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ABSTRACT 

 In the present work, the discrete dislocation and cohesive zone models are combined to 

analyze small scale yielding around a crack tip under mode I loading conditions. The crack tip is 

prevented from growing (although it is allowed to open) through application of a suitably high value 

of the peak opening stress. The peak stress and corresponding normal separation are specified by 

a cohesive zone law that governs decohesion ahead of the crack tip. Plastic deformation is limited 

to a small process window that surrounds the stationary crack tip. We specifically examined some 

limiting case solutions for extreme obstacle densities and slip plane spacings within the small 

strain, discrete dislocation framework: these solutions have not previously been investigated to 

sufficient detail. We examined materials that are representative of face-centered cubic (FCC) and 

body-centered cubic (BCC) materials from the standpoint that they capture only two-dimensional 

stress states in what are otherwise three-dimensional stress states in real materials. The ultimate 

goal of this work is to generate cohesive zone laws that contain information from multiple length 

scales to model failure processes involving interfacial separation (e.g. coating delamination, 

intergranular and transgranular fracture, debonding of hard particles, etc.).  This work was 

conducted as part of the GM/Brown Collaborative Lab. R&D report# 9649, Aug. 2003 
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Introduction 

 The mechanisms of interfacial separation are complicated.  These mechanisms involve, 

among other things, the breaking of bonds at the atomic scale and the nucleation, propagation, 

and interaction of dislocations with themselves and with obstacles within the matrix. Dislocations 

are responsible for plastic deformation fields around an evolving crack tip. These features require 

that decohesion in materials be addressed from a multi-scale standpoint. A purely atomistic 

approach (i.e. without mechanical defects), for example, leads to values of the peak interfacial 

opening stress of the order of 10GPa [1]. This is typically several orders of magnitude larger than 

what is observed in experiments. Plastic deformation during interfacial separation is likely to lower 

the atomistically-predicted peak opening stress. This requires that phenomena at both length 

scales be investigated and incorporated into an interfacial constitutive law that governs material 

separation. Such constitutive laws are current topic of research in the materials and mechanics 

communities. 

 In the present work, we focus on the effects of obstacle density and slip plane spacing on the 

continuum problem of dislocation nucleation, movement, pinning and annihilation in the vicinity of 

crack tip. The crack tip is allowed to open, but it is prevented from growing through application of a 

suitably high value of the peak opening stress. The peak stress and corresponding normal 

separation are specified by a cohesive zone law that is based upon the universal binding energy 

relation [2].  This law  governs decohesion ahead of the crack tip. Plastic deformation is limited to a 

small process window that surrounds the stationary crack tip.  We specifically examined some 

limiting case solutions for extreme obstacle densities and slip plane spacings within the small 

strain, discrete dislocation framework outlined in [3]: these solutions have not previously been 

investigated to sufficient detail.  We examined materials that are representative of FCC and BCC 

crystals from the standpoint that they capture only two-dimensional stress states in what are 

otherwise three-dimensional stress states in real materials. These materials are therefore referred 

to as “FCC-like” and “BCC-like.” The discrete dislocation approach consists of writing the stresses 

and strains as a superposition of fields due to the discrete dislocations (which do not necessarily 

satisfy the boundary conditions) and image fields that contain the necessary degrees of freedom to 

satisfy the boundary conditions. An incremental finite element method using quadrilateral elements 

was used to solve for the image fields [4]. The elasticity solution for edge dislocations in a half-

space was used [3]. Nucleation, annihilation and movement of dislocations along specified slip 

planes were governed by a set of constitutive rules. The active slips planes were initially 

dislocation free.   

 This work is a precursor to the next phase of the coating delamination component of the 
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Brown Collaborative Lab in which we shall remove the crack altogether, and apply a uniform 

tension to the edges of the bar. An atomistically-derived cohesive zone law will then be prescribed 

(instead of the heuristically-formulated cohesive zone law used in the present work) that will 

simulate decohesion at aluminum/diamond interfaces: this law has previously been reported in [1]. 

The goal of this work is to derive a new cohesive zone law that incorporates the effects of 

dislocation nucleation, movement/pinning, and annihilation as well as chemical bonding effects 

from the atomic scale, that can be used in applications where failure processes involving interfacial 

separation are to be modeled (e.g. coating delamination, intergranular and transgranular fracture, 

and debonding of hard particles). Lessons learned from this proposed work can be applied to the 

development of multiscale cohesive laws, including connections to crack propagation analysis in 

continuum and homogeneous materials. 

Method of analysis 

 In this analysis, a tensile bar with a pre-existing crack is subjected to simple tension as 

shown in Fig. 1(a). As shown in Fig. 1(b), plasticity is confined to a rectangular window surrounding 

the crack tip. Plastic flow is due only to the creation, motion and annihilation of discrete 

dislocations, and there are no dislocations beyond the boundaries of this window. The dislocations 

are treated as line singularities in an elastically isotropic material, with Young’s modulus E and 

Poisson’s ratio  . Multiple slip systems are accounted for, with slip planes being oriented 

symmetrically about the crack plane. Interfacial decohesion ahead of the crack tip is modeled using 

a cohesive zone framework where a traction-displacement separation relation describes the 

characteristics of the material in response to an applied traction [11]. The boundary conditions are 

imposed by displacements corresponding to the isotropic elastic mode I singular field remote from 

the crack tip ( IK -field). According to the classic theory of linear elastic fracture mechanics, the 

displacement components on the remote boundary are prescribed to be:  
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where 
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1 xxr  ,  )/(tan 12

1 xx  and )1(2/   E , with Cartesian coordinates measured 

relative to the crack tip. Since boundary conditions are described in terms of the stress intensity 

factor IK , the problem does not need to be described by the applied load 0  and the dimensions 

of the bar. 
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Cohesive Zone Laws  

The Cohesive Zone Model (CZM) was first proposed by Dugdale [5] and Barenblatt [6] to 

describe material degradation and separation in a process zone in front of a crack tip in brittle 

materials.  Since then, fracture processes in many different materials, (e.g.  polymers, concrete, 

ceramics and composites), have been modeled with a cohesive crack.  The essence of this model 

is the description of the non-linearity inherent in decohesion by means of a relationship between 

the cohesive traction and the crack opening. The constitutive description of the surrounding 

materials differs from that within the process zone and is introduced to avoid singular stresses 

around the crack as compared to linear-elastic fracture mechanics (LEFM). The model was used in 

the framework of finite element method by Needleman [7] to simulate the decohesion of a 

viscoplastic materials from a rigid substrate.  

 The cohesive model is introduced through cohesive “interface” elements in the finite element 

mesh.  These zero thickness interface elements are embedded along element boundaries and are 

used to simulate the initiation of cracks and subsequent large sliding, opening and closing of 

cracked surfaces.  The model assumes that a perfect interface between two surfaces carries forces 

that oppose separation and shear between them until decohesion. Once decohesion occurs, the 

two surfaces behave as distinct entities. The propagation of a crack is therefore simulated as the 

consecutive failure of interface elements. The cohesive relationship is expressed in terms of an 

effective opening displacement and an effective traction. The magnitude of the opposing forces 

before decohesion is a function of the relative normal and shear displacement jumps between the 

two surfaces. 

 The cohesive constitutive law used for this was obtained through differentiation of the 

universal binding energy relation (an approximation of the old Rydberg function) proposed by Rose 

et al. [2]. This is 
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where n is the normal separation of the cohesive surface, nT is the corresponding traction, and cx  

is the length of the cohesive interface. In Eq. 2, max is the maximum cohesive strength, and n is 

the critical value of the normal separation in which the traction reaches its maximum value. Note 

that max and n are the intrinsic cohesive parameters of the material. Since only pure Mode I 

opening is considered in the present work, the tangential traction is neglected. As shown in Fig. 

1(b), the normal to the cohesive surface is parallel to the x2-axis so that, with the assumed 
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symmetry, the opening of the cohesive surface is given by 
22un  . The cohesive surface is only 

defined from 1x =0 to 
cx . For 

cxx 1
, symmetry conditions are prescribed, such that 02 u and 

01 T . Note that the area under the 
nT vs. 

n curve is the ideal work of adhesion (or work of 

separation) and is given by the following expression: 

 

nnnnn edT  max
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   (3) 

 

Discrete Dislocation Theory 

Within the process window of Fig. 1(b), dislocations are treated as line singularities immersed in an 

elastically isotropic material. The quasi-static deformation process leads to the generation, motion 

and annihilation of these dislocations as governed by a set of constitutive rules. Assuming 

dislocation glide only, the variation of the potential energy of the body due to infinitesimal variations 

of the Ith dislocation is governed by the Peach-Koehler force: 
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with 
)(I

in the slip plane normal and the Burgers vector 
)(I

ib of dislocation I. The direction of this force 

is in the slip plane and normal to the dislocation line. The Peach-Koehler force includes the long-

range interactions with all other dislocations in the material. It is this force that will determine the 

evolution of the dislocation structure, accounting for glide, generation, annihilation and pinning at 

obstacles according to a set of rules to be discussed shortly.  

The magnitude of the glide velocity 
)( I of dislocation I is taken to be linearly related to the Peach-

Koehler force through the drag relation,  

 
( ) ( )I If B              (5) 

 

where B  is the drag coefficient. Near dislocation pile-ups the position of dislocations is unstable 

leading to high velocity oscillatory motions. In order to avoid these irrelevant vibrations, a cut-off 

velocity is applied. For the material parameters used in this work, Cleveringa et al. [3] have found 

that a cut-off velocity of 20 m/s is low enough to allow substantially increased time steps and high 

enough so as not to significantly affect the results.  New dislocation pairs are generated by 

simulating Frank-Read sources. The initial dislocation segment of a Frank-Read source bows out 

until it produces a new dislocation loop and a replica of itself (See Figure 2(a)). The Frank-Read 
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source is modeled in terms of a critical value of the Peach-Koehler force, the time it takes to 

generate a dislocation loop and the size of the generated loop. As shown in Figure 2(b) for two 

dimensions, this is simulated by point sources that generate a dislocation dipole when the 

magnitude of the Peach-Koehler force at the source exceeds a critical value bnuc  during a period 

of time tnuc. The distance Lnuc between the dislocations is given by 
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At this distance, the shear stress of one dislocation acting on the other is balanced by the slip 

plane shear stress nuc . Two dislocations with opposite Burgers vector will annihilate when they 

are sufficiently close together. This is modeled by eliminating two dislocations when they are within 

a material-dependent, critical annihilation distance Le. Obstacles to dislocation motion are modeled 

as fixed points on a slip plane. Such obstacles account for the effects of small precipitates or 

dislocations on other slip systems in blocking slip. Pinned dislocations can only pass the obstacles 

when their Peach-Koehler force exceeds an obstacle dependent value, bobs .  

 It is noted that the above rules for dislocation evolution are intended to incorporate short-

range effects at an atomic scale, which a discrete dislocation model could not otherwise resolve. 

Short-range interactions between dislocations on different slip planes, even near slip plane 

junctions, are not accounted for separately in this analysis; such dislocations only interact through 

their long-range elastic fields.  

When a dislocation glides into the open crack it can disappear from the material. We model 

this by taking the dislocation out of the system. The number of dislocations that leave each slip 

plane is stored. Since the analytical formulas used for the stress and displacement describe the 

dislocation in a half-space with a traction-free surface, a dislocation located at the surface makes 

no contribution to the stress field. However, there is a contribution to the displacement field, with a 

step of b/2 across the slip plane at the surface. 

Because of the assumed symmetry, there is a mirror dislocation for each dislocation in the region 

analyzed numerically. This mirror dislocation does not need to be accounted for explicitly when 

superimposing the fields of all dislocations, for example as in the Peach-Koehler force 
)(If .  

Rather, its presence is accounted for through the symmetry boundary conditions. What does need 

to be accounted for in the dislocation analysis is that when a dislocation crosses the closed crack 

plane, it leaves the plasticity region, but, due to symmetry, a mirror dislocation enters into the 

system along the mirror slip plane. 
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Incremental analysis 

 

The stress and deformation fields are obtained in an incremental manner as described in 

detail by Cleveringa et al. [3]. In each time increment, the energy stored in the material must be 

balanced by the energy due to the applied and cohesive tractions. The dislocation distribution is 

updated according to the above rules for dislocation motion, generation, annihilation and pinning, 

and the increment in the fields is solved from the incremental version of the virtual work equation: 
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where V is the volume of the region analyzed, Sext is the external surface and Scoh  is the surface 

across which cohesive tractions operate.    21,uuu
T
  is the displacement field vector and 

   tn

T
 ,  is the displacement jump vector across the cohesive surface. The stress and strain 

vectors are given by   ),,( 122211  
T

 and   ),,( 122211  
T

, respectively. The ij are the 

components of the stress tensor, and the strain is defined as  ijjiij uu ,,2
1  . The factor of 

2

1   in 

Eq. (7) is given by the symmetry of the problem: only one half of the work in the cohesive surface 

contributes to the work in the region analyzed.  

As discussed in Cleveringa et al. [3], the velocity, strain-rate and stress-rate fields are written as 

the superposition of two fields,  

 

ijijijijijijiii uuu  ˆ~
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,ˆ~
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The (~) fields are the fields due to the individual dislocations in their current configuration; this gives 

rise to tractions iT
~

and displacements iU
~

 on the boundary of the body. The (^) fields represent the 

image fields that correct for the actual boundary conditions. Figure 3 shows this decomposition for 

the problem to be solved in this work.  

 At a given time t, the stress field and the current positions of all dislocations are known. An 

increment of loading tK I
  is prescribed. The rate boundary value problem is formulated by 

expanding the virtual work balance at tt  .  Eq.  (7) is written as: 
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assuming zero traction on the external surface Sext where the tractions are prescribed, and by 

invoking   0u  on the part of the external surface where the displacements are prescribed. Also 

the normal part of the cohesive traction law is considered   )0,( n . We require that the 

dislocation field  ~ satisfy continuing equilibrium together with traction-free conditions on x2=0, so 

that     0~  dV
V

T
 . 

As given in Cleveringa et al. [3], the cohesive traction is expanded in a Taylor series about 

the time tt   
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where Kcoh  and Tn are evaluated for 
t

n

tt

nn   ˆ~*
. The equation contains two terms for the bulk 

and cohesive behavior and the right-hand side, which is known at time t+t. 

 

 

Finite element formulation 

 Eq. (11) gives the weak form to be used in the finite element formulation that is presented in 

this section. In order to derive the final linear system to be solved at time t+t, we assume that we 

know the strain-displacement matrix [B] that relates the strain to the nodal displacement vector and 

the matrix [Ncoh] that relates the cohesive displacement jumps to the nodal displacements. 

Considering the hat-stress-rate      ˆˆ  E  and the hat-strain rate    dB
ˆˆ   , the first term of Eq. 

(11) can written as  
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where       TTT
Bd  . Using     dNcohn
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Using the same idea, the terms of the right hand side can be written as   
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Finally Eqs. (12) - (15) are replaced in the weak form of Eq. (11) as follows 
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Since Eq. (16) has to be valid for any   0d , it implies the following linear system:  
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are the bulk stiffness matrix and cohesive stiffness matrix, respectively.  The right hand side of Eq. 
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(17) is given by 
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In Eq. (17),  D̂  is the global nodal hat-displacement rate vector.  

 

Limiting Cases 

FCC-like orientation  

The region analyzed in this report is 1000 x 500 2m .  Inside the process window of 45 x 45 

2m  the mesh is refined with elements of size h=0.5 m.  In all cases, the crystal has three slip 

systems at 54.75° and 0° with respect to the crack plane x2 = 0. For each slip system there are 

1500 slip planes equally spaced over the process window, with a spacing of ds=120b. Initially, 

these slip planes are assumed not to have any mobile dislocations, but to have a random 

distribution of dislocation sources and obstacles. The value of the drag coefficient is taken as B = 

10-4 Pa s, which is a representative value for aluminum (Kubin et al., 1992). The strength of the 

dislocation sources is randomly chosen from a Gaussian distribution with mean strength nuc = 50 

MPa and standard deviation 0.2 nuc . The mean nucleation distance is Lnuc = 125b and b is 

specified to have the value 0.25 nm. The nucleation time for all sources is taken as tnuc = 10 ns. All 

obstacles are taken to have the same strength, obs = 150 MPa. The annihilation distance is 

specified as Le = 6b . The elastic constants for aluminum are E = 70 GPa and  = 0.33. 

The cohesive surface properties are taken to be max = 3 GPa and n = 50 nm ( = 200b) 

giving a work of separation, 7.407n  J/m2. The cohesive parameters max and n (and therefore 

K0) have been chosen such that crack propagation is inhibited during the calculation, though crack 

opening can occur. For fracture without any dislocation activity where all energy released is 

consumed by the cohesive surface, unstable crack growth occurs at an applied stress intensity 

factor K0 (Rice, 1968): 

 

20
1 




 nE

K            (21) 

 

For the chosen material parameters, K0 = 5.66 MPa m1/2. All calculations have been carried out for 

an applied loading rate specified by 
IK  = 100 GPa m1/2/s. 
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1)  Effect of obstacle density:  

 In order to study the dependence of the density of obstacles on the deformation of the material 

in the vicinity of the crack, five obstacle densities were considered, obs = 0, 8.4, 25.4, 51.7 and 

103.4 m-2 in addition to the elastic limit.  Initially, there are no mobile dislocations and the density 

of nucleation sites (or sources) is the same for all cases, nuc= 51.7 2m . The time increment is 

specified to be tincr = 0.5 ns with load steps of KI /K0 = 8.8  10-6. The calculations were carried 

out for 4.5 sec (9000 increments) until KI /K0 = 0.08. Although KI /K0 is low compared with previous 

numerical simulations reported in the literature (see for example Cleveringa et al. [3] and 

Deshpande et al., [9]), the final stress intensity factor KI  = 0.45 MPa m1/2 is high enough to develop 

plastic deformation. A problem arose at the lowest obstacle density in that dislocations piled up 

near the edges of the process windows for relatively low values of KI,: this invalidated the results. 

In order to circumvent this problem a larger process window was considered (45 x 45 2m ) for our 

analysis of different obstacle densities.  

 Figure 4 shows the normalized opening stress 22/nuc for the five obstacle densities at KI /K0 = 

0.08 in the process window. In addition, the mode I elastic crack tip field (Fig. 4(f)) has been 

included for comparison purposes. The plots only show the stresses extrapolated to the nodes of 

the mesh. Therefore, the locally high stresses near the dislocations cannot be displayed. Since 

crack propagation is inhibited, more dislocation activity occurs, even for the case with the highest 

density of obstacles. Two limiting cases were considered in these figures:  the case with obs = 0 

and the case with obs = 103.4 m-2
 (Figs. 4a,e respectively). For the case with no obstacles, the 

dislocations can move freely through the process window and, therefore, leading to plastic 

deformation. For the case with more obstacles, however, the density of dislocations in a small area 

about the crack tip is larger than the case with no obstacles. This means that dislocations created 

by the stress concentration get pinned at the obstacles near the crack tip. The results for the 

intermediate obstacle densities are shown in Figs. 4(b) 4(c), and 4(d). The net effect of increasing 

the obstacle density is therefore to decrease the ductility of the material. Figure 4(f) is the limiting 

case where no plastic deformation is allowed in the process window.  

 A closer look at the dislocation structure near the crack tip shows another interesting trend.  

Figure 5 shows magnified views of the process windows near the crack tip for the two limiting 

cases, obs =0, 103.4m-2. These figures emphasize the substantial differences in the variation of 

22/nuc between these obstacle densities. In Fig. 5(a), we note that the highest opening stresses 

are in the immediate vicinity of the crack tip since dislocations freely propagate away from the 

crack tip in the absence of obstacles. However, in Fig. 5(b), the highest open stresses are found in 

a larger area behind of the crack tip since dislocation motion is impeded by the high obstacle 

density. Note that the creation and annihilation of dislocations in the process window is not very 
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sensitive to the obstacle density.   

 Figures 6 and 7 show the distribution of total slip (which is a measure of plastic deformation), 

defined as  

 
3

( )

1





     (22) 

 

where 

 
)()()(   jiji ms   (23) 

 

and 
)(

is  and 
)(

jm  are the tangent and normal to the slip plane , respectively, at selected 

obstacle densities.  The plastic deformation patterns in terms of distribution of slip are calculated 

from the computed displacement field at KI /K0 = 0.8.  Although the displacement field is not 

continuous due to the existence of displacement jumps across slip planes, for visualization 

purposes, the strain is computed as ij = (ui,j + uj,i) / 2.  

 Figure 6 shows the total slip computed from the sum elastic and plastic strains. Contours tend 

to be “rounded” for the cases with more obstacles indicating a tendency for a more elastic 

deformation field. In contrast, the case with no obstacles presents localized shear bands along the 

more active slip planes. This localization is more evident for the contours of the total “plastic” slip 

shown in Figure 7, where the plastic deformation disappears as the obstacle density increases and 

becomes more significant as the obstacle density decreases.  In order to compute the total “plastic” 

slip, the strains were computed using only the contribution from the dislocation activity. This 

demonstrates one more time that the effect of including more obstacles into the system makes the 

material less ductile. On the other hand, when dislocations are allowed to move freely into the 

process window, the plastic deformation is more spread out thereby shielding the crack tip.  Energy 

is absorbed by plastic deformation and this tends to prohibit crack growth and enhances crack 

blunting.   Figure 8(a) plots the geometry of the crack shape at different obstacle densities. Close 

examination of the crack shape shows that the crack blunts for the limiting case of no obstacles, 

but tends to the elastic solution (brittle fracture) at high obstacle densities. Finally, the size of this 

developing plastic zone can be quantified by measuring the radius of the smallest circle centered 

at the crack tip containing only the plastic deformation. Figure 8(b) shows the plastic zone size vs. 

the obstacle density at KI /K0 = 0.8. The plastic zone can vary from rp=42.5 m for 0 dislocations 

down to rp=13.3 m for the maximum density considered in this work (obs =103.4m-2), which 

represents a reduction of 70%.  
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2) Effect of slip plane spacing: 

 The effect of the spacing between slip planes, ds, is considered in this section. Four cases are 

analyzed in which only the number of planes through the process window was varied. The 

following values for slip plane spacing were considered: (a) ds = 240b (nuc= obs = 26 m-2) , (b)  ds 

= 120b (nuc= obs = 52.3 m-2)  (c) ds = 80b (nuc= obs = 78.4 m-2), and  (d) ds = 60b (nuc= obs = 

104.53 m-2).  For each case, the number of obstacles and sources per slip plane were equivalent; 

however, the total density is different from case-to-case due to the spacing differences. Since none 

of these cases had zero obstacles the process window area was reduced to 30 x 30 m2 . 

 Figure 9 shows the normalized opening stress 22/nuc for these four cases at KI/K0 = 0.08. The 

case shown Fig. 9(b) for ds = 120b, is equivalent to the problem described in the previous section 

(for obs  50 m-2). This figure gives the impression that plastic deformation increases for shorter 

slip plane spacings. The cases with fewer slip planes (longer ds) show a smaller amount of 

dislocations than the cases with more planes (see Fig. 9a).  

 Figures 10 and 11 show the total slip and the “plastic” total slip, respectively, for the two 

extreme slip plane spacings of ds = 240b and 60b. Plastic deformation is more evident in the cases 

with a higher density of planes. It is important to keep in mind that, even though the obstacle 

density increases with the number of planes, the source density increases at an equal rate. Hence, 

the effect of increasing the obstacle density is counteracted by a concurrent increase in the 

sources. Figure 11 shows a decrease of 60%, from ____ to ____, in the plastic zone size when the 

spacing between active slip planes is increased from ds = 60b to 240b. 

 Figure 12 shows the evolution of the dislocation density with KI /K0 for the different cases.  In 

order to compute the dislocation density, the total number of dislocations is divided by the area of 

the process window. Unlike the case studied in the previous section, the total dislocation density 

changes for each case. The shorter the distance between planes the greater the number of 

nucleation sites, thus the greater probability that dislocations will nucleate. However, Fig. 13 shows 

that when comparing results from varied slip plane spacing, the crack shape does not significantly 

depend upon the dislocation density. 

 

 

BCC-like orientation 

 A process window of 30 x 30 m2 was found to be sufficient to prevent dislocations from 

reaching the boundary for the BCC-like orientation.  In the cases analyzed in this section, the 

crystal has three slip systems at  35.25 ° and 90° with respect to the crack plane along x2 = 0. As 

in previous cases, there are initially no dislocations and the density of nucleation sites (or sources) 

is the same for all the cases, i.e., nuc= 66 m-2. For each slip system the slip plane spacing is 

ds=120b. In order to make a comparison with the limiting cases presented for the fcc-like 

orientation, only two obstacles densities were considered, obs= 16 m-2 and obs= 66 m-2 (the 
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latter can be compared with the FCC case in which obs  50 m-2).  

 Figure 14 shows the normalized opening stress 22/nuc for the two obstacle densities at KI/K0 = 

0.08. It is evident from these plots that dislocation activity is stronger on the slip planes 

perpendicular to the crack plane. Figure 15 and 16 show the total slip and “plastic” slip, 

respectively, where substantial localized plastic deformation is observed along the 90° planes.   

 Figure 17 shows the crack shape at selected obstacle densities. As was the case with the fcc-

like material, the crack shape does not show a strong dependence upon the obstacle density.  The 

evolution of the dislocation density for these two BCC-like cases are plotted together with the 

previous FCC-cases in Figure 18. It is observed that the density is significantly lower than the fcc-

like orientation due to differences in slip plane orientation. 

 

 

Summary 

 

Within the context of small strain, discrete dislocation theory, we examined the effects of obstacle 

and slip plane density on the stress field in the vicinity of a crack tip. The nonlinearities associated 

with interfacial decohesion ahead of the crack tip was governed by a cohesive zone law that 

specifies the peak opening traction and corresponding interfacial opening distance. Dislocation 

nucleation, movement, annihilation and pinning were modeled with a set of constitutive rules. We 

examined FCC-like and BCC-like materials that differed in slip plane orientation only. The most 

significant conclusions from this work are as follows: 

 

(1) The ductility of both FCC-like and BCC-like materials is decreased as the density of obstacles 

within the material is increased. Dislocation motion is effectively decreased as dislocations become 

pinned at obstacles within the process window that surrounds the crack tip. The plastic zone size 

for the case without obstacles is rp = 42.5 m. However, it is shown that the plastic zone size is 

reduced by 70% when an obstacle density of obs =103.4m
-2 is considered.  

 

(2) Crack tip shielding occurs at small obstacle densities in both materials since dislocations are 

free to move in the process window, and this promotes crack blunting rather than crack growth. 

 

(3) For both materials, dislocation movement and hence plastic deformation increases when active 

slip planes are more closely spaced. A decrease of 60% in the plastic zone size is noticed when 

the spacing between active slip planes is increased from ds = 60b to 240b. 

 

(4) For the BCC-like material, dislocation activity is strongest along the 90o plane. For the FCC-like 
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material, dislocation activity is strongest along the 54.75°  planes. 

 

(5) For the same obstacle and slip plane densities, the dislocation density (at each loading stage) 

in BCC-like materials is significantly lower than in FCC-like materials, this is due to slip plane 

orientation. For instance, at KI /K0 = 0.07, the dislocation density for the BCC case is only 70% of 

the dislocation density for the FCC case. The same has been previously observed in the behavior 

of a propagating crack [14]. 

 

The next step in this work is to incorporate an atomistically-derived cohesive zone law into the 

present formulation with the crack removed altogether. The block will then be subject to an applied 

tension and crack nucleation will result as an outcome of the deformation process, location of 

dislocations and obstacles, etc. instead of the presumption of a pre-exiting crack. A new cohesive 

zone law will then be generated which contains effects from both chemical bonding at the atomistic 

scale and small strain plasticity due to dislocation motion within the entire block.  
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                            (a)                                                                                            (b) 

 

Figure 1:  Mode I crack analysis with the discrete dislocation model and cohesive interfaces. 
Because of symmetry, only half the problem needs to be analyzed. 

 
 

 
                                                (a)                                                                                           (b) 

 

Figure 2:  In two dimensions the dislocation loop is projected into the plane and modeled by a 
dislocation dipole. The Frank-Read source is modeled by a point source given by the projection of 
the real source into the plane x-y. 
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Figure 3:  Decomposition of the problem into the problem of interacting dislocation in the 
homogeneous free-traction half space (~ fields) and the complementary problem of the elastic body 
without dislocations (^ fields). 
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                                                    (a)                                                                   (b) 

 
                                                    (c)                                                                    (d) 

 

Figure 4: Normalized opening stress 22/nuc and dislocation distribution at KI /K0 = 0.08. (a) obs = 0 

m
-2

, (b)obs = 8.4 m
-2

 (c)obs = 25.4 m
-2

 (d) obs = 51.7 m
-2

 (e) obs = 103.4 m
-2

 (f) Elastic solution. 
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 (e)                                                                                   (f) 

 

Figure 4 (cont.): Normalized opening stress 22/nuc and dislocation distribution at KI /K0 = 0.08. (a) 

obs = 0 m
-2

, (b)obs = 8.4 m
-2

 (c)obs = 25.4 m
-2

 (d) obs = 51.7 m
-2

 (e) obs = 103.4 m
-2

 (f) Elastic 
solution.  
 

 
(a)                                                                                   (b) 

Figure 5: Zoom (15 x 15 m) showing the normalized stress and dislocation distribution at  KI /K0 = 

0.08 for the two limiting cases: (a) obs = 0 m
-2

, (b)obs = 103.4 m
-2
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                                               (a)                  (b) 

  
       (c)                     (d) 

 

Figure 6: Contours of total slip  )(  around the crack tip at KI /K0 = 0.08. (a) obs = 0 m
-2

, 

(b)obs = 8.4 m
-2

 (c)obs = 25.4 m
-2

 (d) obs = 51.7 m
-2

 (e) obs = 103.4 m
-2

 (f) Elastic solution. 
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     (e)                  (f) 

 

Figure 6 (cont.): Contours of total slip  )(  around the crack tip at KI /K0 = 0.08. (a) obs = 0 

m
-2

, (b)obs = 8.4 m
-2

 (c)obs = 25.4 m
-2

 (d) obs = 51.7 m
-2

 (e) obs = 103.4 m
-2

 (f) Elastic solution. 
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(a)                (b) 

 
   (c)                  (d) 

Figure 7: Contours of total slip  )( (contributed only by the dislocations) around the crack 

tip at KI /K0 = 0.08. (a) obs = 0 m
-2

, (b)obs = 8.4 m
-2

 (c)obs = 25.4 m
-2

 (d) obs = 51.7 m
-2

 (e) obs = 

103.4 m
-2

 (f) Elastic solution. 
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                                                (e)                                                                                         (f) 

 

Figure 7(cont.): Contours of total slip  )( (contributed only by the dislocations) around the 

crack tip at KI /K0 = 0.08. (a) obs = 0 m
-2

, (b)obs = 8.4 m
-2

 (c)obs = 25.4 m
-2

 (d) obs = 51.7 m
-2

 (e) 

obs = 103.4 m
-2

 (f) Elastic solution. 

 
                                                (a)                                                                                         (b) 

Figure 8: (a) Variation of Crack shape at KI /K0 = 0.08 with Obstacle Density. (b) Plastic zone size 
(rp) vs obstacle density at KI /K0 = 0.08.  
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    (a)                   (b) 

 
    (c)                                                                                           (d) 

 

Figure 9: Normalized opening stress 22/max and dislocation distribution at KI /K0 = 0.08 for 
different slip planes spacing: (a) ds = 240 b, (b) ds = 120 b, (c) ds = 80 b ,and (d) ds = 60 b. 
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    (a)                  (b) 

Figure 10: Contours of total slip  )(  around the crack tip at KI /K0 = 0.08 for two cases 

with different slip plane spacing: (a) ds = 240 b, (b) ds = 60 b. 
 

 
   (a)                   (b) 

Figure 11: Contours of total slip  )( (contributed only by the dislocations) around the crack 

tip at KI /K0 = 0. 08 for two cases with different slip plane spacing: (a) ds = 240 b, (b) ds = 60 b.  Note 
the difference in the plastic zone (rp) between the two cases.  
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Figure 12: Dislocation density measured over the entire process windows versus the normalized 
applied stress intensity factor KI /K0 for the different slip plane spacing for an FCC-like material. 

 
Figure 13: Crack shape at KI /K0 = 0. 08 for different slip plane spacing. 
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Figure 14: Normalized opening stress 22/max and dislocation distribution at KI /K0 = 0.08 for the 

bcc-like orientation and two different obstacle densities: (a) obs = 16 m
-2

, (b)obs = 66 m
-2

. 

 

 

Figure 15: Contours of total slip  )(  around the crack tip at KI /K0 = 0.08 for the bcc-like 

orientation and two different obstacle densities: (a) obs = 16 m
-2

, (b)obs = 66 m
-2

. 

. 
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Figure 16: Contours of total slip  )( (contributed only by the dislocations) around the 

crack tip at KI /K0 = 0.08 for the bcc-like orientation and two different obstacle densities: (a) obs = 16 

m
-2

, (b)obs = 66 m
-2

. 
 

 

 
Figure 17: Crack shape at KI /K0 = 0.08 for the bcc-like orientation and two different obstacle 
densities. 
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Figure 18:  Dislocation density measured over the entire process windows versus the normalized 
applied stress intensity factor KI /K0 for the fcc-like (gray) and bcc-like orientations (red and green) 
with two different obstacle densities.  
 


