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Abstract

We discuss an optimization procedure for improving three-dimensional finite element meshes. Our method can be effectively
coupled with any automatic mesh generator in order to obtain a triangulation without badly distorted elements. In this way, we are
able to weaken the requirements on the generator, allowing it to produce singular elements, and post-process the result to get a valid

mesh.

Even though several other methods to improve finite element meshes already exist, the proposed one is the first to incorporate what
finite element practitioners have for long known: One bad element renders the mesh useless. We report some very encouraging results
with a quite crude algorithm. Our conclusion is that building meshes combining an initial generation step followed by an optimization
step makes the meshing of arbitrary domains much more reliable, as compared to the usual approach of precluding distorted elements

during the initial generation stage.

1. Introduction: How isa 3D mesh built?

The generation of a three-dimensional finite element
grid in a general domain is by no means a simple task. For
Delaunay-based and Frontal-based strategies, the generation
procedure can be divided into the following steps:

Step 1: Geometrical description of the domain. This is
usually accomplished by means of a CAD output.

Step 2: Surface mesh generation. A finite element mesh is
constructed over the boundary of the domain. An
efficient algorithm for this purpose has been recently
proposed by Vénere&Arnica (1994), it allows for mesh
grading according to user's needs.

Step 3: Volume mesh generation. Our experience mainly
concerns two of the several existing alternatives for
this step, namely Delaunay and Frontal volume
generators.

Delaunay scheme

3D.a. Generation of points: The nodes of the triangulation
are created according to a pre-specified density function. Our
current choice is the 3D extension of the algorithm introduced
by Dari&Vénere (1991).

3D.b. Triangulation: The Delaunay mesh containing the
nodes is generated, by Bowyer-Watson algorithm. Other
variants create the nodes while generating the mesh (Mller et
al, 1993; Weatherill & Hassan, 1994).

3D.c. Boundary recovery: The Delaunay mesh is not in
general compatible with the boundary mesh generated in Step
2. The mesh must thus be modified to recover boundary edges

and boundary faces. The procedure we are using is described
by Dari (1994), other possibilities can be found in the articles
by George (1989) and by Weatherill & Hassan (1994).

Frontal scheme
3F.a. Triangulation: Using the boundary mesh as initial
front, advance the front generating new nodes and tetrahedra
until the whole of the domain is filled and the front collapses.

2. Quality: How good isa 3D mesh?

Not all meshes are suitable for finite element
calculations. The approximation error depends on the size and
the shape of the elements. The element sizes result as a
compromise between accuracy and computing cost. The sizes
may vary through the domain according to an error estimate
or, perhaps, to user's experience. The element shapes set apart
good generators from bad ones.

Typically, the element shape appears in the error

estimate as a factor h, / p,, with h, the diameter of element

Kand p, the radius of the inscribed sphere. This quotient is
thus a measure of the quality of a finite element.

To keep the discussion at a more intuitive level, we will
speak about the angles contained in a mesh. More specifically,
we will consider 3D meshes consisting of straight-edged
tetrahedra. It can be proved (Dari, 1994) that the quotient

h / P« is bounded from above for all elements of a family of
triangulations if and only if the angles of the mesh are
bounded from below by some positive constant. By angles in



the previous statement we refer to both the angles between
adjacent faces and the angles between adjacent edges. Hence,
the angles of the mesh can also be used to measure its quality.

We should remark that Krizek (1991; 1992) has proved
that most pernicious to the approximation properties of a
finite element method are large angles (close to 180 degrees),
while small ones can sometimes be harmless (and necessary,
e.g. to cover a thin slot).

There exists another alternative, less costly in terms of
floating-point operations. Distorted elements can be identified

looking for small values of the quotient V, /hZ, where V,
stands for the volume of element K.

We will assume that the boundary mesh does not contain
badly distorted elements. The procedure of Vénere&Arnica
(1994) yields meshes satisfying this condition. The question
now is: How good is the quality of the meshes generated
following the methods described in the previous section (Step
3)?

3. Delaunay meshes and quality

Bad-quality elements that appear in a mesh generated by
the Delaunay-based method mainly come from three sources:
(1) Abruptly varying point density, (2) Almost planar
Delaunay elements (slivers), and (3) Distorted elements
generated during boundary recovery.

Such elements can have angles of zero degrees and of
180 degrees (within round-off error). In our experience,
practically all meshes of more than, say, 30000 tetrahedra,
contain at least one element with an angle greater than 179.90
degrees.

If the mesh generation is programmed without care, the
number of bad elements can increase significantly. As the
nodal positions define the Delaunay mesh, it is important to
ensure that the point-generation scheme (Step 3D.a) produces
smoothly varying point densities; and to avoid the insertion of
points too close to boundary faces. Also, the prescribed point
density must be compatible with the density of the surface
mesh. Another important detail is that the set of elements that
do not pass the Delaunay test must be, by construction,
connected, precluding round-off errors from producing a
disconnected set.

The state of the art is that, even with the best Delaunay-
based generator available, bad elements do appear. And the
same happens using a frontal method, as we proceed to
discuss.

4. Frontal generatorsand quality
The idea of a front-advancing scheme (Peir6, 1989;
Peraire, 1986; Peraire et al, 1990) that begins at the boundary

of the domain and generates new points and elements as it
progresses inwards, is very elegant and attractive. Moreover,
the difficulty of recovering the boundary mesh is avoided.
When the time comes to implementation, however, much of
this elegance is lost. In fact, notice that not always a new node
is created to generate a new tetrahedron (otherwise, the
number of faces in the front would grow to infinity). Several
tests must thus be performed to determine whether a new
point must be created, and where to do so. Even if an already
existing node will be used to advance the front, it must be
tested if the new edges will intrude in already existing
elements and, also, if any of the already existing edges will
pierce the new faces we are generating. As a result, a frontal
generator spends most of its computing time performing
floating-point test operations. These tests are "passed” or not
according to several user-defined tolerances. If these
tolerances are too strict, the generator simply aborts leaving
holes inside the domain. Contrariwise, if the tolerances are
enlarged, the generator may succeed in filling the volume at
the expense of generating some elements of very low quality.

In our experience, the tolerances required to generate a
30000-element mesh make the generator to produce at least
two or three elements with zero-degree and 180-degree
angles, i.e. no better than the Delaunay-based method.

Other remarkable facts are: (1) Properly programmed
frontal schemes are much more expensive in computer time
than Delaunay-based schemes, by a factor of at least twenty.
(2) Any minor simplification in the geometrical tests may
cause the self-penetration of the advancing front and the
collapse of the algorithm. It must be kept in mind that, when
dealing with hundreds of thousands of elements, whatever
may happen will occur.

5. What to do with bad-quality elements?
Considering that 3D mesh generators produce elements
not suitable for calculation, the question arises of what to do
with them. This has motivated intensive research on mesh-
improving techniques. Much experience in smoothing meshes
also comes from the area of deformable domains (free-
boundaries, interfaces, etc., in metal forming or flow
problems). In this later case, elements with high initial quality
distort as they follow the movement of the domain's boundary.
Except for interior slivers (Baker (1989) has shown how
to remove a sliver from a Delaunay mesh inserting one
additional node), bad elements must generally be enhanced
modifying the nodal positions. Kennon (1989) and Tezduyar
et al (1993) (among others) have developed quite effective
node-repositioning strategies, based on auxiliary elastic
problems. These strategies are clever generalizations of the
spring systems frequently used for 2D meshes (e.g., Peiro,



1989), but all elastic-like schemes fail to give a correct 3D
mesh when concave or high curvature boundaries are present.

As we have seen, mesh smoothing is crucial for 3D
meshes. As a consequence, a new line of research has
appeared under the name of mesh optimization (Buscaglia &
Dari, 1995; Cabello et al, 1994; Dari & Buscaglia, 1993,
1994; Kennon & Dulikravich, 1986; Stamatis & Papailiou,
1993; Zhang & Trépanier, 1994). Mesh optimization is a
particular kind of smoothing, which relocates nodes so as to
maximize some mesh-quality function, following an
optimization procedure over the space of nodal coordinates.
Cabello et al (1994), Stamatis&Papailiou (1993) and
Zhang&Trépanier (1994) define the mesh quality as an
average of the qualities of the elements contained in the mesh.
This quality is a smooth function of the nodal positions, and
they solve the maximization problem by conjugate-gradient or
steepest-ascent methods. Their results are quite good, but only
2D cases are considered and some surprises could appear in
3D. A similar averaging approach had already been
succesfully applied by Kennon&Dulikravich (1986) in three
dimensions to structured grids.

In previous articles, Dari&Buscaglia have proposed to
use, as quality of the mesh, the quality of its worst element,
i.e.

leobal = mKin QK

This choice incorporates a well-known fact: One unacceptable
element renders the mesh useless. The problem is then that of
maximizing an objective function of the min type. As min
functions are non-differentiable, they used a quite crude node-
by-node algorithm (described later). Their method succeeded
in producing good quality grids using as initial points both
frontal and Delaunay 3D meshes, without altering the node-
adjacency structures. In this way, it was shown that as-
generated meshes can be much enhanced by nodal
repositioning alone, what is a non-trivial assertion in three
dimensions. Several examples, with meshes of up to 200000
tetrahedral elements, can be found in the article by Buscaglia
& Dari (1995).

Instead of moving the nodes, it could be possible to
improve the quality of a mesh by modifying its node-
adjacency structure. Moreover, one could ask about the best
topological structure so that, combined with nodal relocation,
a mesh of optimal quality is obtained. The mesh relaxation
algorithm of Frey&Field (1991) seems to answer this question
in two dimensions. Some attempts have been performed by
Dari&Buscaglia (1994), but with limited success. A better
algorithm, based on the mesh geometry, can be found in
Dari's thesis (1994). The correct extension of the Frey&Field
algorithm to 3D remains an open question.

6. A mesh optimization algorithm
We are currently investigating the following algorithm:
1. Determine the element of lowest quality in the mesh,
Kuorst - If this quality is already greater than some
acceptance criterion, stop.

2. Find the n-th order neighboring nodes to K. Its
zero-order neighbors are the four nodes contained in

Korst - Its first-order ones are those nodes belonging
to elements adjacent to the zero-order neighboring

nodes, and so on. Let N, be the number of n-th
order neighbors.

Define now, as the cluster C, associated to a node | the set of
elements that share this node. The next step is

3. Sweep the N, clusters associated with each

neighboring node, modifying the nodal positions
one at a time, according to the local cluster
optimization rule, so as to improve the quality of
the cluster.

4. Go back to 1.

In this way, we are at each step optimizing only a part of
the complete mesh, comprising the worst element and its n-th
order neighbors. Any restriction in the movement of nodes,
such as those belonging to exterior or interior boundaries, is
handled without difficulty during the local optimization of
those clusters associated with constrained nodes. We now
concentrate on one fixed vertex, and make explicit our
algorithm for local cluster optimization. The quality of each

element is defined as V, /h¢, As the quality of the cluster is

the minimum quality of the elements contained in it, and thus
non-differentiable, standard optimization schemes would not
work. We are at the moment using the following (rather
crude) one:

Figure 1: Sampling positions for local cluster optimization in 2D.



We associate to the cluster C two scalar quantities, a Let us illustrate the previous exposition through an

) ) ] . o elementary example: A unit cube with homogeneous target

primary quality ¢,, defined by ¢, =min Qc (minimum  gensity. We proposed as desired element sizes 1/8 for the first

mesh (CUBEL) and 1/16 for the second (CUBEZ2). The surface

meshes provided by the generator can be seen in Fig. 2.

average quality in C. Both g, and @, are continuous functions  Instead of including lengthy tables, we will discuss the most
striking features of the results.

quality of the cluster) and a secondary one @,, defined as the

of the position X, of the central node | of the cluster. We next

introduce a set of sampling positions. Let xf’ be the original Initial triangulation: Both the Delaunay and frontal generators

position of node I, then, for every vertex V of the cluster succeeded in generating the meshes. Delaunay ones will be
labeled CUBE1D (770 nodes, 2918 elements) and CUBE2D

define two sampling points located at X, =X £0 (X, =X”), (5190 nodes, 23488 elements), while those obtained by the
frontal method CUBELF (723 nodes, 2441 elements) and
CUBEZ2F (4079 nodes, 16665 elements). The frontal generator
took 55 times more computing time than the Delaunay-based
one. In these original meshes, the minimum dihedral angles
ranged between zero (CUBE2D) and 2.56 degrees (CUBELF),
while the maximum one took values between 180 (CUBE2D)
and 176.58 (CUBE1F). Also, the ratio of the volume of the
largest element to that of the smallest one, which should have
been close to 1.0 because the density was specified as
homogeneous, rose to 51 in mesh CUBE1D, 440 in mesh
Whenever the maximum value of @, is shared by two sampling  CUBEZLF, practically infinity in mesh CUBE2D, and 239 in
mesh CUBE2F. These are clear evidences of what we were
referring to when discussing the actual meshes provided by
automatic generators. Although we are speaking of our
generators, we know from informal talks with colleagues that
necessary because the point where @, is maximum is  many existing generators would produce in this situation a
generally non-unique, and the algorithm needs a second  ratio maximum volume to minimum volume of at least 80.
criterion to avoid spurious iterations among equivalent points. Jin&Tanner (1993) have reported values in the range 15-30.

with a a small parameter, typically 0.05. Notice that x? is

itself a sampling position. In two dimensions, the set of
sampling points defined in this way would look as in Fig. 1.
The local cluster optimization rule we have implemented is
the following:

Local cluster optimization rule: Evaluate ¢, for all

sampling positions, and choose as updated position the
sampling position that maximizes this primary quality.

points, select the one with maximum secondary quality @, .

The introduction of the secondary quality q, is

7. An example: M esh generation inside a cube Optimization: We then went on to optimize the four meshes
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Figure 2: Triangulations generated on the surface of a unit cube. Left: CUBE1, average edge-length: 1/8, 1104
triangles. Right: CUBE2, average edge-length: 1/16, 4432 triangles.
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obtained in the previous step. We tried several orders of
neighborhood, to determine how many nodes around the worst
element one should move to attain acceptable qualities.
Typically, after 20 to 40 iterations the scheme converged to a
mesh with a minimum dihedral angle of 6 degrees and a
maximum one of 165 (we do not include edge-to-edge angles
in the discussion because they were much better than dihedral

angles). This is another advantage of the V, / h? definition of

quality, it puts more emphasis on angles close to 180 degrees
than in angles close to zero. Most impressive was the effect of
optimization on mesh CUBEZ2D. Its initially singular elements
were improved to the point that the dihedral angles of the
optimized mesh ranged between 10.3 and 159.7 degrees. The
maximum/minimum volume ratios after optimization lied
between 24 and 300. Turning now to the effect of allowing n-
th order neighboring nodes to move, our results are not
conclusive. For some meshes, increasing n from 0 up to 3
resulted in consistently better angles. For other ones, this
dependence was rather weak, and even a deleterious effect of
increasing n beyond 1 or 2 could be observed. This behavior
will be further discussed in the following section.

8. Discussion

In node-by-node mesh optimization algorithms, like
ours, the nodes are moved so as to improve the quality of the
cluster associated to that node. If the objective is to maximize
the quality of the worst element of the mesh, it is not clear
where to move those nodes not belonging to that element. It is
possible (and likely) that, to improve the worst element, one
should deteriorate some neighboring clusters. But our
algorithm will always try to maximize the cluster's quality,
and therefore the best mesh will in many cases not be
attained.

To overcome this difficulty, the optimization method
must build search directions not consisting of moving just one
point, but instead a certain number of them or, perhaps (as
done by Cabello et al (1994) and Stamatis & Papailiou
(1993)), the whole mesh. Our future research will follow this
direction. We would like to retain the non-differentiability of
the mesh quality function, in order to concentrate in those
elements of lowest quality. To keep the computations at a
local level, we will not optimize the whole mesh
simultaneously, but instead, as before, some n-th order
neighborhood of the worst element. From the preliminary
results reported above, reasonable values for n could be 1 or
2. This leads, at each step, to a non-differentiable
optimization problem in 60-180 variables.

Also important is to amend the node-adjacency structure
of the mesh. Several topological operations are possible: (a)
Any edge shared by three tetrahedra can be replaced by a face

and vice versa; (b) any node shared by four elements can be
deleted; (c) any octahedron of the mesh can be retriangulated
into four tetrahedra, choosing among three possibilities. The
question is how to decide if a topological change is
convenient; in other words, which is the best topological
structure of a mesh of tetrahedra? In 2D we know that
equilateral triangles fill the space, and thus one looks for
structures in which each node is shared by six elements. Up to
now, we know of no formal criterion to discern if some 3D
structure is better or worse than any other.
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