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ABSTRACT

As observed by Needleman and co-workers [1], it is still not clear to what extent the initially elastic
cohesive surfaces are more appropriate than the initially rigid cohesive surfaces for a given
application. In this work, an analysis where the initially elastic model is approached asymptotically
to the initially rigid is proposed. The purpose of this analysis is to gain more insight into the
numerical mechanisms that lead to different results using different approaches. It was found that
convergence is only achieved when the initial cohesive stiffness is much higher than the bulk
stiffness. When a relative low value of this cohesive stiffness is chosen, crack tip speed is delayed
and branching is artificially increased. GM R&D report # 9650, Aug. 2003.



Introduction

Cohesive Models have been gaining significant importance in the modeling of crack propagation in
recent years. The most commonly used technique to incorporate the cohesive zone model into a
finite element analysis is the discrete representation of the crack which is accomplished by
introducing cohesive surfaces along inter-element boundaries. Within this framework, these
cohesive interfaces can be classified into two approaches: the intrinsic potential-based law used by
Xu and Needleman [2], and the extrinsic linear law developed by Camacho and Ortiz [3]. The
disti+nction between these two approaches is associated with the way the crack initiation and
evolution is modeled.

In the intrinsic approach, zero-thickness interface elements are embedded between volumetric
elements from the beginning of the analysis. The tensile and shear traction in the interface elements
are calculated from the constitutive cohesive law. The interface between two surfaces is intact until
the interface traction reaches the maximum value. Once the maximum traction is reached, the
interface starts failing and the traction reduces to zero up as the displacement increases up to a
critical value according to the traction-displacement relationship. The propagation of a crack can
thus be simulated as the consecutive failure of interface elements. These cohesive laws are often
called “initially elastic” laws and they can have different shapes, such as exponential [2],
trapezoidal [4] and bi-lineal [5,6].

In the extrinsic approach, interface elements are introduced in the mesh only after the corresponding
interface is predicted to start failing. Beginning the calculation with a regular mesh, the stress acting
along the interface between two volumetric elements is monitored at any time to evaluate where
crack will initiate. Once the stress reaches a critical value, a zero-thickness interface element is
inserted by duplicating the nodes. Unlike the initially elastic interface elements, the initial cohesive
response is rigid and the initial cohesive traction is equal to the critical stress [3]. Then, the interface
opens in accordance with a prescribed traction-separation relation called “initially rigid” cohesive
law.

Recently, Falk et al. [1] have demonstrated that the prediction of crack branching strongly depends
on whether the initially rigid or initially elastic approach is used. The reason why the initially rigid
approach showed absence of crack branching is unclear. The purpose of this work is to study this
issue using a bi-lineal initially elastic cohesive law where the initial stiffness is varied from low to
high values without affecting the maximum cohesive traction or the cohesive energy. In this way,
the initially elastic model is approached asymptotically to the initially rigid and, therefore, a
detailed analysis of the material behavior can be carried out.

2. Approach used by M. Falk, A. Needleman and J. Rice[1]

In [1], Falk and co-workers compare the extrinsic approach proposed by Camacho and Ortiz [5]
with the intrinsic approach proposed by Xu and Needleman [2]. As explained in [3], using the
extrinsic approach, new fracture surfaces are created by splitting nodes according to a brittle
fracture criterion. In quadratic triangular elements, mid-side nodes can only be split in one way,
namely along the unique element boundary crossing that node. By contrast, interior corner nodes



can potentially open up along multiple fracture paths, all of which need to be evaluated in turn. To
this end, Camacho and Ortiz [3] begin the process by computing the traction t acting at the node
across all potential fracture surfaces. If this traction satisfies the fracture criterion, the nodes
involved in that surface are split in order to create two new surfaces. The details of the computation
are given in [3]. As previously mentioned, this kind of interface element is called “initially rigid”
cohesive element.

For the intrinsic approach, potential cohesive surfaces are introduced along all boundaries in a finite
element mesh where cracks may initiate and propagate. When these “initially elastic” cohesive
surfaces are introduced along all finite element boundaries, the mechanical response clearly depends
on the mesh spacing, as well as on physical parameters. In fact, the exponential formulation
proposed by Needleman has the feature that the cohesive surfaces contribute to the linear elastic
response of the body. For example, the normal traction of this law is given by the following

expression:
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where T, is the maximum cohesive strength, uis the normal displacement, u,is the tangential
displacement and &, is the maximum separation. The initial stiffness (or spring constant in this
law) will be given by k =T, e/d,, which is fixed by a given cohesive energy G;. and maximum
strength T, . As explained in the next section, when all the finite element boundaries are taken to

be cohesive surfaces, the cohesive contribution to the overall stiffness has to be small compared to
that of the volumetric constitutive relation. If h is the mesh spacing (or element size), then the
following inequality should be satisfied

T..x8/0.. >E/h 2

On the other hand, the length of the cohesive element has to be small enough to resolve the cohesive
zone length. This cohesive zone length I, is a measure of the length over which the cohesive
constitutive relation plays a role. In the cohesive law proposed by Needleman [1,2] the cohesive
element length should satisfied the following expression:

z( E G
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As shown in [1], conditions (2) and (3) cannot be satisfied simultaneously; consequently it is not
possible to resolve the cohesive zone without affecting the compliance of the solid. In order to
overcome this difficulty, Falk and co-workers have been forced to introduce an independent
distance between cohesive surfaces, l.. In other words, the cohesive interfaces have not been
included in every element boundary. Instead, they have been placed with a distance | between each
other, independently of h. It should be noted that the numerical simulations presented in their work,
have been obtained using two different codes [1].



3. Approach used in this work

The results presented in this report have been obtained using the finite element code FEAP,
originally written by Zienkiewicz and Taylor [7] and modified later by Espinosa and co-workers [8-
10]. FEAP is an explicit finite element program for structural/continuum mechanics problems. Due
to its explicit nature, it is especially efficient to solve transient dynamic problems. Six-node
quadratic triangular continuum elements and four-node zero thickness interface cohesive elements
are used. A detailed description of the material continuum models, contact algorithms and other
features of this code can be found in previous works [8-10].

In the present work, the technique used for the automatic insertion of interface elements in the 6-
node triangular mesh is similar to that given in [11]. Figure 1(a) shows the interface elements
embedded between the six-node triangular elements. Figure 1(b) shows a typical calculation
showing crack propagation and branching following the element boundaries.

3.1 Cohesive law

The bi-linear cohesive law [5, 6] is proposed for this analysis. The normal and tangential tractions
are given by the following expressions:
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where o= 4°€, /5, and 1= \/ﬂn /16, f + 2 4q, /5, > is monotonically increasing and it has the
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Figure 1: (a) Finite element mesh used with embedded “zero-thickness” cohesive elements. The continuum elements
were shrunk for illustration purposes. (b) Typical calculation showing the crack evolution, the black solid lines indicate
the creation of the new surfaces as the interface elements fail.
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3.1.1 Initially elastic cohesive approach: Equation (4) describes an initially elastic cohesive law.
The traction across the cohesive surface is a continuous function of the displacement jump that
starts from zero when the displacement jump is zero and increases monotonically up to a critical
value. Due to the finite stiffness at small values of the displacement jump across the cohesive

surface (when u/o,,,, < 4,,), the stiffness of the cohesive surfaces contributes to the linear elastic
response of the solid.

3.1.2 Initially rigid cohesive approach: The implementation in a finite element code of the initially
rigid cohesive element, such as the one discussed in Section 2, requires adaptive insertion of new
interface elements, node duplication and intensive bookkeeping. A possible workaround can be
developed to use the bi-linear cohesive law of Eq. (4) with A,=0 and the same pre-inserted

interface elements, but this time, without allowing the nodes to move independently. We refer to
those nodes as being “tied” (See Figure 2(a)). Each set of tied nodes is regularly checked to
determine if they can be released according to a fracture criterion. If the criterion is satisfied, the
interface element is activated and the nodes can move according to Eq. (4) and A, =0 (Figure
2(b)). The implementation of this technique implies the identification of the nodes with same
original coordinates. Interface elements are only active to check the fracture condition. The stresses
from the Gauss point of the quadratic triangular elements are extrapolated to the nodes connected to
the interface elements (See Figure 2(a)). The contribution of the stress in those nodes is translated
into normal and tangential tractions (T, and T,) using the local system of coordinates of the

interface elements. If these tractions satisfied the fracture criterion \T?+ p°T? >T__ the nodes

are released and the cohesive interface element is activated, otherwise the nodes on both potential
surfaces of the interface elements are “tied” following the standards procedures to do so. The
development of this technique in the code FEAP is still an on going work.
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Figure 2: (a) Two 6-node elements with “tied” nodes. Once the normal and tangential traction in those nodes reach a
critical value the nodes are “released”. (b) Cohesive law given by Eq. (4) when Ay = 0.



A second alternative proposed in this work is to approach initially rigid cohesive model by making
A, — 0 in Equation (4). As explained later in Section 4.1, the initial stiffness Kk is increased up to

the limit k— o, (as A, — 0). In practice, A, can only be decreased until a certain value before the
calculation becomes computational intensive and numerical instabilities are significant [10].

3.2 Initial elastic stiffness

A competing requirement when initially elastic cohesive surfaces are embedded between volumetric
elements is that the cohesive contribution should not affect the elastic compliance of the material.
According to the traction-separation relation (T - u) of the constitutive cohesive law considering
only normal separation, the initial stiffness is given by

k = TITBX /(ﬂ’cré‘rrax) (5)

where T__, is the maximum cohesive strength, o, is the maximum separation and A, is the critical
displacement jump such that the interface fails when the opening displacement u>A_¢& . Figure

Cr~ max

3(a) shows the curve T —u represented in the non-dimensional axis T /T, and u/dJ,,, . The value

of A, should be selected such that the elastic response of the material with interfaces is the same as
that of the material without interfaces during reversible loading (when u<A_6_ and T <T

Cr— max TTBX)'

From the numerical point of view this stiffness works as a penalty parameter. It has to be large
enough to be effective but not so large as to provoke numerical instabilities.
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Figure 3: (a) Traction-separation law in 1-D showing the initial stiffness k. The maximum traction takes place when
(U/Snax) = Aer, Where A, can take any value from 0 to 1. (b) Needleman’s law for the normal traction. The maximum
traction is located at A, = @, /S, ::1. (c) Schematics of the one-dimensional block connected with linear springs.

The spring stiffness should be larger than the Young’s modulus of the material such that the overall stiffness is not
affected by the presence of the springs



In order to obtain a theoretical estimate of the right initial stiffness, a very simple example is
considered. A 1-D block is subjected to simple force F on one of its sides and constrained on the
other (See Figure 3(c)). The block is divided in N sub-blocks of length L; connected by springs of
the same stiffness. Analogous to the 2D case, springs work as cohesive elements during the first

linear stage (u<A,d,,, ). Therefore, the response of material with “linear” springs should be the
same as the one of the block without springs. Let AL; =(L;F/EA)be the deformation of each

individual block and d = (F/kA) the separation between them given by the stiffness of the springs

(Note: For this example k represents the stiffness per unit area A such that it can be compared with
Equation (5)). Assuming that all the sub-blocks have the same length, area and Young’s modulus
and the springs the same stiffness, the total displacement at the right end of the block is given by

AL=Y" (%JF +> (%)F = (% + kN—AjF (6)

The separation given by the springs should be much smaller than the elastic deformation of the
material, such that AL = € F/EA . Then

NL, N
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If each sub-block is considered to be a finite element of length h, then the following inequality
should be satisfied

k >>E/h (8)

Unlike Needleman’s formulation, the bi-linear cohesive law is “flexible” in the sense that the initial
stiffness can be changed without affecting the physical parameters. The critical displacement jump
Aer can vary from 0 to 1 independently of Tpax OF Smax. Figure 3(a) shows the traction-displacement
law represented in the axis T and u for two different values of A... On the other hand, the initial
stiffness of the exponential law (given by k =T, . e/J,) can only be modified with Tpax 0r/and Smax..

It should be mentioned that the maximum traction in the exponential law takes place at
A, =€ 15, =1.

max _4

4. Case Study: Crack growth on a pre-cracked block

A pre-cracked block is utilized for these analyses as shown in Figure 4. Plane strain conditions are
assumed to prevail and a Cartesian coordinate system is used as reference with origin at the initial
crack tip position. The length of the specimen is L and the width is 2W. The block is loaded in uni-
axial tension with zero shear traction at the top and bottom boundaries. The tensile axis is aligned
with the y-direction and a crack of initial length 2a, lies along the line y=0. In our example L = W =
3 mm and ap = 0.25 mm. The side boundaries are stress free. The initial condition is defined by

uniformly applied velocity gradients in the x- and y-directions with strain rates ¢, = 2000 st and

£y =0.
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Figure 4: Schematics of the geometry considered in this analysis.
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Figure 5: Evolution of the tensile stress oy, at different times during the propagation and branching of the initial crack.
The black solid lines indicate the creation of the new surfaces as the interface elements fail. Dispersion of the contours
is artificially caused by the stresses of the nodes connected to interface elements.

The velocities at the top and bottom boundaries are not altered during the simulation (these
velocities are vy = # 3 m/s). This loading does not generate waves propagating in from the top and
bottom boundaries, although these boundaries will reflect waves generated by the propagating crack
tip. Symmetry at x=-0.25 mm requires the displacement to be uy =0. The free surface of the initial
crack remains traction free. In this analysis, cohesive interface elements are only embedded in the
region indicated in Figure 4.

Following the analysis of Needleman and co-workers [1,2], the elastic constants consistent with
PMMA have been chosen: E = 3.24 GPa, v=0.35and p = 1190 kg/m°. This results in dilatational,
shear and Raleigh wave speeds of cq = 2090 m/s, ¢s = 1004 m/s and ¢, = 938 m/s. Following Falk
et al. [1], the cohesive parameters used for this analysis are: Tmax = E/ 25 = 129.6 MPa, & = & =
Oomax = 3 um. For these values the I, given by Equation (3) is I,;= 67 um. Therefore a mesh with an
element size of h=20 xm near the initial crack plane and h=0.1mm at the top and bottom boundaries



has been chosen. The finite element mesh used for this analysis is shown in Figure 4. The box
indicates the region where the cohesive interface elements were included. Note that this is a non-
structured mesh generated in such way that symmetry was not respected. However, element
boundaries lay on the original crack plane (y = 0) so the crack is not inhibited of growing straight if
conditions are given. All these parameters, including the boundary conditions, are kept constant
unless otherwise indicated. In Figure 5, the evolution of the tensile stress oy, when the crack
propagates from side to side and branches in the middle can be seen. The “broken” interface
elements (with A >1) are plotted with a black line indicating the shape and length of the crack at
any given moment.

4.1 Analysis of the variation of the initial stiffness k

An analysis of the variation of the initial stiffness k was carried out. Values of k and A for this
analysis are tabulated in Table 1. For this specific material and mesh size, k should be much higher
than E/h =0.162 GPa/ um. The objective is to determine how large this cohesive stiffness has to
be with respect to the material stiffness in order to achieve convergence. In other words, we can
define the non-dimensional parameter & as the ratio between the cohesive stiffness and the material

stiffness such as k= &- (E /h). Consequently, the condition in Eq. (8) becomes & >>1.

k [GPa/um] Z-k/(E/h) a
0.04 0.25 0.9
0.08 0.50 0.5
0.43 2.65 0.1
0.54 3.33 0.08
0.86 5.31 0.05
4.32 26.67 0.01

10.80 66.67 0.004
86.40 533.34 0.0005

Table 1: Initial stiffness k and ratio & (for E/h = 0.162 GPa/um).

Starting from a very low initial stiffness £ =0.25 (k=0.04 GPa/um), the calculations have been

carried out to analyze the behavior of the crack evolution as a function of the initial stiffness up to
& =533.34 (See Table 1). All the simulations have been carried out until 15 microseconds. The
same boundary and loading conditions are applied for all the cases. Material and cohesive
parameters are the same except for the critical effective displacement jump A, that controls the

initial stiffness. The crack evolution at different times is plotted in Figure 6 for all the eight cases
presented in Table 1. The two cases with initial stiffness lower than the material stiffness (& <1)

are presented in Figure 6(a) and (b). The crack evolution is plotted from the 6 to 14 wusec (with
1 usecbetween frames). Although both cases show crack branching, the crack pattern and time of
crack growth initiation are different. In the case with £ =0.25, the crack growth initiation occurs at
about 8 wsecand crack branching at 10 zsec, whereas in the second case & = 0.50 the crack starts
to growth at 6 wsec and crack branching at 9 gsec. It should be observed that, although the



problem is symmetric, the crack pattern is not symmetric in any of these cases. This is essentially
caused by the lack of symmetry of the non-structured mesh.

Figures 6(c)-(h) show the rest of the calculations for £ >1. These plots only show the evolution up
to 11 wusec because the crack reaches the right side of the block in less time. Although crack
branching occurs in all the cases, large branches are more evident for lower values of &, especially

for the cases in which the cohesive stiffness is comparable with the bulk stiffness. It can be
observed from Figure 6(c) that the case with & =2.65 shows three significant branches. On the

other hand, the cases with £=3.33 and & =5.31(Figure 6(d) and (e), respectively), develop side

branches of short length. The only peculiarity about them is that one of the branches grows longer
and then changes its direction to the perpendicular to the crack plane.

6 pusec 7 psec 8 usec

£=0.25
(k=0.04 Gpa/um)

9 usec 10 pusec 11 psec

12 psec 13 psec 14 psec

—< s —< e

Figure 6 (a): Crack evolution for & = 0.25.



The cases with £ >>1 are illustrated in Figures 6(f), (g) and (h). It is evident from these plots that
crack patterns are similar in all the cases. The case with highest stiffness k =533.34 shows some
crack branching at the end of the block. However, instabilities after that point were found and the
run was stop before 10 usec, therefore it is concluded that the cohesive stiffness is too high for the
current element size and time step.

6 psec 7 psec 8 usec

£=0.50
(k= 0.08 Gpa/um)

9 usec 10 pusec 11 psec

12 psec 13 psec 14 psec

S

Figure 6 (b): Crack evolution for & =0.50

We can conclude that for low & (or low initial stiffness) crack branching is more significant and

crack speed seems to be slowed down. As explained by Needleman [1,2], a drop on the crack speed
can be seen as the energy spent to create these new surfaces. Although some branching is observed
for the cases with & >>1, the crack grows from side to side in less time. As mentioned before, it is

evident that convergence is achieved for the cases with £ >26.67. For these cases, the lateral
branches develop from the main crack with similar angles as those reported by Yu et al. [12] for



similar strain rates. Hence, it can be said that when the initial stiffness k satisfies the condition of
Eq. (6) the crack behaves in a similar manner and the response of the initially elastic cohesive
surfaces approaches the response of the initially rigid cohesive surfaces represented here as & >>1.

The only shortcoming is the calculation time when the initial stiffness is significantly high. As
previously reported by Zavattieri et al. [10], time step is reduced considerably for higher values of
the cohesive stiffness. Therefore, cases with £ > 500 may require very small time steps. However, it

is demonstrated here that values of & ~10—100 give similar results.

6 psec 7 psec 8 usec

£=2.65
(k=0.43 Gpa/um)

9 usec 10 psec 11 psec

e | -

Figure 6 (c): Crack evolution for £ = 2.65
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£=3.33
(k=0.54 Gpa/um)
9 usec 10 pusec 11 psec
[ \
Figure 6 (d): Crack evolution for & = 3.33
6 usec 7 pusec 8 usec
— ——— v———'——;'—A—A—l—-L
£=5.31
(k=0.86 Gpa/um)
9 usec 10 pusec 11 psec

Figure 6 (e): Crack evolution for £ =5.31
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= S
I T
Figure 6 (f): Crack evolution for £ = 26.67
6 usec 7 nsec 8 usec
£=66.67
(k=10.80 Gpa/um)
9 usec 10 psec 11 psec

Figure 6 (g): Crack evolution for £ = 66.67



6 usec 7 nsec 8 usec

JN

£ =533.34
(k=86.40 Gpa/um)

9 usec

Figure 6 (h): Crack evolution for & =533.34

Figure 7: Crack and stress evolution for two extreme cases: & =0.5 and 533.34.



Figure 7 shows the evolution of the crack pattern and stress o, for two extreme cases, & =0.5 and

533.34. Dispersion of the contours is artificially caused by the stresses of the nodes connected to
interface elements. In addition to the observation previously discussed, the stress concentration is
more evident for the case with less branching (higher &).

The evaluation of the normal and tangential cohesive tractions given by Eq. (4) takes place at the
two Gauss points of the four-node interface element [2-6]. Once the displacement jump is equal to
the unity, the part of the element corresponding to that Gauss point is considered broken. Once that
condition is reached in both Gauss points, the whole element is “broken”. In Figures 6 and 7, the
broken elements are plotted with a black line indicating the shape and length of the crack at any
moment. If the projection on the x-axis of the Gauss points is stored at the time when the condition
A >1 is satisfied, one can plot the crack tip position as a function of time, except that, when there is
branching, one or more crack tips can exist at the same time. Figure 8 (a) shows the projection of
the crack tip position on the x-axis for low values of &. As previously observed, the crack tip speed
is appreciably slower for those cases with low & while crack branching becomes more important.
Figure 8(b) shows the crack tip position as a function of time for £ >>1. For these cases, the crack

pattern is similar and secondary cracks are much shorter.

gray curves comrespond to £ >» 1 gray curves comrespondto £<1 or& -1

3
*
25k £=533.34 M e
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5 5
5 15
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X X
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4 5 8 10 12 14 6 E 10
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(a) (b)
Figure 8: (a) Crack evolution for low values of & . Crack initiation delayed and branching is more significant when

& <1, (b) Simulations with & >> 1 show similar results.

Another characteristic attributed to the initial cohesive stiffness is that the time and position of the
crack tip where branching occurs are different in each case. Figure 9 shows the time and position of
the crack tip when branching occurs for different values of £. The initiation time for the first three

branches is plotted in Figure 9(a). When & >>1, the crack seems to branch earlier than for the cases
with lower values of £. On the other hand, the position of the crack tip when branching takes place
increases with £. As observed in Figures 6-8, the crack tip speed is delayed low values of &,

therefore crack branching is also delayed and takes place closer to the original crack tip position
than for the cases with & >>1.
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Figure 9: (a) Time when branching occurs for different values of & . Solid line represents the first time when crack

branching occurs, the dashed line the second branching and so on. (b) Projection on the x-axis of the crack position
where crack branching occurs.
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It is evident from Figures 6 to 9 that condition (8) ensures convergence of the analysis. However,
only crack patterns, times and position have been compared so far. The energy absorbed by material
separation can be easily computed by integrating the dissipated cohesive energy along the interface
elements. Figure 10(a) shows the evolution of the cohesive energy as a function of time for different
values of £ . The cases with £ >>1 have been plotted with the same color indicating that they almost
lead to the same result. On the other hand, the total force per unit thickness at the top and bottom
boundaries was also recorded during the calculation and plotted in Figure 10(b). It is perceived that
the maximum peak load and the time where it occurs are drastically affected for low values of ¢&.

Even the overall shape of the force-time curve changes radically for & <1. Therefore, it can be



concluded that the peak force can vary, as much as 40% if the right initial stiffness is not used.

4.2 Analysis with other values of Tnax and dmax

The behavior of the crack evolution when other values of Trax and dnax are used has been analyzed
in this section. The main idea is to verify if the behavior of the crack as a function of the initial
cohesive stiffness observed in previous cases is also observed with different cohesive parameters
are used. For this analysis, the cohesive parameters used in Section 4.1 will be given as a reference
case (i.e., T’max = E/ 25 = 129.6 MPa, & = & = &max = 3 4m). In addition, two more pairs Tmax,
Smax are considered. Case 1: Tmna= Tmad2 and Snax = 260 max. Case 2: Trax = Tomax s Smax = 26 max-
Figure 11 shows the comparison between these three different cohesive laws. The idea is to
compare the behavior of the crack for two extreme values of the initial stiffness: k = 0.04 (or
£=0.25)and k = 10.8 GPa / um (or £=66.67) for each of these different sets of cohesive

parameters.

T . =E25

T . =E25
T ax = E/50
- - -
G’ \ 8,0 = 3 UM G l=G, Gi’=2G\’
u u Smax =6 pum u Smax =6 pm
(@) (b) ©

Figure 11: Traction-separation law for different values of Tpax dnax @nd same initial stiffness k (a) Reference case:
Cohesive parameters used in Section 4.1(T%max, 6'mad) (B) Case 1: Toaw= Tnad2 and Smax = 28max - (€) Case 2: Tpax =
T0max and Spax = 2éﬂmax-

Figure 12 shows the crack pattern for Case 1 (Tmax= E/50 and &nax = 6 um) using & =0.25 (Fig.
12(a)) and & =66.67 (Fig. 11(b)) at the time the crack tip reaches the other end of the plate. These
cohesive parameters are such that the cohesive energy is the same as the analyzed in the previous
section. Comparing these results with the ones shown in Figure 6(a) and (b), we can observe that the
crack evolution is similar. Although the initial stiffness is the same, A is different for each case
(See Table 1). This means that the crack behavior is likely to be controlled by the initial stiffness of
the cohesive surfaces and not by the critical displacement jump A, which is a non-physical
parameter. Figures 13 (a) and (b) show the crack pattern for case 2 with Ta= E/50 and dnax = 6 pm.
(@ £=0.25 (b) £ =66.67.
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Figure 12: Casel: Tpa= E/50 and Syax = 6 m.(a) & = 0.25 (b) £ =66.67 . Compare with Figure 6(a) and (e)
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Figure 13: Case 2: Tyu= E/25 and dnex = 6 1m. .(a) £ =0.25 (b) £ = 66.67 .

5. Summary

In this report, an analysis where the intrinsic method is approached asymptotically to the extrinsic
method was presented. The calculations reported here show that simulations of crack branching
with initially elastic and initially rigid cohesive elements can lead to different results. As reported
by Falk et al. [1], the initially rigid cohesive elements do not alter the elastic response of the
material but they inhibit crack branching. In their work, the showed simulations with two different
codes; the calculations with initially rigid interfaces have been performed by Ortiz and co-workers
while the calculations with initially elastic interfaces have been performed using Needleman’s code



(See figure 14). Prof. M. Ortiz mentioned that the fact that no branching was present in his
calculation was due to an error in his code [14]. However, recent reports [12], show that the
implementation issue was circumvent.

The main problem of the cohesive law proposed by Needleman is that the initial stiffness could not
be changed. In order to circumvent this problem, they introduced an additional length scale into the
problem such that the element could be smaller than the cohesive zone length and at the same time
the material stiffness was not affected by the presence of interface elements. In other words, they
limited the number of interface elements in the mesh, such that the distance between them (given by
Ic) was such that k>>E/Il.. The main limitation of this technique is that the number of potential crack
paths was limited by |; instead of the element size (which is much less than I).

Unlike the exponential formulation proposed by Needleman, the bi-linear cohesive law used in this
work allows the conditions of Equations (2) and (3) to be satisfied simultaneously. This means that
the analyst can choose the element size to be as smaller as it is necessary to properly capture the
cohesive zone length and enrich the number of potential crack paths and at the same time select A
such that kK = f(Tmax, dmaxAcr) >> E/h.

Figure 14: Results shown by Falk, Needleman and Rice [1] for the extrinsic approach (left: initially rigid cohesive law)
and the intrinsic approach (right: initially elastic cohesive law). The gray scale denotes the local c,-stress. The crack
does not undergo any macroscopic branching in the initially rigid case while in the initially elastic case the crack
bifurcates and travels off axis by many times the cohesive zone length.

The main characteristics observed in the calculation included in this report can be summarized in
the following way:

(a) When the initial stiffness k of the cohesive surfaces has the same order of magnitude or less
than the material stiffness, crack branching becomes more significant and crack tip speed
decreases.

(b) Similar crack patterns are observed for cases where the initial stiffness is significantly higher
than the material.



(c) The time and position of the crack tip where branching occurs are different when &£ <1.
However a trend is observed when & >>1.

(d) Maximum peak force is also affected by the stiffness of the cohesive elements.

As a general comment we can mention that as long as the initial stiffness of the cohesive interfaces
is such that the material stiffness is not affected, the intrinsic and extrinsic approach lead to the
same results. Whether or not one technique is more expensive, from the computational point of
view, will depend on the material and fracture properties. If £ is a very high number (such that k

>> E/h) the intrinsic approach could result in a very intensive calculation due to fact that the time
step has to be small. In that case, the extrinsic approach, using the technique given in Section 3,
could be a solution. In general, the intrinsic approach (with initially elastic cohesive interfaces) is
much easier to implement than the extrinsic approach. However, for several materials, a reasonable
value for A, can be always found such that the stiffness of the material is not affected.

Recently Kubair and Geubelle [15] addressed the same problem with regards to the fundamental
problem of the steady-state and transient mode 111 crack propagation.
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