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ABSTRACT

In the present work, the discrete dislocation and cohesive zone models are combined to
analyze small scale yielding around a crack tip under mode | loading conditions. The crack tip is
prevented from growing (although it is allowed to open) through application of a suitably high value
of the peak opening stress. The peak stress and corresponding normal separation are specified by
a cohesive zone law that governs decohesion ahead of the crack tip. Plastic deformation is limited
to a small process window that surrounds the stationary crack tip. We specifically examined some
limiting case solutions for extreme obstacle densities and slip plane spacings within the small
strain, discrete dislocation framework: these solutions have not previously been investigated to
sufficient detail. We examined materials that are representative of face-centered cubic (FCC) and
body-centered cubic (BCC) materials from the standpoint that they capture only two-dimensional
stress states in what are otherwise three-dimensional stress states in real materials. The ultimate
goal of this work is to generate cohesive zone laws that contain information from multiple length
scales to model failure processes involving interfacial separation (e.g. coating delamination,
intergranular and transgranular fracture, debonding of hard particles, etc.). This work was
conducted as part of the GM/Brown Collaborative Lab. R&D report# 9649, Aug. 2003



Introduction

The mechanisms of interfacial separation are complicated. These mechanisms involve,
among other things, the breaking of bonds at the atomic scale and the nucleation, propagation,
and interaction of dislocations with themselves and with obstacles within the matrix. Dislocations
are responsible for plastic deformation fields around an evolving crack tip. These features require
that decohesion in materials be addressed from a multi-scale standpoint. A purely atomistic
approach (i.e. without mechanical defects), for example, leads to values of the peak interfacial
opening stress of the order of 10GPa [1]. This is typically several orders of magnitude larger than
what is observed in experiments. Plastic deformation during interfacial separation is likely to lower
the atomistically-predicted peak opening stress. This requires that phenomena at both length
scales be investigated and incorporated into an interfacial constitutive law that governs material
separation. Such constitutive laws are current topic of research in the materials and mechanics
communities.

In the present work, we focus on the effects of obstacle density and slip plane spacing on the
continuum problem of dislocation nucleation, movement, pinning and annihilation in the vicinity of
crack tip. The crack tip is allowed to open, but it is prevented from growing through application of a
suitably high value of the peak opening stress. The peak stress and corresponding normal
separation are specified by a cohesive zone law that is based upon the universal binding energy
relation [2]. This law governs decohesion ahead of the crack tip. Plastic deformation is limited to a
small process window that surrounds the stationary crack tip. We specifically examined some
limiting case solutions for extreme obstacle densities and slip plane spacings within the small
strain, discrete dislocation framework outlined in [3]: these solutions have not previously been
investigated to sufficient detail. We examined materials that are representative of FCC and BCC
crystals from the standpoint that they capture only two-dimensional stress states in what are
otherwise three-dimensional stress states in real materials. These materials are therefore referred
to as “FCC-like” and “BCC-like.” The discrete dislocation approach consists of writing the stresses
and strains as a superposition of fields due to the discrete dislocations (which do not necessarily
satisfy the boundary conditions) and image fields that contain the necessary degrees of freedom to
satisfy the boundary conditions. An incremental finite element method using quadrilateral elements
was used to solve for the image fields [4]. The elasticity solution for edge dislocations in a half-
space was used [3]. Nucleation, annihilation and movement of dislocations along specified slip
planes were governed by a set of constitutive rules. The active slips planes were initially
dislocation free.

This work is a precursor to the next phase of the coating delamination component of the



Brown Collaborative Lab in which we shall remove the crack altogether, and apply a uniform
tension to the edges of the bar. An atomistically-derived cohesive zone law will then be prescribed
(instead of the heuristically-formulated cohesive zone law used in the present work) that will
simulate decohesion at aluminum/diamond interfaces: this law has previously been reported in [1].
The goal of this work is to derive a new cohesive zone law that incorporates the effects of
dislocation nucleation, movement/pinning, and annihilation as well as chemical bonding effects
from the atomic scale, that can be used in applications where failure processes involving interfacial
separation are to be modeled (e.g. coating delamination, intergranular and transgranular fracture,
and debonding of hard particles). Lessons learned from this proposed work can be applied to the
development of multiscale cohesive laws, including connections to crack propagation analysis in
continuum and homogeneous materials.

Method of analysis

In this analysis, a tensile bar with a pre-existing crack is subjected to simple tension as
shown in Fig. 1(a). As shown in Fig. 1(b), plasticity is confined to a rectangular window surrounding
the crack tip. Plastic flow is due only to the creation, motion and annihilation of discrete
dislocations, and there are no dislocations beyond the boundaries of this window. The dislocations
are treated as line singularities in an elastically isotropic material, with Young’s modulus E and
Poisson’s ratio v. Multiple slip systems are accounted for, with slip planes being oriented
symmetrically about the crack plane. Interfacial decohesion ahead of the crack tip is modeled using
a cohesive zone framework where a traction-displacement separation relation describes the
characteristics of the material in response to an applied traction [11]. The boundary conditions are
imposed by displacements corresponding to the isotropic elastic mode | singular field remote from
the crack tip (K, -field). According to the classic theory of linear elastic fracture mechanics, the
displacement components on the remote boundary are prescribed to be:
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where r =X/ +X;, @=tan™(x,/x) and x=E/2(l+v), with Cartesian coordinates measured
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relative to the crack tip. Since boundary conditions are described in terms of the stress intensity
factor K, , the problem does not need to be described by the applied load o, and the dimensions
of the bar.



Cohesive Zone Laws

The Cohesive Zone Model (CZM) was first proposed by Dugdale [5] and Barenblatt [6] to
describe material degradation and separation in a process zone in front of a crack tip in brittle
materials. Since then, fracture processes in many different materials, (e.g. polymers, concrete,
ceramics and composites), have been modeled with a cohesive crack. The essence of this model
is the description of the non-linearity inherent in decohesion by means of a relationship between
the cohesive traction and the crack opening. The constitutive description of the surrounding
materials differs from that within the process zone and is introduced to avoid singular stresses
around the crack as compared to linear-elastic fracture mechanics (LEFM). The model was used in
the framework of finite element method by Needleman [7] to simulate the decohesion of a
viscoplastic materials from a rigid substrate.

The cohesive model is introduced through cohesive ‘“interface” elements in the finite element
mesh. These zero thickness interface elements are embedded along element boundaries and are
used to simulate the initiation of cracks and subsequent large sliding, opening and closing of
cracked surfaces. The model assumes that a perfect interface between two surfaces carries forces
that oppose separation and shear between them until decohesion. Once decohesion occurs, the
two surfaces behave as distinct entities. The propagation of a crack is therefore simulated as the
consecutive failure of interface elements. The cohesive relationship is expressed in terms of an
effective opening displacement and an effective traction. The magnitude of the opposing forces
before decohesion is a function of the relative normal and shear displacement jumps between the
two surfaces.

The cohesive constitutive law used for this was obtained through differentiation of the
universal binding energy relation (an approximation of the old Rydberg function) proposed by Rose
etal. [2]. This is
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where A is the normal separation of the cohesive surface, T is the corresponding traction, and X,
is the length of the cohesive interface. In Eq. 2, o, is the maximum cohesive strength, and o,is
the critical value of the normal separation in which the traction reaches its maximum value. Note
thato,,, and &, are the intrinsic cohesive parameters of the material. Since only pure Mode |
opening is considered in the present work, the tangential traction is neglected. As shown in Fig.
1(b), the normal to the cohesive surface is parallel to the x,-axis so that, with the assumed



symmetry, the opening of the cohesive surface is given by A, =2u,. The cohesive surface is only
defined from x,=0 to X.. For X, =X., symmetry conditions are prescribed, such that u, =0and
T, =0. Note that the area under the T vs. A curve is the ideal work of adhesion (or work of
separation) and is given by the following expression:

¢I’1 = J‘OOOTH (An)dAn = eamaxé‘n (3)

Discrete Dislocation Theory

Within the process window of Fig. 1(b), dislocations are treated as line singularities immersed in an
elastically isotropic material. The quasi-static deformation process leads to the generation, motion
and annihilation of these dislocations as governed by a set of constitutive rules. Assuming
dislocation glide only, the variation of the potential energy of the body due to infinitesimal variations
of the Ith dislocation is governed by the Peach-Koehler force:
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with n" the slip plane normal and the Burgers vector b of dislocation I. The direction of this force
is in the slip plane and normal to the dislocation line. The Peach-Koehler force includes the long-
range interactions with all other dislocations in the material. It is this force that will determine the
evolution of the dislocation structure, accounting for glide, generation, annihilation and pinning at
obstacles according to a set of rules to be discussed shortly.

The magnitude of the glide velocity v of dislocation I is taken to be linearly related to the Peach-
Koehler force through the drag relation,

fO) = gyM (%)

where B is the drag coefficient. Near dislocation pile-ups the position of dislocations is unstable
leading to high velocity oscillatory motions. In order to avoid these irrelevant vibrations, a cut-off
velocity is applied. For the material parameters used in this work, Cleveringa et al. [3] have found
that a cut-off velocity of 20 m/s is low enough to allow substantially increased time steps and high
enough so as not to significantly affect the results. New dislocation pairs are generated by
simulating Frank-Read sources. The initial dislocation segment of a Frank-Read source bows out
until it produces a new dislocation loop and a replica of itself (See Figure 2(a)). The Frank-Read



source is modeled in terms of a critical value of the Peach-Koehler force, the time it takes to
generate a dislocation loop and the size of the generated loop. As shown in Figure 2(b) for two
dimensions, this is simulated by point sources that generate a dislocation dipole when the
magnitude of the Peach-Koehler force at the source exceeds a critical value 7, 0 during a period
of time t,,.. The distance L, between the dislocations is given by
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At this distance, the shear stress of one dislocation acting on the other is balanced by the slip
plane shear stress 7, ,.. Two dislocations with opposite Burgers vector will annihilate when they
are sufficiently close together. This is modeled by eliminating two dislocations when they are within
a material-dependent, critical annihilation distance L. Obstacles to dislocation motion are modeled
as fixed points on a slip plane. Such obstacles account for the effects of small precipitates or
dislocations on other slip systems in blocking slip. Pinned dislocations can only pass the obstacles
when their Peach-Koehler force exceeds an obstacle dependent value, 7, 0.

It is noted that the above rules for dislocation evolution are intended to incorporate short-
range effects at an atomic scale, which a discrete dislocation model could not otherwise resolve.
Short-range interactions between dislocations on different slip planes, even near slip plane
junctions, are not accounted for separately in this analysis; such dislocations only interact through
their long-range elastic fields.

When a dislocation glides into the open crack it can disappear from the material. We model

this by taking the dislocation out of the system. The number of dislocations that leave each slip
plane is stored. Since the analytical formulas used for the stress and displacement describe the
dislocation in a half-space with a traction-free surface, a dislocation located at the surface makes
no contribution to the stress field. However, there is a contribution to the displacement field, with a
step of b/2 across the slip plane at the surface.
Because of the assumed symmetry, there is a mirror dislocation for each dislocation in the region
analyzed numerically. This mirror dislocation does not need to be accounted for explicitly when
superimposing the fields of all dislocations, for example as in the Peach-Koehler force AR
Rather, its presence is accounted for through the symmetry boundary conditions. What does need
to be accounted for in the dislocation analysis is that when a dislocation crosses the closed crack
plane, it leaves the plasticity region, but, due to symmetry, a mirror dislocation enters into the
system along the mirror slip plane.



Incremental analysis

The stress and deformation fields are obtained in an incremental manner as described in
detail by Cleveringa et al. [3]. In each time increment, the energy stored in the material must be
balanced by the energy due to the applied and cohesive tractions. The dislocation distribution is
updated according to the above rules for dislocation motion, generation, annihilation and pinning,
and the increment in the fields is solved from the incremental version of the virtual work equation:
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where V is the volume of the region analyzed, Sy is the external surface and S, is the surface

across which cohesive tractions operate. {u}' =(u,,u,) is the displacement field vector and
{A}T = (An , AI) is the displacement jump vector across the cohesive surface. The stress and strain
vectors are given by {o}' =(0y,,0,.0,) and {g}' =(s,,€,.5,), respectively. The o are the

components of the stress tensor, and the strain is defined as ¢, = 1/ (u, ; +u;, ). The factor of 1 in
L 2

Eq. (7) is given by the symmetry of the problem: only one half of the work in the cohesive surface

contributes to the work in the region analyzed.

As discussed in Cleveringa et al. [3], the velocity, strain-rate and stress-rate fields are written as
the superposition of two fields,

U=U; +0;, & =& +&, Oy=0; +0; 8)

The (7) fields are the fields due to the individual dislocations in their current configuration; this gives
rise to tractions 'F, and displacements L]i on the boundary of the body. The () fields represent the
image fields that correct for the actual boundary conditions. Figure 3 shows this decomposition for
the problem to be solved in this work.

At a given time t, the stress field and the current positions of all dislocations are known. An
increment of loading KIAt is prescribed. The rate boundary value problem is formulated by
expanding the virtual work balance at t + At. Eq. (7) is written as:
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assuming zero traction on the external surface Sey Where the tractions are prescribed, and by
invoking {su}=0 on the part of the external surface where the displacements are prescribed. Also
the normal part of the cohesive traction law is considered {A}=(An,0). We require that the
dislocation field {5}satisfy continuing equilibrium together with traction-free conditions on x,=0, so
that [{sz}" {5)dV =0.

\Y

As given in Cleveringa et al. [3], the cohesive traction is expanded in a Taylor series about
the time t + At

T (At+At) T (At+At LA ) Kcoh(&:m +Atn)gnAt (10)

where Znand An are related to the corresponding displacement fields, U, and U,, and
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6™ =6 + 6 ;At, the principle of virtual work Eq. (9) becomes
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where Ken and T, are evaluated for A", = A% + A' . The equation contains two terms for the bulk
and cohesive behavior and the right-hand side, which is known at time t+4t.

Finite element formulation

Eq. (11) gives the weak form to be used in the finite element formulation that is presented in
this section. In order to derive the final linear system to be solved at time t+4t, we assume that we
know the strain-displacement matrix [B] that relates the strain to the nodal displacement vector and
the matrix [Nen] that relates the cohesive displacement jumps to theﬂnodal displacements.
Considering the hat-stress-rate {&}z[E]{é} and the hat-strain rate {‘,3}: [B]d (, the first term of Eq.
(11) can written as
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where {se}' ={sd}"[B] . Using {A } N] %ﬂ} {oa )" =2{sd}" [N, ], the second term

becomes
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Using the same idea, the terms of the right hand side can be written as

{6z} {6 av = {eu} [[B] {5*jav (14)
and
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Finally Egs. (12) - (15) are replaced in the weak form of Eq. (11) as follows
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Since Eqg. (16) has to be valid for any {5d } # 0, it implies the following linear system:
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are the bulk stiffness matrix and cohesive stiffness matrix, respectively. The right hand side of Eq.



(17) is given by

RI- {j o] o~ ] 1,10 o)

COh

~

In Eq. (17), { } is the global nodal hat-displacement rate vector.

Limiting Cases

FCC-like orientation

The region analyzed in this report is 1000 x 500 um?. Inside the process window of 45 x 45
um? the mesh is refined with elements of size h=0.5 um. In all cases, the crystal has three slip
systems at #54.75 and 0" with respect to the crack plane x, = 0. For each slip system there are
1500 slip planes equally spaced over the process window, with a spacing of ds=120b. Initially,
these slip planes are assumed not to have any mobile dislocations, but to have a random
distribution of dislocation sources and obstacles. The value of the drag coefficient is taken as B =
10™ Pa s, which is a representative value for aluminum (Kubin et al., 1992). The strength of the
dislocation sources is randomly chosen from a Gaussian distribution with mean strength 7, .= 50
MPa and standard deviation 0.27,,.. The mean nucleation distance is L, = 125b and b is
specified to have the value 0.25 nm. The nucleation time for all sources is taken as t,,c = 10 ns. All
obstacles are taken to have the same strength, z,,s = 150 MPa. The annihilation distance is
specified as L, = 6b . The elastic constants for aluminum are E = 70 GPa and v=0.33.

The cohesive surface properties are taken to be onax = 3 GPa and &, = 50 nm ( = 200b)
giving a work of separation, ¢, =407.7 J/m*. The cohesive parameters omax and &, (and therefore
Ko) have been chosen such that crack propagation is inhibited during the calculation, though crack
opening can occur. For fracture without any dislocation activity where all energy released is
consumed by the cohesive surface, unstable crack growth occurs at an applied stress intensity
factor K, (Rice, 1968):

Eg,

Ko = 1, (21)

For the chosen material parameters, K, = 5.66 MPa m¥2. All calculations have been carried out for
an applied loading rate specified by K, =100 GPa m*?/s.



1) _Effect of obstacle density:
In order to study the dependence of the density of obstacles on the deformation of the material

in the vicinity of the crack, five obstacle densities were considered, pos = 0, 8.4, 25.4, 51.7 and
103.4 xm in addition to the elastic limit. Initially, there are no mobile dislocations and the density
of nucleation sites (or sources) is the same for all cases, p..= 51.7 um?. The time increment is
specified to be Aty = 0.5 ns with load steps of 4K, /K, = 8.8 x 10°. The calculations were carried
out for 4.5 pusec (9000 increments) until K, /K, = 0.08. Although K, /Ky is low compared with previous
numerical simulations reported in the literature (see for example Cleveringa et al. [3] and
Deshpande et al., [9]), the final stress intensity factor K, = 0.45 MPa m*? is high enough to develop
plastic deformation. A problem arose at the lowest obstacle density in that dislocations piled up
near the edges of the process windows for relatively low values of K|,: this invalidated the results.
In order to circumvent this problem a larger process window was considered (45 x 45 um?) for our
analysis of different obstacle densities.

Figure 4 shows the normalized opening stress o,/ for the five obstacle densities at K, /Ky =
0.08 in the process window. In addition, the mode | elastic crack tip field (Fig. 4(f)) has been
included for comparison purposes. The plots only show the stresses extrapolated to the nodes of
the mesh. Therefore, the locally high stresses near the dislocations cannot be displayed. Since
crack propagation is inhibited, more dislocation activity occurs, even for the case with the highest
density of obstacles. Two limiting cases were considered in these figures: the case with pgs = 0
and the case with pys = 103.4 um™ (Figs. 4a,e respectively). For the case with no obstacles, the
dislocations can move freely through the process window and, therefore, leading to plastic
deformation. For the case with more obstacles, however, the density of dislocations in a small area
about the crack tip is larger than the case with no obstacles. This means that dislocations created
by the stress concentration get pinned at the obstacles near the crack tip. The results for the
intermediate obstacle densities are shown in Figs. 4(b) 4(c), and 4(d). The net effect of increasing
the obstacle density is therefore to decrease the ductility of the material. Figure 4(f) is the limiting
case where no plastic deformation is allowed in the process window.

A closer look at the dislocation structure near the crack tip shows another interesting trend.
Figure 5 shows magnified views of the process windows near the crack tip for the two limiting
cases, pos =0, 103.4um™. These figures emphasize the substantial differences in the variation of
02,0l Taye DEtween these obstacle densities. In Fig. 5(a), we note that the highest opening stresses
are in the immediate vicinity of the crack tip since dislocations freely propagate away from the
crack tip in the absence of obstacles. However, in Fig. 5(b), the highest open stresses are found in
a larger area behind of the crack tip since dislocation motion is impeded by the high obstacle
density. Note that the creation and annihilation of dislocations in the process window is not very
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sensitive to the obstacle density.
Figures 6 and 7 show the distribution of total slip (which is a measure of plastic deformation),

defined as
3

r= [ (22)
a=1

where
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and s and m!” are the tangent and normal to the slip plane «, respectively, at selected
obstacle densities. The plastic deformation patterns in terms of distribution of slip are calculated
from the computed displacement field at K, /K, = 0.8. Although the displacement field is not
continuous due to the existence of displacement jumps across slip planes, for visualization
purposes, the strain is computed as g = (ujj + u;;) / 2.

Figure 6 shows the total slip computed from the sum elastic and plastic strains. Contours tend
to be “rounded” for the cases with more obstacles indicating a tendency for a more elastic
deformation field. In contrast, the case with no obstacles presents localized shear bands along the
more active slip planes. This localization is more evident for the contours of the total “plastic” slip
shown in Figure 7, where the plastic deformation disappears as the obstacle density increases and
becomes more significant as the obstacle density decreases. In order to compute the total “plastic”
slip, the strains were computed using only the contribution from the dislocation activity. This
demonstrates one more time that the effect of including more obstacles into the system makes the
material less ductile. On the other hand, when dislocations are allowed to move freely into the
process window, the plastic deformation is more spread out thereby shielding the crack tip. Energy
is absorbed by plastic deformation and this tends to prohibit crack growth and enhances crack
blunting. Figure 8(a) plots the geometry of the crack shape at different obstacle densities. Close
examination of the crack shape shows that the crack blunts for the limiting case of no obstacles,
but tends to the elastic solution (brittle fracture) at high obstacle densities. Finally, the size of this
developing plastic zone can be quantified by measuring the radius of the smallest circle centered
at the crack tip containing only the plastic deformation. Figure 8(b) shows the plastic zone size vs.
the obstacle density at K, /K, = 0.8. The plastic zone can vary from r,=42.5 um for O dislocations
down to r,=13.3 um for the maximum density considered in this work (pms =103.4um™), which
represents a reduction of 70%.
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2) Effect of slip plane spacing:
The effect of the spacing between slip planes, ds, is considered in this section. Four cases are

analyzed in which only the number of planes through the process window was varied. The
following values for slip plane spacing were considered: (a) ds = 2400 (o= Pobs = 26 #m?) , (b) ds
= 120b (Phuc= Pobs = 52.3 1m?) (c) ds = 80b (Pnuc= Povs = 78.4 um™), and (d) ds = 60D (Pruc= Pobs =
104.53 um™@). For each case, the number of obstacles and sources per slip plane were equivalent;
however, the total density is different from case-to-case due to the spacing differences. Since none
of these cases had zero obstacles the process window area was reduced to 30 x 30 xm? .

Figure 9 shows the normalized opening stress o,/ for these four cases at K/K, = 0.08. The
case shown Fig. 9(b) for ds = 120b, is equivalent to the problem described in the previous section
(for pes =~ 50 um™). This figure gives the impression that plastic deformation increases for shorter
slip plane spacings. The cases with fewer slip planes (longer ds) show a smaller amount of
dislocations than the cases with more planes (see Fig. 9a).

Figures 10 and 11 show the total slip and the “plastic” total slip, respectively, for the two
extreme slip plane spacings of ds = 240b and 60b. Plastic deformation is more evident in the cases
with a higher density of planes. It is important to keep in mind that, even though the obstacle
density increases with the number of planes, the source density increases at an equal rate. Hence,
the effect of increasing the obstacle density is counteracted by a concurrent increase in the
sources. Figure 11 shows a decrease of 60%, from __ to____, in the plastic zone size when the
spacing between active slip planes is increased from ds = 60b to 240b.

Figure 12 shows the evolution of the dislocation density with K, /K, for the different cases. In
order to compute the dislocation density, the total number of dislocations is divided by the area of
the process window. Unlike the case studied in the previous section, the total dislocation density
changes for each case. The shorter the distance between planes the greater the number of
nucleation sites, thus the greater probability that dislocations will nucleate. However, Fig. 13 shows
that when comparing results from varied slip plane spacing, the crack shape does not significantly
depend upon the dislocation density.

BCC-like orientation

A process window of 30 x 30 um? was found to be sufficient to prevent dislocations from
reaching the boundary for the BCC-like orientation. In the cases analyzed in this section, the
crystal has three slip systems at +35.25 ~and 90" with respect to the crack plane along x, = 0. As
in previous cases, there are initially no dislocations and the density of nucleation sites (or sources)
is the same for all the cases, i.e., p= 66 um™?. For each slip system the slip plane spacing is
ds=120b. In order to make a comparison with the limiting cases presented for the fcc-like
orientation, only two obstacles densities were considered, pps= 16 um™? and pos= 66 um? (the
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latter can be compared with the FCC case in which pyps =50 zm™).

Figure 14 shows the normalized opening stress o»./ m,. for the two obstacle densities at K/Kq =
0.08. It is evident from these plots that dislocation activity is stronger on the slip planes
perpendicular to the crack plane. Figure 15 and 16 show the total slip and “plastic” slip,
respectively, where substantial localized plastic deformation is observed along the 90" planes.

Figure 17 shows the crack shape at selected obstacle densities. As was the case with the fcc-
like material, the crack shape does not show a strong dependence upon the obstacle density. The
evolution of the dislocation density for these two BCC-like cases are plotted together with the
previous FCC-cases in Figure 18. It is observed that the density is significantly lower than the fcc-
like orientation due to differences in slip plane orientation.

Summary

Within the context of small strain, discrete dislocation theory, we examined the effects of obstacle
and slip plane density on the stress field in the vicinity of a crack tip. The nonlinearities associated
with interfacial decohesion ahead of the crack tip was governed by a cohesive zone law that
specifies the peak opening traction and corresponding interfacial opening distance. Dislocation
nucleation, movement, annihilation and pinning were modeled with a set of constitutive rules. We
examined FCC-like and BCC-like materials that differed in slip plane orientation only. The most
significant conclusions from this work are as follows:

(1) The ductility of both FCC-like and BCC-like materials is decreased as the density of obstacles
within the material is increased. Dislocation motion is effectively decreased as dislocations become
pinned at obstacles within the process window that surrounds the crack tip. The plastic zone size
for the case without obstacles is r, = 42.5 um. However, it is shown that the plastic zone size is
reduced by 70% when an obstacle density of py,, =103.4zm? is considered.

(2) Crack tip shielding occurs at small obstacle densities in both materials since dislocations are
free to move in the process window, and this promotes crack blunting rather than crack growth.

(3) For both materials, dislocation movement and hence plastic deformation increases when active
slip planes are more closely spaced. A decrease of 60% in the plastic zone size is noticed when

the spacing between active slip planes is increased from ds = 60b to 240b.

(4) For the BCC-like material, dislocation activity is strongest along the 90° plane. For the FCC-like
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material, dislocation activity is strongest along the #54.75  planes.

(5) For the same obstacle and slip plane densities, the dislocation density (at each loading stage)
in BCC-like materials is significantly lower than in FCC-like materials, this is due to slip plane
orientation. For instance, at K, /K, = 0.07, the dislocation density for the BCC case is only 70% of
the dislocation density for the FCC case. The same has been previously observed in the behavior
of a propagating crack [14].

The next step in this work is to incorporate an atomistically-derived cohesive zone law into the
present formulation with the crack removed altogether. The block will then be subject to an applied
tension and crack nucleation will result as an outcome of the deformation process, location of
dislocations and obstacles, etc. instead of the presumption of a pre-exiting crack. A new cohesive
zone law will then be generated which contains effects from both chemical bonding at the atomistic
scale and small strain plasticity due to dislocation motion within the entire block.
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Figure 1: Mode | crack analysis with the discrete dislocation model and cohesive interfaces.
Because of symmetry, only half the problem needs to be analyzed.
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Figure 2: In two dimensions the dislocation loop is projected into the plane and modeled by a
dislocation dipole. The Frank-Read source is modeled by a point source given by the projection of
the real source into the plane x-y.
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Figure 3: Decomposition of the problem into the problem of interacting dislocation in the
homogeneous free-traction half space (™ fields) and the complementary problem of the elastic body
without dislocations (" fields).
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Figure 4: Normalized opening stress o»,/ 7y and dislocation distribution at K, /Ky = 0.08. (a) oons =0
1m2, (D) pops = 8.4 1M (C) povs = 25.4 um 2 (d) pops = 51.7 1M () pops = 103.4 m™ (f) Elastic solution.
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Figure 4 (cont.): Normalized opening stress oz,/ . and dislocation distribution at K, /K, = 0.08. (a)
Pavs = 0 m?, (b) pops = 8.4 um™ (C) povs = 25.4 pm? (d) pops = 51.7 um™ (€) pons = 103.4 um™ (f) Elastic
solution.
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Figure 5: Zoom (15 x 15 xm) showing the normalized stress and dislocation distribution at K,/Kq =

0.08 for the two limiting cases: (a) pus = 0 1M, (b)pops = 103.4 zm™?
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(@)

Figure 6: Contours of total slip ' = Z‘y around the crack tip at K, /K, = 0.08. (a) pops = 0 zm?,

(D) obs = 8.4 1M (C) povs = 25.4 1 (d) pops = 51.7 1M (€) poss = 103.4 um™ (f) Elastic solution.

21



0.000 0.003 0.005

-20 -10

10 20

0
X [um]
(e) ()

Figure 6 (cont.): Contours of total slip I = Z‘y(“)

around the crack tip at K,;/Kq = 0.08. () pops =0
1m2, (D) pops = 8.4 1M (C) povs = 25.4 1 (d) pos = 51.7 1M (€) poss = 103.4 um™ (f) Elastic solution.
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Figure 7: Contours of total slip I' = Z‘y(“) (contributed only by the dislocations) around the crack

tip at K, /Ko = 0.08. (8) pops = 0 M2, (B) fobs = 8.4 1™ (C) pops = 25.4 1M (d) pops = 51.7 m™ (€) pops =
103.4 zm? (f) Elastic solution.
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Figure 7(cont.): Contours of total slip ' = Z‘y (contributed only by the dislocations) around the

crack tip at K, /Ko = 0.08. (a) fops = 0 £m?, (D) pops = 8.4 1M (C) pobs = 25.4 1m™ (d) poss = 51.7 zm? (e)
Pops = 103.4 1m™ (f) Elastic solution.
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Figure 8: (a) Variation of Crack shape at K, /K, = 0.08 with Obstacle Density. (b) Plastic zone size
(rp) vs obstacle density at K, /K, = 0.08.
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Figure 9: Normalized opening stress o»/omax and dislocation distribution at K, /K, = 0.08 for
different slip planes spacing: (a) ds =240 b, (b) ds =120 b, (c) ds =80 b ,and (d) ds = 60 b.

25



0.o0o 0.003 0.005 0.o0o 0.003 0.00%
45

40

35

30

0 0

% [um] X [um]
(@) (b)
Figure 10: Contours of total slip I" = Z‘y(‘” around the crack tip at K, /K, = 0.08 for two cases
with different slip plane spacing: (a) ds = 240 b, (b) ds = 60 b.
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Figure 11: Contours of total slip " = Z‘y“’" (contributed only by the dislocations) around the crack

tip at K;/Kq = 0. 08 for two cases with different slip plane spacing: (a) ds = 240 b, (b) ds = 60 b. Note
the difference in the plastic zone (r,) between the two cases.

26



na

04

0z

5C]isl[l'l’r.n-z]
[
(a3}
rrrrrrrrprrrrprrrrfrrrr[rrrrt

oo
=
o]

K 1K,

Figure 12: Dislocation density measured over the entire process windows versus the normalized
applied stress intensity factor K, /K, for the different slip plane spacing for an FCC-like material.
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Figure 13: Crack shape at K, /K, = 0. 08 for different slip plane spacing.
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Figure 14: Normalized opening stress o»/omax and dislocation distribution at K, /K, = 0.08 for the
bce-like orientation and two different obstacle densities: (a) s = 16 £m™, (b) pops = 66 zm™
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Figure 15: Contours of total slip T" = Z|y(“) around the crack tip at K, /Ko = 0.08 for the bcc-like
orientation and two different obstacle densities: (a) pops = 16 £m?, (b) pos = 66 xm™.
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Figure 16: Contours of total slip I'= |y

crack tip at K, /Ko = 0.08 for the bcc-like orientation and two different obstacle densities: (a) pos = 16
2, (D) pops = 66 m™.
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Figure 17: Crack shape at K, /K, = 0.08 for the bcc-like orientation and two different obstacle
densities.
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Figure 18: Dislocation density measured over the entire process windows versus the normalized
applied stress intensity factor K, /Kq for the fcc-like (gray) and bcc-like orientations (red and green)
with two different obstacle densities.
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