffness at small values of the displacement jump across the cohesive 

surface (when 
crmaxu / ), the stiffness of the cohesive surfaces contributes to the linear elastic 

response of the solid.  

 

3.1.2 Initially rigid cohesive approach: The implementation in a finite element code of the initially 

rigid cohesive element, such as the one discussed in Section 2, requires adaptive insertion of new 

interface elements, node duplication and intensive bookkeeping. A possible workaround can be 

developed to use the bi-linear cohesive law of Eq. (4) with 
cr

=0 and the same pre-inserted 

interface elements, but this time, without allowing the nodes to move independently. We refer to 

those nodes as being “tied” (See Figure 2(a)). Each set of tied nodes is regularly checked to 

determine if they can be released according to a fracture criterion. If the criterion is satisfied, the 

interface element is activated and the nodes can move according to Eq. (4) and 0cr   (Figure 

2(b)). The implementation of this technique implies the identification of the nodes with same 

original coordinates. Interface elements are only active to check the fracture condition. The stresses 

from the Gauss point of the quadratic triangular elements are extrapolated to the nodes connected to 

the interface elements (See Figure 2(a)). The contribution of the stress in those nodes is translated 

into normal and tangential tractions (
nT and 

tT ) using the local system of coordinates of the 

interface elements. If these tractions satisfied the fracture criterion max

222 TTT tn  the nodes 

are released and the cohesive interface element is activated, otherwise the nodes on both potential 

surfaces of the interface elements are “tied” following the standards procedures to do so. The 

development of this technique in the code FEAP is still an on going work.  
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(a) (b) 

Figure 2: (a) Two 6-node elements with “tied” nodes. Once the normal and tangential traction in those nodes reach a 

critical value the nodes are “released”. (b) Cohesive law given by Eq. (4) when cr = 0. 

 



 

A second alternative proposed in this work is to approach initially rigid cohesive model by making 

0cr
 in Equation (4). As explained later in Section 4.1, the initial stiffness k is increased up to 

the limit k , (as 
cr 0 ). In practice, 

cr
can only be decreased until a certain value before the 

calculation becomes computational intensive and numerical instabilities are significant [10]. 

 

3.2 Initial elastic stiffness 

 

A competing requirement when initially elastic cohesive surfaces are embedded between volumetric 

elements is that the cohesive contribution should not affect the elastic compliance of the material.  

According to the traction-separation relation (T - u) of the constitutive cohesive law considering 

only normal separation, the initial stiffness is given by  

 

)/( maxmax crTk       (5) 

 

where maxT is the maximum cohesive strength, 
max

is the maximum separation and 
cr

is the critical 

displacement jump such that the interface fails when the opening displacement maxcru . Figure 

3(a) shows the curve uT represented in the non-dimensional axis max/TT and max/u .  The value 

of cr should be selected such that the elastic response of the material with interfaces is the same as 

that of the material without interfaces during reversible loading (when maxcru and 
maxTT ). 

From the numerical point of view this stiffness works as a penalty parameter. It has to be large 

enough to be effective but not so large as to provoke numerical instabilities.  

 

 
(a) (b) 

(c) 

Figure 3: (a) Traction-separation law in 1-D showing the initial stiffness k. The maximum traction takes place when 

(u/ max) = cr, where cr  can take any value from 0 to 1. (b) Needleman´s law for the normal traction. The maximum 

traction is located at 1/ maxncr u . (c) Schematics of the one-dimensional block connected with linear springs. 

The spring stiffness should be larger than the Young’s modulus of the material such that the overall stiffness is not 

affected by the presence of the springs 



 

 

In order to obtain a theoretical estimate of the right initial stiffness, a very simple example is 

considered. A 1-D block is subjected to simple force F on one of its sides and constrained on the 

other (See Figure 3(c)). The block is divided in N sub-blocks of length Li connected by springs of 

the same stiffness. Analogous to the 2D case, springs work as cohesive elements during the first 

linear stage (
maxcru ).  Therefore, the response of material with “linear” springs should be the 

same as the one of the block without springs. Let )/( EALL ii F be the deformation of each 

individual block and )/(d AkF the separation between them given by the stiffness of the springs 

(Note: For this example k represents the stiffness per unit area A such that it can be compared with 

Equation (5)). Assuming that all the sub-blocks have the same length, area and Young’s modulus 

and the springs the same stiffness, the total displacement at the right end of the block is given by  
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The separation given by the springs should be much smaller than the elastic deformation of the 

material, such that EALL /F . Then  
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If each sub-block is considered to be a finite element of length h, then the following inequality 

should be satisfied 

 

hE /k      (8) 
 

 

Unlike Needleman´s formulation, the bi-linear cohesive law is “flexible” in the sense that the initial 

stiffness can be changed without affecting the physical parameters.  The critical displacement jump 

cr can vary from 0 to 1 independently of Tmax or max. Figure 3(a) shows the traction-displacement 

law represented in the axis T and u for two different values of cr.  On the other hand, the initial 

stiffness of the exponential law (given by 0max /eTk ) can only be modified with Tmax or/and max.. 

It should be mentioned that the maximum traction in the exponential law takes place at 

1/ maxncr u .  

 

4. Case Study: Crack growth on a pre-cracked block 
 

A pre-cracked block is utilized for these analyses as shown in Figure 4. Plane strain conditions are 

assumed to prevail and a Cartesian coordinate system is used as reference with origin at the initial 

crack tip position. The length of the specimen is L and the width is 2W.  The block is loaded in uni-

axial tension with zero shear traction at the top and bottom boundaries. The tensile axis is aligned 

with the y-direction and a crack of initial length 2a0 lies along the line y=0. In our example L = W = 

3 mm and a0 = 0.25 mm. The side boundaries are stress free. The initial condition is defined by 

uniformly applied velocity gradients in the x- and y-directions with strain rates yy
  2000 s

-1
 and 

xx
  0.  
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Figure 4: Schematics of the geometry considered in this analysis.  

 

 

 
Figure 5: Evolution of the tensile stress yy at different times during the propagation and branching of the initial crack. 

The black solid lines indicate the creation of the new surfaces as the interface elements fail. Dispersion of the contours 

is artificially caused by the stresses of the nodes connected to interface elements.   

 

The velocities at the top and bottom boundaries are not altered during the simulation (these 

velocities are vy =  3 m/s). This loading does not generate waves propagating in from the top and 

bottom boundaries, although these boundaries will reflect waves generated by the propagating crack 

tip. Symmetry at x=-0.25 mm requires the displacement to be ux =0. The free surface of the initial 

crack remains traction free. In this analysis, cohesive interface elements are only embedded in the 

region indicated in Figure 4.  

 

Following the analysis of Needleman and co-workers [1,2], the elastic constants consistent with 

PMMA have been chosen: E = 3.24 GPa,   = 0.35 and  = 1190 kg/m
3
. This results in dilatational, 

shear and Raleigh wave speeds of cd = 2090 m/s, cs = 1004 m/s and  cr = 938 m/s. Following Falk 

et al. [1], the cohesive parameters used for this analysis are: Tmax = E/ 25 = 129.6 MPa, n = t = 

max = 3 m.  For these values the lcz, given by Equation (3) is lcz= 67 m. Therefore a mesh with an 

element size of h=20 m near the initial crack plane and h=0.1mm at the top and bottom boundaries 



 

has been chosen. The finite element mesh used for this analysis is shown in Figure 4. The box 

indicates the region where the cohesive interface elements were included. Note that this is a non-

structured mesh generated in such way that symmetry was not respected. However, element 

boundaries lay on the original crack plane (y = 0) so the crack is not inhibited of growing straight if 

conditions are given. All these parameters, including the boundary conditions, are kept constant 

unless otherwise indicated.  In Figure 5, the evolution of the tensile stress yy when the crack 

propagates from side to side and branches in the middle can be seen. The “broken” interface 

elements (with 1) are plotted with a black line indicating the shape and length of the crack at 

any given moment.  
 

 

4.1 Analysis of the variation of the initial stiffness k 

 

An analysis of the variation of the initial stiffness k was carried out. Values of k and cr for this 

analysis are tabulated in Table 1. For this specific material and mesh size, k should be much higher 

than mGPahE /162.0/ . The objective is to determine how large this cohesive stiffness has to 

be with respect to the material stiffness in order to achieve convergence. In other words, we can 

define the non-dimensional parameter  as the ratio between the cohesive stiffness and the material 

stiffness such as )/( hEk . Consequently, the condition in Eq. (8) becomes 1. 

 

 

k [GPa/ m] )/( hE/k  
cr

 

0.04 0.25 0.9 

0.08 0.50 0.5 

0.43 2.65 0.1 

0.54 3.33 0.08 

0.86 5.31 0.05 

4.32 26.67 0.01 

10.80 66.67 0.004 

86.40 533.34 0.0005 

 

Table 1: Initial stiffness k and ratio  (for E/h = 0.162 GPa/ m). 

 

Starting from a very low initial stiffness 25.0   (k=0.04 GPa/ m), the calculations have been 

carried out to analyze the behavior of the crack evolution as a function of the initial stiffness up to 

34.533 (See Table 1). All the simulations have been carried out until 15 microseconds. The 

same boundary and loading conditions are applied for all the cases. Material and cohesive 

parameters are the same except for the critical effective displacement jump cr that controls the 

initial stiffness. The crack evolution at different times is plotted in Figure 6 for all the eight cases 

presented in Table 1. The two cases with initial stiffness lower than the material stiffness ( 1 ) 

are presented in Figure 6(a) and (b). The crack evolution is plotted from the 6 to 14 sec (with 

1 secbetween frames). Although both cases show crack branching, the crack pattern and time of 

crack growth initiation are different. In the case with 25.0 , the crack growth initiation occurs at 

about 8 secand crack branching at 10 sec, whereas in the second case 50.0 the crack starts 

to growth at 6 sec and crack branching at 9 sec. It should be observed that, although the 



 

problem is symmetric, the crack pattern is not symmetric in any of these cases. This is essentially 

caused by the lack of symmetry of the non-structured mesh.  

 

Figures 6(c)-(h) show the rest of the calculations for 1 . These plots only show the evolution up 

to 11 sec because the crack reaches the right side of the block in less time.  Although crack 

branching occurs in all the cases, large branches are more evident for lower values of , especially 

for the cases in which the cohesive stiffness is comparable with the bulk stiffness. It can be 

observed from Figure 6(c) that the case with 65.2  shows three significant branches. On the 

other hand, the cases with 33.3  and 31.5 (Figure 6(d) and (e), respectively), develop side 

branches of short length. The only peculiarity about them is that one of the branches grows longer 

and then changes its direction to the perpendicular to the crack plane.  
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Figure 6 (a): Crack evolution for 25.0 . 

 
 



 

The cases with 1 are illustrated in Figures 6(f), (g) and (h). It is evident from these plots that 

crack patterns are similar in all the cases. The case with highest stiffness 34.533k shows some 

crack branching at the end of the block. However, instabilities after that point were found and the 

run was stop before 10 sec, therefore it is concluded that the cohesive stiffness is too high for the 

current element size and time step.  
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Figure 6 (b): Crack evolution for 50.0  

 

We can conclude that for low  (or low initial stiffness) crack branching is more significant and 

crack speed seems to be slowed down. As explained by Needleman [1,2], a drop on the crack speed 

can be seen as the energy spent to create these new surfaces. Although some branching is observed 

for the cases with 1, the crack grows from side to side in less time. As mentioned before, it is 

evident that convergence is achieved for the cases with 67.26 . For these cases, the lateral 

branches develop from the main crack with similar angles as those reported by Yu et al. [12] for 



 

similar strain rates. Hence, it can be said that when the initial stiffness k satisfies the condition of 

Eq. (6) the crack behaves in a similar manner and the response of the initially elastic cohesive 

surfaces approaches the response of the initially rigid cohesive surfaces represented here as 1. 

 

The only shortcoming is the calculation time when the initial stiffness is significantly high. As 

previously reported by Zavattieri et al. [10], time step is reduced considerably for higher values of 

the cohesive stiffness. Therefore, cases with 500 may require very small time steps. However, it 

is demonstrated here that values of 10010 give similar results.  
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Figure 6 (c): Crack evolution for 65.2  
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Figure 6 (d): Crack evolution for 33.3  
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Figure 6 (e): Crack evolution for 31.5  
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Figure 6 (f): Crack evolution for 67.26  
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Figure 6 (g): Crack evolution for 67.66  
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Figure 6 (h): Crack evolution for 34.533  

 

 
 

 

 
Figure 7: Crack and stress evolution for two extreme cases: 0.5 and 533.34. 

 

 



 

Figure 7 shows the evolution of the crack pattern and stress yy  for two extreme cases, 5.0  and 

533.34. Dispersion of the contours is artificially caused by the stresses of the nodes connected to 

interface elements.  In addition to the observation previously discussed, the stress concentration is 

more evident for the case with less branching (higher ). 

 

The evaluation of the normal and tangential cohesive tractions given by Eq. (4) takes place at the 

two Gauss points of the four-node interface element [2-6]. Once the displacement jump is equal to 

the unity, the part of the element corresponding to that Gauss point is considered broken. Once that 

condition is reached in both Gauss points, the whole element is “broken”. In Figures 6 and 7, the 

broken elements are plotted with a black line indicating the shape and length of the crack at any 

moment. If the projection on the x-axis of the Gauss points is stored at the time when the condition 

1 is satisfied, one can plot the crack tip position as a function of time, except that, when there is 

branching, one or more crack tips can exist at the same time. Figure 8 (a) shows the projection of 

the crack tip position on the x-axis for low values of . As previously observed, the crack tip speed 

is appreciably slower for those cases with low , while crack branching becomes more important. 

Figure 8(b) shows the crack tip position as a function of time for 1. For these cases, the crack 

pattern is similar and secondary cracks are much shorter. 

 

 
 

     (a)        (b) 

Figure 8: (a) Crack evolution for low values of . Crack initiation delayed and branching is more significant when 

1 . (b) Simulations with 1 show similar results.  

 

Another characteristic attributed to the initial cohesive stiffness is that the time and position of the 

crack tip where branching occurs are different in each case. Figure 9 shows the time and position of 

the crack tip when branching occurs for different values of . The initiation time for the first three 

branches is plotted in Figure 9(a). When 1, the crack seems to branch earlier than for the cases 

with lower values of . On the other hand, the position of the crack tip when branching takes place 

increases with . As observed in Figures 6-8, the crack tip speed is delayed low values of , 

therefore crack branching is also delayed and takes place closer to the original crack tip position 

than for the cases with 1. 



 

 
                                    (a)                  (b) 

Figure 9: (a) Time when branching occurs for different values of . Solid line represents the first time when crack 

branching occurs, the dashed line the second branching and so on. (b) Projection on the x-axis of the crack position 

where crack branching occurs.  
 

 
       (a)              (b) 

Figure 10: (a) Cohesive energy dissipated during the process of propagation and branching (b) Force vs time and 

Maximum force at the top boundary as a function of . The vertical dotted line indicates 1 .  

 

It is evident from Figures 6 to 9 that condition (8) ensures convergence of the analysis. However, 

only crack patterns, times and position have been compared so far. The energy absorbed by material 

separation can be easily computed by integrating the dissipated cohesive energy along the interface 

elements. Figure 10(a) shows the evolution of the cohesive energy as a function of time for different 

values of . The cases with 1 have been plotted with the same color indicating that they almost 

lead to the same result. On the other hand, the total force per unit thickness at the top and bottom 

boundaries was also recorded during the calculation and plotted in Figure 10(b).  It is perceived that 

the maximum peak load and the time where it occurs are drastically affected for low values of . 

Even the overall shape of the force-time curve changes radically for 1 . Therefore, it can be 



 

concluded that the peak force can vary, as much as 40% if the right initial stiffness is not used.  
 

 

4.2 Analysis with other values of Tmax and max 

 

The behavior of the crack evolution when other values of Tmax and max are used has been analyzed 

in this section. The main idea is to verify if the behavior of the crack as a function of the initial 

cohesive stiffness observed in previous cases is also observed with different cohesive parameters 

are used. For this analysis, the cohesive parameters used in Section 4.1 will be given as a reference 

case  (i.e., T
0

max = E/ 25 = 129.6 MPa, n = t = max = 3 m). In addition, two more pairs Tmax, 

max are considered. Case 1:  Tmax= T max/2 and max = 2 max. Case 2:  Tmax = T max ,  max = 2 max. 

Figure 11 shows the comparison between these three different cohesive laws. The idea is to 

compare the behavior of the crack for two extreme values of the initial stiffness: k = 0.04 (or 

)25.0 and k = 10.8 GPa / m (or )67.66  for each of these different sets of cohesive 

parameters.  
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            (a)                (b)                (c) 

Figure 11: Traction-separation law for different values of  Tmax, max and same initial stiffness k (a) Reference case: 

Cohesive parameters used in Section 4.1(T max, max) (b) Case 1: Tmax= T max/2 and max = 2 max . (c) Case 2: Tmax = 

T max  and max = 2 max. 
 

 
Figure 12 shows the crack pattern for Case 1  (Tmax= E/50 and max = 6 m) using 25.0 (Fig. 

12(a)) and 67.66 (Fig. 11(b)) at the time the crack tip reaches the other end of the plate. These 

cohesive parameters are such that the cohesive energy is the same as the analyzed in the previous 

section. Comparing these results with the ones shown in Figure 6(a) and (b), we can observe that the 

crack evolution is similar. Although the initial stiffness is the same, cr is different for each case 

(See Table 1). This means that the crack behavior is likely to be controlled by the initial stiffness of 

the cohesive surfaces and not by the critical displacement jump cr, which is a non-physical 

parameter. Figures 13 (a) and (b) show the crack pattern for case 2 with Tmax= E/50 and max = 6 m. 

(a) 25.0  (b) 67.66 . 
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Figure 12: Case1:   Tmax= E/50 and max = 6 m.(a) 25.0  (b) 67.66 .  Compare with Figure 6(a) and (e) 
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Figure 13: Case 2:  Tmax= E/25 and max = 6 m. .(a) 25.0  (b) 67.66 .   

 

5. Summary 
 

In this report, an analysis where the intrinsic method is approached asymptotically to the extrinsic 

method was presented. The calculations reported here show that simulations of crack branching 

with initially elastic and initially rigid cohesive elements can lead to different results. As reported 

by Falk et al. [1], the initially rigid cohesive elements do not alter the elastic response of the 

material but they inhibit crack branching. In their work, the showed simulations with two different 

codes; the calculations with initially rigid interfaces have been performed by Ortiz and co-workers 

while the calculations with initially elastic interfaces have been performed using Needleman´s code 



 

(See figure 14).  Prof. M. Ortiz mentioned that the fact that no branching was present in his 

calculation was due to an error in his code [14]. However, recent reports [12], show that the 

implementation issue was circumvent.  

 

The main problem of the cohesive law proposed by Needleman is that the initial stiffness could not 

be changed. In order to circumvent this problem, they introduced an additional length scale into the 

problem such that the element could be smaller than the cohesive zone length and at the same time 

the material stiffness was not affected by the presence of interface elements. In other words, they 

limited the number of interface elements in the mesh, such that the distance between them (given by 

lc) was such that k>>E/lc. The main limitation of this technique is that the number of potential crack 

paths was limited by lc instead of the element size (which is much less than lc). 

 

Unlike the exponential formulation proposed by Needleman, the bi-linear cohesive law used in this 

work allows the conditions of Equations (2) and (3) to be satisfied simultaneously. This means that 

the analyst can choose the element size to be as smaller as it is necessary to properly capture the 

cohesive zone length and enrich the number of potential crack paths and at the same time select cr  

such that k = f(Tmax, max, cr) >> E/h. 

 
Figure 14: Results shown by Falk, Needleman and Rice [1] for the extrinsic approach (left: initially rigid cohesive law) 

and the intrinsic approach (right: initially elastic cohesive law). The gray scale denotes the local yy-stress. The crack 

does not undergo any macroscopic branching in the initially rigid case while in the initially elastic case the crack 

bifurcates and travels off axis by many times the cohesive zone length.  
 

 

The main characteristics observed in the calculation included in this report can be summarized in 

the following way: 

 

(a) When the initial stiffness k of the cohesive surfaces has the same order of magnitude or less 

than the material stiffness, crack branching becomes more significant and crack tip speed 

decreases.  

 

(b) Similar crack patterns are observed for cases where the initial stiffness is significantly higher 

than the material. 

 
 



 

(c) The time and position of the crack tip where branching occurs are different when 1 . 

However a trend is observed when 1.  

 

(d) Maximum peak force is also affected by the stiffness of the cohesive elements. 

 

As a general comment we can mention that as long as the initial stiffness of the cohesive interfaces 

is such that the material stiffness is not affected, the intrinsic and extrinsic approach lead to the 

same results. Whether or not one technique is more expensive, from the computational point of 

view, will depend on the material and fracture properties. If  is a very high number (such that k 

>> E/h) the intrinsic approach could result in a very intensive calculation due to fact that the time 

step has to be small. In that case, the extrinsic approach, using the technique given in Section 3, 

could be a solution. In general, the intrinsic approach (with initially elastic cohesive interfaces) is 

much easier to implement than the extrinsic approach. However, for several materials, a reasonable 

value for cr can be always found such that the stiffness of the material is not affected. 

 

Recently Kubair and Geubelle [15] addressed the same problem with regards to the fundamental 

problem of the steady-state and transient mode III crack propagation. 
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