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SUMMARY 
We propose a new optimization strategy for unstructured meshes that, when coupled with existing automatic 
generators, produces meshes of high quality for arbitrary domains in 3-D. Our optimizer is based upon 
a non-differentiable definition of the quality of the mesh which is natural for finite element or finite volume users: 
the quality of the worst element in the mesh. The dimension of the optimization space is made tractable by 
restricting, at each iteration, to a suitable neighbourhood of the worst element. Both geometrical (node 
repositioning) and topological (reconnection) operations are performed. It turns out that the repositioning 
method is advantageous with respect to both the usual node-by-node techniques and the more recent 
differentiable optimization methods. Several examples are included that illustrate the efficiency of the optimizer. 
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1. INTRODUCTION 

Recent work in automatic three-dimensional mesh generation has shown that present algorithms 
(at least frontal and Delaunay ones) usually fail in providing a valid mesh for finite element 
computations (see, e.g. Reference 1). Awfully distorted elements appear, with angles between faces 
as low as 0.01 degrees or as high as 179.99. This led Dan and Buscaglia to propose, in Reference 2, 
that the construction of a valid mesh should be split into two steps. The first one is the automatic 
generation of an initial mesh, with no restriction on the elements' geometry except for the 
'non-overlapping' condition (in fact, even this condition can be relaxed). The second one is the 
optimization of the mesh, repositioning the nodes and possibly modifying the topological struc- 
ture (also called node-adjacency structure) so as to maximize some appropriate quality measure. 

A natural question is whether the quality of frontal- or Delaunay-generated meshes can be 
improved by node repositioning, and how much. In Reference 2 it was shown that drastic 
improvement can be obtained by node repositioning, yielding minimum angles as high as 10-30" 
and maximum ones as low as 150-170'. The point is, thus, that the topological structure of 
as-generated meshes is quite acceptable, while their geometrical structure is poor. Neverthe- 
less, topological changes can indeed improve unstructured meshes. These changes can be 
accomplished by successive application of some elementary operations (a 3-D analogue to the 
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well-known diagonal-swapping in 2-D). The usefulness of topological optimization was also 
proved in Reference 2, but the algorithm failed in certain situations. 

In this paper, we propose some mesh optimization strategies that solve many of the difficulties 
encountered by users of 3-D mesh generation programs. First we consider geometrical optimiza- 
tion, also called smoothing; and then topological optimization, also called relaxation or reconnec- 
tion. Both of them have precedents in the literature. Smoothing has long been used as a cosmetic 
process for meshes, and several strategies already These smoothing algorithms consist, in 
general, of the solution of some (linear or non-linear) elastic auxiliary problem. Such approaches, 
which are very effective in 2-D, frequently fail in three-dimensions (see, e.g. Reference 8). As 
a consequence, a new line of research has appeared under the general name of mesh optimiza- 
tion,2. 9 -14 concerning mainly what we refer here to as geometrical mesh optimization or 
smoothing (i.e. node-repositioning based on the optimization of the mesh quality). The smoothing 
methods we propose here incorporate several improvements with respect to previous ones: 

They are global, in the sense that the positions of the nodes are not updated one by one, but 
instead a complete sector of the mesh (perhaps the whole mesh) is moved at each 
optimization step. This increases the dimension of each optimization step, allowing for 
better ascent directions to be found. Cabello et ~ 1 . ~ ’ ~  Stamatis and Papailiou” and Zhang 
and Trepanieri4 have recently presented some encouraging results in this direction, but 
their meshes were two-dimensional. Another optimization method of global nature for 
structured meshes was early proposed by Kennon and Dulikravich.” 
They are non-direrentiable (or almost non-differentiable). Previous global optimization 

l4 define the mesh quality as some average of the quality of its elements. This 
definition ignores what finite element (especially CFD) practitioners have known for long: 
One unacceptable element renders the mesh useless. Our methods incorporate the proposal 
made by Dari and Bu~cag l i a ,~ .~  

which considers the global quality of a mesh as being the same as the quality of its worst 
element. The problem is thus that of maximizing a non-differentiable objective function of 
min type. 
They are efJicient. The simultaneous optimization of all node locations of a 3-D mesh 
consisting of, say, 200 0oO elements, is obviously intractable. In Section 4.1 it is shown that, 
to improve the worst element of the mesh, it is only necessary to move those nodes 
belonging to a small vicinity of it (up to its neighbours of order 1 or 2). In 3-D this reduces 
the dimension of the problem to, say, a few hundreds. Also, we have incorporated an 
inexpensive measure of the quality of a tetrahedron, namely 

where V K  is the volume of element K, PK its perimeter (the sum of the lengths of its six edges, 
three in 2-D), d = 2 (2-D) or 3 (3-D), and Cd a constant which renders the quality of an 
equilateral simplex equal to one ( = 20.784619 in 2-D and = 183293208 in 3-D). Our 
experiments have shown that this definition of quality has another advantage: It penalizes 
obtuse angles more strongly than acute ones. 

Concerning mesh relaxation (or topological optimization), an important precedent is the article 
of Frey and Fieldi5, which considered the diagonal swapping in 2-D. Ours is one possible 
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extension of such strategies to 3-D. We propose four elementary operations, to be performed (if 
possible) only when the geometrical quality (2) of the elements involved increases as a result of the 
operation. This geometrical criterion is quite different from the topological one proposed by Dari 
and Buscaglia,’ and the results are much better. Other important precedents are the methods of 
Coupez’6 and of Marcum and Weatherill,” who consider other classes of topological operations, 
Our relaxation method can be viewed as a variant of Coupez’s one. 

The plan of this article is as follows: In Section 2, we present the geometrical optimization 
methods. In Section 3 this is complemented with a topological optimization algorithm. In Section 
4 we report and discuss several examples. Our conclusions are left for Section 5. 

2. GEOMETRICAL OPTIMIZATION ALGORITHMS 

2. I .  The objective firnction 

We define the quality of a generic element (simplex) K of the mesh through equation (2). 
This quality is a differentiable function of the position of the nodes (vertices) of the element, 
except for singular situations (all of them contained in the set of nodal configurations of zero 
volume). Our objective function is the global quality of the mesh, defined through equation (1). 
This is the first proposal, and the resulting method will be hereafter referred to as non- 
diflerentiable optimization method. The second proposal is a regularization of the objective 
function (l), given by 

where p is a suitably chosen exponent. As all element qualities are lower than 1, (3) is a proper 
definition. Moreover, as p is increased, the worst elements in the mesh will eventually dominate 
the summation. The non-differentiable global quality (1) is thus recovered as p goes to infinity. 
The objective function defined by (3) is a differentiable function, and the consequent method will 
thus be called differentiable optimization method. 

2.2. The parameter (or optimization) space 

The objective function will be maximized over the space of nodal locations. The dimension of 
this space becomes intractable if the complete mesh is considered. We tackle this difficulty 
optimizing, at each step, only the nodal locations of those nodes that belong to the worst 
element of the mesh, together with their nth-order neighbours (with n = 1 or 2). The positions of 
this small number of nodes are the parameter space in which we maximize the objective function. 
As the optimization goes on, the worst element of the mesh changes, and so does the parameter 
space. 

We will refer as moving nodes to those nodes that are moving at a given stage of the algorithm. 
The moving nodes are selected among the movable nodes. In the present version of our method, 
boundary nodes are non- movable. If all the nodes belonging to an element are non-movable, the 
element is not considered. Once the worst element of the mesh has reached its maximum quality, 
we mark its nodes as non-movable so that the algorithm proceeds to optimize other bad elements 
of the mesh. 

The algorithm through which we administer the identification of nodes as moving, movable or 
non-movable is the following 
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Global Algorithm 
Initialization and Global Parameters: Specify a neighbourhood level NL and a maximum number 
of iterations M .  Set boundary nodes as non-movable. Initialize an integer auxiliary constant 
PREV with 0. 
Iterations: 

1. 

2. 

3. 

4. 

5.  
6. 

2.3. 

Identify the worst element among those elements of the mesh containing at least one 
movable node, KWORST. If the number of movable nodes is zero, Stop. 
If KWORST = PREV, set the four (three in 2-D) nodes of KWORST as non-movable and go 
back to 1. 
Identify the nodes in a neighbourhood of order NL of KWORST. The neighbours of order 
0 are the four nodes belonging to KWORST. Neighbours of order 1 are those nodes that are 
not neighbours of order 0, but are connected by an edge with at least one neighbour of order 
0; and so on. 
Set as moving nodes those identified in 3 that have not previously been set as non-movable. 
With these moving nodes apply the Local Algorithm (see below) to optimize the quality of the 
sub-mesh formed by the elements that contain the moving nodes. This sub-mesh is called 
hereafter optimization cluster. 
Assign to PREV the value KWORST. 
Go back to 1, or Stop if the number of iterations is equal to M .  

The non-diferentiable optimization algorithm 

We have implemented a steepest-descent-like algorithm taken from Polak." Let t,h be the 
objective function Qglobal, and let X E %" be the vector of co-ordinates of the moving nodes. The 
minus sign is introduced to turn the problem into a minimization one, just because the termino- 
logy in the literature is 'minimum-oriented'. We thus have to minimize t,h = maxKfK, where 

fK = - Q K  is the quality of element K ,  with negative sign. Of course, only those elements 
containing moving nodes are considered, let us assign to these elements the numbers 1,2, . . . m. If 
z0 represents the actual position of the moving nodes, the update Ax results from the following 

Local Algorithm: 
1. Compute the search direction 

m 

where {p~}K=l,...,m = p* - is the solution of 

with 

This quadratic programming sub-problem is solved using the Active Set Method (see, e.g. 
Reference 19). Explicit expressions for VfK can be found in the Appendix. The scaling factor 
L in (5) is a typical length. It is defined as the square root of the average area of elements in 
the cluster (times a constant that makes L equal to the edge length if the elements are 
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equilateral triangles or tetrahedra). Notice that with this definition L is constant along Local 
Iterations. 

2. Given a, p E (0, l), compute the step length l *  using Armijo’s rule: 

A* = max{l E % I  l = p k ( k  = 0,1,2,. . . ), $(Xo + A8) - Ic/(Xo) < l a  1 1  F / I z }  (7) 

3. AX = A*$. 

Remark 1. Solving the quadratic problem (5) to find the search direction can be very costly, 
especially in 3-D where the number of elements containing moving nodes is large even with NL 
taken as 1. Following the ideas in Reference 18, the efficiency can be improved including 
a user-defined tolerance E and computing the set I ,  of &-affected elements defined as those 
elements with quality close to the minimum one, i.e. 

E * I$(XO) -fK(xO)I < & (8) 

Now, the dimension of the quadratic problem is lowered replacing E by Z& defined by 

Clearly, the original problem is recovered when E is large enough. 

Remark 2. The iterations of the Local Algorithm must be stopped when the change in 
the objective function is below some tolerance TOL,,,. A good scale for this tolerance is 
the value taken for 6: We usually adopt TOLI,, = 6/10. However, not all optimization clusters 
must be iterated until convergence. Most clusters with bad initial quality attain very high 
quality in just a few iterations, and then spend lots of Local Iterations improving the quality 
from, say, 0.4 to 0.45. A good implementation should consider this possibility and stop the 
Local Iterations whenever a cluster has reached a quality that is greater that some given 
threshold value, so as to avoid wasting CPU time improving already-good clusters, and 
turn to worse ones. From our experience, a good choice for this threshold quality value is 0 2  
or 0 3 .  

2.4. The diferentiable optimization algorithm 

(3)), the descent direction is defined by 
We have implemented the standard steepest-descent method.” If Ic/ now is - Qglobal (equation 

where again f K  = - Q K .  Steps 2 and 3 remain as in 2.3. Explicit expressions for VfK can be found 
in the Appendix. 

3. THREE-DIMENSIONAL TOPOLOGICAL OPTIMIZATION ALGORITHM 

The geometrical optimization considered in Section 2 is supplemented with the change of the 
node-adjacency structure of the mesh. Once the geometrical optimization iterations have stop- 
ped, we try to improve the mesh quality further through topological changes. 
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EDGE + FACE 

OCTAHEDRAL, SWAPPING 

Figure 1. Topological optimization operations 

We consider the following four topological operations in 3-D (See Figure 1): 

Face + edge operation. Given two elements sharing a face, this operation consists of connect- 
ing the opposite vertices, deleting the common face. The resulting structure contains three 
elements instead of two (this operation is called local reconnection by Marcum and Weathe~ill'~). 

Edge +face operation. The inverse of Face -, edge, it can only be performed if the edge is 
shared by three tetrahedra. 

Octahedral swapping. If an edge in the mesh is shared by four tetrahedra, the union of these 
elements is an octahedron. This operation consists of swapping the edge among the three pairs of 
opposite nodes in the octahedron. 

Cluster reconnection. Consider a cluster of tetrahedra that share some specific node or some 
specific edge of the mesh. This operation consists of modifying the internal structure of the cluster, 
leaving the surface of the cluster unchanged. Our implementation allows for the following 
changes of structure: (a) Deletion of the internal node of the cluster (if any) and connection of all of 
the external faces to one of the remaining nodes. (b) Connection of all of the external faces to 
a node located at the centre of gravity of the cluster. (c) Reconnection of the cluster, connecting all 
of the external faces to the most favorable node. Change (a) reduces the number of nodes by one if 
the cluster has an internal node, while change (b) increases the number of nodes by one if the 
cluster has no internal node. Change (c) applies to clusters without internal nodes. A cluster 
reconnection operation consists of analysing all possible changes and selecting the one that yields 
elements of best quality. 

The last operation is taken from Coupez's method.16 The algorithm we propose is based on the 
mesh quality, which is a geometrical quantity. We have observed that performing topological 
changes decided on a geometrical criterion is a much better choice than that proposed by Dari 
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and Buscaglia,’ who used a topological criterion (they checked if the average number of elements 
sharing an edge approached the somewhat artificial value of 5.10). 

Topological Algorithm 

perform it. 

elements of better quality, perform it. 

as to obtain the best quality. 

quality, perform it. 

1. Analyse all faces in the mesh. If a face -, edge operation yields elements of better quality, 

2. Analyse all edges in the mesh shared by three tetrahedra, if an edge +face operation yields 

3. Analyse all edges in the mesh shared by four tetrahedra, performing octahedral swapping so 

4. Analyse all clusters in the mesh. If a cluster reconnection operation yields elements of better 

5. Go back to 1 until the topological structure remains unchanged. 

The computer cost is greatly reduced if, instead of analysing the whole mesh, just the 
surroundings of the worst elements are considered. 

4. NUMERICAL EXAMPLES 

4.1. Illustrative examples in 2-01 comparison of non-diflerentiable and differentiable methods, and 
determination of the order of neighborhood 

We begin with an example in two dimensions, taking as domain the surface of Lake Nahuel 
Huapi, a very large and beautiful lake just in front of our institute. Its irregular boundaries are an 
excellent test for mesh generation algorithms in 2-D. This example will clearly show that 2-D mesh 
generation can be considered a solved problem. What lies ahead is to achieve the same robustness 
in 3-D, and we will show that optimization strategies significantly contribute in this direction. 

We have specified as target density a non-uniform one, refined at the south east where Bariloche 
City lies. The mesh, generated using the Delaunay algorithm with program ENREDO,” consists 
of 11 172 triangles and 6056 nodes (see Figure 2). The minimum quality measure (equation (2)) for 
the as-generated mesh was 0.3445, corresponding to minimum/maximum angles in the mesh of 
12-04/148.27”. The purpose of this example is to compare the performance of non-differentiable 
and differentiable methods, and to determine adequate values for the order of neighbourhood 
NL, for the tolerance E in the non-differentiable method (equation 8), and for the regularization 
exponent p (equation (3)). In this academic example the tolerance of the Local Algorithm is 
specified as TOL,,, = No topology optimization is performed. 

We first analyse the order of neighbourhood NL. Increasing NL means moving more nodes at 
a time to optimize the quality of a badly shaped element, and results in larger (and more costly) 
local optimization problems. We have investigated this with the non-differentiable method, and 
the results can be found in Table I, in which a comparison with the node-by-node algorithm of 
Reference 2 is included. From the results in Table I it is evident that better qualities can be 
attained moving several nodes simultaneously (NL 2 0) than moving one at a time (node-by- 
node), at the expense of implementing more elaborate optimization algorithms. 

It is, however, clear that mesh LAKE1 is ‘too good’ for our comparison purposes. We will 
pursue the analysis with a perturbed mesh LAKE2, which is obtained by random perturbation of 
the positions of the internal nodes of the Delaunay mesh LAKE1. The corresponding results can 
be found in Table 11. Notice the bad quality of mesh LAKE2, and how it improves after 
optimization. 
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Figure 2. Mesh LAKE1. 11 172 triangles and 6056 nodes. Output from the Delaunay generator. The box indicates the 
region where the worst element of mesh LAKE2 is. The effect of optimization in this region of the mesh can be seen in 

Figure 3 

Table I. Analysis of the neighbourhood level NL of affected nodes and comparison of our non- 
differentiable method with the node-by-node method of Reference 2' 

MESH LAKE1 
11 172 elements. 6056 nodes. 
Initial quality: 0-3445 
Minimax angle: 12-041148.27 Node-by-node 
Generation method Delaunay NL=O N L = 1  N L = 2  N L = 3  method 

Non-differentiable method 
c = 0.1, number of iterations M = 100 

Final mesh quality (quality of 
the worst element) 0566 0.639 0.643 0.643 0.542 
Final minimum angle (degrees) 168 20.2 20.7 21.6 15.8 
Final maximum angle (degrees) 123.0 120.3 120.3 120.3 123.5 
CPU time (s) on SUN IPX 31 132 223 623 13 

' Node-by-node methods usually sweep the nodes a few times [14], in this case we have swept the nodes five times 

Several conclusions can be drawn from Table 11. First of all it is evident that, although it is 
important to move several nodes at a time to achieve good qualities, it is unnecessary to go 
beyond a neighbourhood level of 1. This means that the optimization of a mesh can be decoupled, 
as we have done, in the successive optimization of small clusters of elements, each cluster centered 
in an element of bad quality. It should not be necessary to  optimize the whole mesh simulta- 
neously as proposed in References 10 and 12, and thus 3-D meshes can be dealt with without 
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Table 11. Analysis of the neighbourhood level NL of affected nodes and comparison of our 
non-differentiable method with the node-by-node method of Reference 2’ 

MESH LAKE2 
1 1  172 elements. 6056 nodes. 
Initial quality: 0.0055 
Min/max angle: 0.16/179.0 Node-by -node 
Generation method: Delaunay NL=O N L = 1  N L = 2  N L = 3  method 

Non-differentiable method 
E = 0.1, number of iterations M = 200 

Final mesh quality (quality of 
the worst element) 0594 0.630 0.643 0-643 0.530 
Final minimum angle (degrees) 17.8 19.4 21.2 23.3 15.4 
Final maximum angle (degrees) 125.3 121.5 1202 120.2 1263 
CPU time (s) on SUN IPX 106 245 471 1330 40 

Table 111. Analysis of the regularization exponent p (differentiable method) and the tolerance E (non- 
differentiable method) and comparison of both methods 

MESH LAKE2. Perturbed. 
11 172 elements. 6056 nodes. 
Initial quality: 0.0055 number of iterations M = 200 method 

Differentiable method NL = 1, Non-differentiable 

Min/max angle: 0.16/179-0 
Method Delaunay p = l  p = 3  p = 5  p = 8  ~ = 0 0 1  ~ = 0 . 3  

NL = 1, M = 200 

Final mesh quality (quality of 
the worst element) 0.401 0.535 0-624 0.628 0630 0-630 
Final minimum angle (degrees) 11.4 15.5 19.4 19.4 19.4 19-4 
Final maximum angle (degrees) 143.9 121.7 121.7 121.7 121.5 121.5 
CPU time (s) on SUN IPX 301 339 371 427 236 2768 

excessive computing cost. Also, it should be pointed out that the computing time of our non- 
differentiable optimization method is quite low (only six times higher for NL = 1) as compared to 
that of node-by-node methods that are traditionally considered as cheap, and the final qualities 
attained are significantly higher. We should warn that we arrived at this efficiency after a careful 
implementation of the method. In particular, the introduction of the tolerance E (see the remarks 
in Section 2.3) with the consequent reduction in the dimension of the quadratic problem (5 )  is 
essential for the method to be competitive. Also, as in any steepest-descent method, the line- 
search routine must be programmed with care. 

Adopting now NL = 1, we compare the performance of the non-differentiable method with 
that of the differentiable one; with several values of the regularization exponent p and of the 
tolerance E. From the results in Table I11 it is clear that rather high values of p are needed to make 
the differentiable method comparable to the non-differentiable one. High values of p render the 
local optimization problems ill-conditioned, and in particular sensitive to the specific choice of 
the tolerance TOL,,,. If TOL,,, is increased from low5 to the mesh quality obtained through 
the differentiable method with p = 8 chanes from 0-628 to 0-466. On the other hand, if TOL,,, is 
increased to lo-’ the quality obtained through the non-differentiable method with E = 001 only 
changes from 0630 to 0621. Also notice that the non-differentiable method is faster than the 
differentiable one for any E < 0-1, and that its results are independent of E. We usually adopt 
E = 0.05, but it is sometimes necessary to  reduce this value. See Section 4.3 for more details about 
the selection of E. 
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Figure 3. Effect of optimization on nodal positions. Details of the meshes in the region where the worst element of mesh 
LAKE2 (arrow) lies. (a) Mesh LAKE1; (b) Mesh LAKEZ; (c) Mesh LAKE2 after optimizing the cluster of the worst 
element with NL = 2. The elements in the optimization cluster are shown in gray. In darker gray are shown those 

elements that share the minimum quality in the optimized cluster 

As we have already mentioned, the techniques proposed in this paper are only necessary in 
three dimensions, as in this case the automatic generators fail to provide valid meshes. The 
purpose of the examples above has been to illustrate with 2-D meshes (which can be plotted) the 
performance of our methods and to select appropriate values for the numerical parameters. In 
Figure 3 we plot the region of mesh LAKE2 where the worst element is, together with the same 
region of mesh LAKEl and of mesh LAKE2 after optimizing the cluster of the worst element 
(with NL = 2). The worst element of mesh LAKE2 is needle-like, marked by the arrow. After 
optimization, the minimum quality is shared by seven elements (in darker gray, Figure 3(c)), 
evidencing that the optimum is at a point of lack of differentiability. Notice that the optimized 
cluster is clearly of higher quality than in the as-generated mesh, LAKEl. In the next section, we 
turn to the study of a full 3-D geometry and of meshes obtained with state-of-the-art automatic 
generators. 

4.2. A detailed example in 3-0: mesh around an aircraft 

We now report an example in three dimensions, namely the construction of a mesh around an 
aircraft. The surface mesh, consisting of 4914 nodes and 9820 triangles and generated with 
program TRISURF,” can be seen in Figure 4. The Delaunay method developed by Dari’ was 
applied to the domain defined by this inner surface and an outer cube with edge length 60 times 
the wingspan of the aircraft. The resulting mesh (PLANE1) is a good example of the performance 
of state-of-the-art 3-D mesh generators: From a total of 290 306 tetrahedral elements, there are 
139 with qualities under 001. The quality of the worst element is negative, - 0.39, meaning that 
during the boundary recovery step of the Delaunay method some overlapping of elements 
occurred. From our viewpoint, this mesh is just the output of the first part of the generation 
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Figure 4. Surface mesh of an aircraft, consisting of 4914 nodes and 9820 triangles 

process, the second one being the optimization procedure. Geometrical optimization aIone 
drastically improves the quality of this mesh. One iteration of the non-differentiable method 
suffices to unfold the mesh and eliminate the overlapping. After 100 iterations with NL = 1 and 
E = 0.05 mesh PLANE2 was obtained, with a minimum quality of 0.031 (see mesh statistics in 
Table IV). The evolution of the mesh quality with iterations can be seen in Figure 5. In mesh 
PLANE1, there are 821 elements with quality under 0.2, while in mesh PLANE2 this number has 
reduced to 606. 

Topological optimization (see Section 3) was applied to mesh PLANE2 (resulting after 100 
geometrical optimization iterations). The mesh quality increased as a result of this operation from 
0.031 to 0,121, while the number of elements with quality below 0.2 decreased to 32. The mesh was 
further optimized through 100 + 100 additional geometrical optimization iterations, with 
a topological optimization in between. The evolution of the mesh quality along the optimization 
process can be seen in Figures 5(a) and 5(b). The final or ‘fully optimized’ mesh (mesh PLANE3) 
has a quite good quality of 0.176, and its statistics can be found in Table IV. 

4.3. More examples 

The second example we address is a quite small mesh (just 4824 elements and 896 nodes) 
around a sphere. It serves as an example of optimization of a mesh generated with the 
advancing-front method. The domain consists of a cylinder with a spherical hole at its center. The 
cylinder’s height is 80 and its radius 40. The radius of the hole is 1. The mesh size far away from 
the hole was defined as 30, relative to the mesh size at the hole (the volume of an equilateral 
tetrahedron having the mesh size specified at the hole boundary would be 0.01). The as-generated 
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Table IV. Effect of optimization on the quality of a mesh around an aircraft. 

MESH AROUND AN AIRCRAFT As generated Geometrically optimized Fully optimized 
Generation method Delaunay (PLANE1) (PLANE2) (PLANE3) 

Number of nodes 
Number of elements 
Geometrical optimizations performed 
Topological optimizations performed 
Quality of the worst element 
Minimum angle of the mesh (degrees) 
Maximum angle of the mesh (degrees) 
Number of elements with quality below 0.2 
Cumulative CPU time (s) on SUN IPX 
needed to construct mesh 

50 329 
290 306 

0 
0 

- 0.39 
< O  

> 180 
82 1 
1200 

50 329 
290 306 

1 
0 

0.03 1 
1.21 

606 
1440 

176.6 

50 290 
289 700 

3 
2 

0.176 
5.87 

161.8 
3 

2004 

Note: Geometrical optimization method is nondifferentiable, NL = 1, E = 0.05, and M = 100. 'Fully optimized' means 
a sequence of three geometrical optimizations, with two topological optimizations in between. The minimum/maximum 
angles of the mesh are calculated considering both edge-to-edge and face-to-face angles within all tetrahedra of the mesh 

0.2 

0.1 

0.0 

-0.2 

-0.3 

-0.4 
0 50 100 150 200 250 300 

# iterotions 
(a> 

0 50 100 150 200 250 300 
#iterations 

Figure 5 .  Mesh around an aircraft. Evolution of mesh quality with geometrical optimization iterations. The effect of 
performing topological optimization after 100 and 200 geometrical iterations is also made evident. (a) Quality of the worst 

element versus iterations; (b) number of elements with quality below 0 2  versus iterations 
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Figure 6. Distribution of angles in mesh CHFl before (a) and after (b) optimization. The range [0.180] degrees has been 
divided into 60 three-degree-wide intervals. To each interval the number of angles falling in it has been assigned. Notice 

how the tails near 0 and 180" are removed by optimization 

mesh has minimum/maximum angles of 0.0824°/179-230, clearly indicating the existence of 
almost-singular elements. We refer to this mesh as CHF1. The effect of optimization is quite 
impressive: The quality of the worst element increases from 1.97 to 040, and the min- 
imum/maximum dihedral angles improve to 19"/144.7". The distribution of angles in mesh CHFl 
before and after optimization can be found in Figure 6. We are now carrying out an analysis 
about the impact of such quality improvement on solid mechanics calculations, which will be 
reported in the near future. 

The last example is a mesh around the keel of a competition sailboat. A detail of the surface 
mesh can be seen in Figure 7. The volume mesh was generated using a Delaunay-based method 
and consists of 206 549 elements and 37 947 nodes. It will be labeled as KEELl. The quality of this 
mesh is strictly zero, with angles of 0" and of 180". The number of elements with quality below 0.2 
is 1339. The evolution of the mesh during optimization can be seen in Figure 8. We performed 
a sequence of 100 + 100 + 100 geometrical optimization iterations, with topological optimiza- 
tions in between. The final mesh, KEEL2, has a quality of 0.174, with dihedral angles of more 
than 7.22 and less than 162-4". The number of elements with quality below 0.2 in mesh KEEL2 
is 2. The beneficial effect of mesh optimization is again evident. Quite surprisingly, to obtain 
a reasonable performance in CPU time (900 s on a SUN IPX) we had to reduce E to 0.005. The 
tuning of E is straightforward If it is observed that the dimension of zz systematically exceeds 
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Figure 7. Surface mesh of the keel of a competition sailboat (detail) 

10 or 20 during the first global iterations, then reduce E to make the calculation of the search 
direction (equation (5)) cheaper, at the expense of increasing the number of Local Zterutions (cf. 
Section 2.3). 

5.  CONCLUSIONS 

A new optimization method for unstructured 3-D finite element meshes has been presented. The 
method is based upon non-differentiable optimization techniques that emphasize the impact on 
numerical computations of one or very few badly shaped elements within the domain. These 
low-quality elements are generated by most of the existing automatic mesh generators, and can be 
avoided applying our method to the as-generated mesh. Several improvements to the raw 
algorithm have been discussed, which render it computationally effective. The viewpoint of 
considering 3-D mesh generation as a two-step process beginning with an initial mesh generation 
followed by optimization, as previously proposed by Dari and Buscaglia,2 has thus been 
thoroughly investigated in this work and proved to be a valuable tool for the generation of 
unstructured meshes in arbitrary domains. 

Finally, let us remark that the final mesh obtained through our optimization method indeed 
depends on the original node distribution and mesh topology. A complete control on the grid 
quality can only be attained if effective, quality-oriented algorithms are applied along all of the 
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Figure 8. Evolution of the quality of mesh KEEL1 during optimization. Two topological optimizations were performed 
after 100 and 200 geometrical optimization iterations, respectively: (a) Evolution of the quality of the worst element; (b) 

number of elements with quality below 0.2 

mesh generation process (surface meshing, density definition, node insertion, element creation 
and optimization). 
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APPENDIX 

Derivatives of the quality function 

Two-dimensional case: The quality of an element K is QK = 20.7846 V K / P i  and thus 
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Let x, y be the two space co-ordinates, let the three nodal points of the triangle be labelled 
A = (xA,yA), B = (xB,YB) and C = (xc ,yc) ,  and let L A B  = IIA - BII, L A C  = IIA - CIJ, and 
L B C  = (IB - Cll. It is clear that 

PK = LAB + LAC + LBC 
and that 

(XB - xA)( Y C  - yA) - (XC - XA) ( YB - y A) 

2 
VK = 

Now, the gradients of these quantities with respect to the co-ordinates of the nodes are 

i%ree-dimensional case. The quality of an element K is Q K  = 1832.82 VK/P: and thus 

Let x, y, z be the three space co-ordinates, let the four nodal points of the tetrahedron be labeled 
A = (XA,YA,ZA), B = (XB,YB,ZB), C = ( X C , Y C . Z C )  and D = (XD,YD,ZD), and let LAB = I1 A - BII, 
LAC = 11 A - C /I, and so on. It is clear that 

P K  = LAB + LAC + LAD + LBC + LBD + LCD 
and that 

(D - A)-(B -A) A (C - A) 
6 

VK = 

Now, the derivatives of these quantities with respect to the co-ordinates of node A are (permuta- 
tion of indices allows to calculate the rest of the derivatives) 

-- a v K  (YB - YD) (ZC - ZD) - ( Y C  - YD) (ZB - ZD) - 
a X A  6 
~ Y K  
aYA 6 

(2, - YD)(XC - XD) - (ZC - ZD)(XB - XD) -- - 
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+ YA - YC 

L A C  
+ YA - Y D  

LAD 
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