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SUMMARY

We propose a new optimization strategy for unstructured meshes that, when coupled with existing automatic
generators, produces meshes of high quality for arbitrary domains in 3-D. Qur optimizer is based upon
a non-differentiable definition of the quality of the mesh which is natural for finite element or finite volume users:
the quality of the worst element in the mesh. The dimension of the optimization space is made tractable by
restricting, at each iteration, to a suitable neighbourhood of the worst element. Both geometrical (node
repositioning) and topological (reconnection) operations are performed. It turns out that the repositioning
method is advantageous with respect to both the usual node-by-node techniques and the more recent
differentiable optimization methods. Several examples are included that illustrate the efficiency of the optimizer.

KEY WORDS: unstructured mesh generation; optimization; smoothing; finite elements; finite volume methods

1. INTRODUCTION

Recent work in automatic three-dimensional mesh generation has shown that present algorithms
(at least frontal and Delaunay ones) usually fail in providing a valid mesh for finite element
computations (see, e.g. Reference 1). Awfully distorted elements appear, with angles between faces
as low as 0-01 degrees or as high as 179-99. This led Dari and Buscaglia to propose, in Reference 2,
that the construction of a valid mesh should be split into two steps. The first one is the automatic
generation of an initial mesh, with no restriction on the elements’ geometry except for the
‘non-overlapping’ condition (in fact, even this condition can be relaxed). The second one is the
optimization of the mesh, repositioning the nodes and possibly modifying the topological struc-
ture (also called node-adjacency structure) so as to maximize some appropriate quality measure.

A natural question is whether the quality of frontal- or Delaunay-generated meshes can be
improved by node repositioning, and how much. In Reference 2 it was shown that drastic
improvement can be obtained by node repositioning, yielding minimum angles as high as 10-30°
and maximum ones as low as 150-170°. The point is, thus, that the topological structure of
as-generated meshes is quite acceptable, while their geometrical structure is poor. Neverthe-
less, topological changes can indeed improve unstructured meshes. These changes can be
accomplished by successive application of some elementary operations (a 3-D analogue to the
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well-known diagonal-swapping in 2-D). The usefulness of topological optimization was also
proved in Reference 2, but the algorithm failed in certain situations.

In this paper, we propose some mesh optimization strategies that solve many of the difficulties
encountered by users of 3-D mesh generation programs. First we consider geometrical optimiza-
tion, also called smoothing; and then topological optimization, also called relaxation or reconnec-
tion. Both of them have precedents in the literature. Smoothing has long been used as a cosmetic
process for meshes, and several strategies already exist.>~7 These smoothing algorithms consist, in
general, of the solution of some (linear or non-linear) elastic auxiliary problem. Such approaches,
which are very effective in 2-D, frequently fail in three-dimensions (see, e.g. Reference 8). As
a consequence, a new line of research has appeared under the general name of mesh optimiza-
tion,-°"1* concerning mainly what we refer here to as geometrical mesh optimization or
smoothing (i.e. node-repositioning based on the optimization of the mesh quality). The smoothing
methods we propose here incorporate several improvements with respect to previous ones:

(1) They are global, in the sense that the positions of the nodes are not updated one by one, but
instead a complete sector of the mesh (perhaps the whole mesh) is moved at each
optimization step. This increases the dimension of each optimization step, allowing for
better ascent directions to be found. Cabello et al.,!° Stamatis and Papailiou'? and Zhang
and Trépanier'# have recently presented some encouraging results in this direction, but
their meshes were two-dimensional. Another optimization method of global nature for
structured meshes was early proposed by Kennon and Dulikravich.!!

(2) They are non-differentiable (or almost non-differentiable). Previous global optimization
strategies!®!2 14 define the mesh quality as some average of the quality of its elements. This
definition ignores what finite element (especially CFD) practitioners have known for long:
One unacceptable element renders the mesh useless. Our methods incorporate the proposal
made by Dari and Buscaglia,?-®

Qglobar = m}“ Ok 1)

which considers the global quality of a mesh as being the same as the quality of its worst
element. The problem is thus that of maximizing a non-differentiable objective function of
min type.

(3) They are efficient. The simultaneous optimization of all node locations of a 3-D mesh
consisting of, say, 200 000 elements, is obviously intractable. In Section 4.1 it is shown that,
to improve the worst element of the mesh, it is only necessary to move those nodes
belonging to a small vicinity of it (up to its neighbours of order 1 or 2). In 3-D this reduces
the dimension of the problem to, say, a few hundreds. Also, we have incorporated an
inexpensive measure of the quality of a tetrahedron, namely

| 4
QK = CdFd”f (2)

where Vg is the volume of element K, Py its perimeter (the sum of the lengths of its six edges,
three in 2-D), d = 2 (2-D) or 3 (3-D), and C, a constant which renders the quality of an
equilateral simplex equal to one ( = 20-784619 in 2-D and = 1832-8208 in 3-D). Our
experiments have shown that this definition of quality has another advantage: It penalizes
obtuse angles more strongly than acute ones.

Concerning mesh relaxation (or topological optimization), an important precedent is the article
of Frey and Field!®, which considered the diagonal swapping in 2-D. Qurs is one possible
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extension of such strategies to 3-D. We propose four elementary operations, to be performed (if
possible) only when the geometrical quality (2) of the elements involved increases as a result of the
operation. This geometrical criterion is quite different from the topological one proposed by Dari
and Buscaglia,? and the results are much better. Other important precedents are the methods of
Coupez'® and of Marcum and Weatherill,!? who consider other classes of topological operations.
Our relaxation method can be viewed as a variant of Coupez’s one.

The plan of this article is as follows: In Section 2, we present the geometrical optimization
methods. In Section 3 this is complemented with a topological optimization algorithm. In Section
4 we report and discuss several examples. Our conclusions are left for Section 5.

2. GEOMETRICAL OPTIMIZATION ALGORITHMS

2.1. The objective function

We define the quality of a generic element (simplex) K of the mesh through equation (2).
This quality is a differentiable function of the position of the nodes (vertices) of the element,
except for singular situations (all of them contained in the set of nodal configurations of zero
volume). Our objective function is the global quality of the mesh, defined through equation (1).
This is the first proposal, and the resulting method will be hereafter referred to as non-
differentiable optimization method. The second proposal is a regularization of the objective
function (1), given by

Qslobal = - ;(1 - QK)p (3)

where p is a suitably chosen exponent. As all element qualities are lower than 1, (3) is a proper
definition. Moreover, as p is increased, the worst elements in the mesh will eventually dominate
the summation. The non-differentiable global quality (1) is thus recovered as p goes to infinity.
The objective function defined by (3) is a differentiable function, and the consequent method will
thus be called differentiable optimization method.

2.2. The parameter (or optimization) space

The objective function will be maximized over the space of nodal locations. The dimension of
this space becomes intractable if the complete mesh is considered. We tackle this difficulty
optimizing, at each step, only the nodal locations of those nodes that belong to the worst
element of the mesh, together with their nth-order neighbours (with n = 1 or 2). The positions of
this small number of nodes are the parameter space in which we maximize the objective function.
As the optimization goes on, the worst element of the mesh changes, and so does the parameter
space.

We will refer as moving nodes to those nodes that are moving at a given stage of the algorithm.
The moving nodes are selected among the movable nodes. In the present version of our method,
boundary nodes are non- movable. If all the nodes belonging to an element are non-movable, the
element is not considered. Once the worst element of the mesh has reached its maximum quality,
we mark its nodes as non-movable so that the algorithm proceeds to optimize other bad elements
of the mesh.

The algorithm through which we administer the identification of nodes as moving, movable or
non-movable is the following
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Global Algorithm

Initialization and Global Parameters: Specify a neighbourhood level NL and a maximum number
of iterations M. Set boundary nodes as non-movable. Initialize an integer auxiliary constant
PREYV with 0.

Iterations:

1. Identify the worst element among those elements of the mesh containing at least one
movable node, KWORST. If the number of movable nodes is zero, Stop.

2. f KWORST = PREYV, set the four (three in 2-D) nodes of KWORST as non-movable and go
back to 1.

3. Identify the nodes in a neighbourhood of order NL of KWORST. The neighbours of order
0 are the four nodes belonging to KWORST. Neighbours of order 1 are those nodes that are
not neighbours of order 0, but are connected by an edge with at least one neighbour of order
0; and so on.

4. Set as moving nodes those identified in 3 that have not previously been set as non-movable.
With these moving nodes apply the Local Algorithm (see below) to optimize the quality of the
sub-mesh formed by the elements that contain the moving nodes. This sub-mesh is called
hereafter optimization cluster.

5. Assign to PREV the value KWORST.

6. Go back to 1, or Stop if the number of iterations is equal to M.

2.3. The non-differentiable optimization algorithm

We have implemented a steepest-descent-like algorithm taken from Polak.'® Let i be the
objective function Qgopa, and let x € R* be the vector of co-ordinates of the moving nodes. The
minus sign is introduced to turn the problem into a minimization one, just because the termino-
logy in the literature is ‘minimum-oriented’. We thus have to minimize y = maxy fx, where
fx = — Qg is the quality of element K, with negative sign. Of course, only those elements
containing moving nodes are considered, let us assign to these elements the numbers 1,2, . . . m.If
X, represents the actual position of the moving nodes, the update Ax results from the following

Local Algorithm:
1. Compute the search direction
3= — Y uk Vfx(%o) C)
K=1
where {ux}k=1,....m = u* is the solution of
m 2 m 2
u* = arg min {I: Y uxl¥(xo) —fx(xo)]:l + L2 Y e Vik(Xo) } (3)
- neZ K=1 K=1
with
E={;_te‘ﬁ"'lux>0, Y #x=1} (6)
K=1

This quadratic programming sub-problem is solved using the Active Set Method (see, e.g.
Reference 19). Explicit expressions for Vfy can be found in the Appendix. The scaling factor
L in (5) is a typical length. It is defined as the square root of the average area of elements in
the cluster (times a constant that makes L equal to the edge length if the elements are
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equilateral triangles or tetrahedra). Notice that with this definition L is constant along Local

Iterations.
2. Given a, f € (0, 1), compute the step length A* using Armijo’s rule:
M =max{leR|1=F4k=0,1,2,...),¥(X + A8) — ¥(%o) < Aa | 3]} (7
3. Ax = A*4.

Remark 1. Solving the quadratic problem (5) to find the search direction can be very costly,
especially in 3-D where the number of elements containing moving nodes is large even with NL
taken as 1. Following the ideas in Reference 18, the efficiency can be improved including
a user-defined tolerance ¢ and computing the set I, of ¢-affected elements defined as those
elements with quality close to the minimum one, i.e.

Kel, < |Y(Xo) —fx(Xo) <& @®)

Now, the dimension of the quadratic problem is lowered replacing Z by Z, defined by

Es={;_1€‘ﬁ'"lux>0, Y ux=l,ux=0ifK¢Iz} )
K=1
Clearly, the original problem is recovered when ¢ is large enough.

Remark 2. The iterations of the Local Algorithm must be stopped when the change in
the objective function is below some tolerance TOL,.. A good scale for this tolerance is
the value taken for ¢: We usually adopt TOL,,. = ¢/10. However, not all optimization clusters
must be iterated until convergence. Most clusters with bad initial quality attain very high
quality in just a few iterations, and then spend lots of Local Iterations improving the quality
from, say, 0-4 to 0-45. A good implementation should consider this possibility and stop the
Local Iterations whenever a cluster has reached a quality that is greater that some given
threshold value, so as to avoid wasting CPU time improving already-good clusters, and
turn to worse ones. From our experience, a good choice for this threshold quality value is 0-2
or 0-3.

2.4. The differentiable optimization algorithm

We have implemented the standard steepest-descent method.'® If yy now is — Qg,m. (equation
(3)), the descent direction is defined by

= =V = = 3 Pl Vi) (10)

where again fy = — Q. Steps 2 and 3 remain as in 2.3. Explicit expressions for Vfx can be found
in the Appendix.

3. THREE-DIMENSIONAL TOPOLOGICAL OPTIMIZATION ALGORITHM

The geometrical optimization considered in Section 2 is supplemented with the change of the
node-adjacency structure of the mesh. Once the geometrical optimization iterations have stop-
ped, we try to improve the mesh quality further through topological changes.
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FACE - EDGE
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EDGE — FACE
OCTAHEDRAL SWAPPING
~__/
Figure 1. Topological optimization operations

We consider the following four topological operations in 3-D (See Figure 1):

Face — edge operation. Given two elements sharing a face, this operation consists of connect-
ing the opposite vertices, deleting the common face. The resulting structure contains three
elements instead of two (this operation is called local reconnection by Marcum and Weatherill'”).

Edge — face operation. The inverse of Face — edge, it can only be performed if the edge is
shared by three tetrahedra.

Octahedral swapping. If an edge in the mesh is shared by four tetrahedra, the union of these
elements is an octahedron. This operation consists of swapping the edge among the three pairs of
opposite nodes in the octahedron.

Cluster reconnection. Consider a cluster of tetrahedra that share some specific node or some
specific edge of the mesh. This operation consists of modifying the internal structure of the cluster,
leaving the surface of the cluster unchanged. Our implementation allows for the following
changes of structure: (a) Deletion of the internal node of the cluster (if any) and connection of all of
the external faces to one of the remaining nodes. (b) Connection of all of the external faces to
a node located at the centre of gravity of the cluster. (¢) Reconnection of the cluster, connecting all
of the external faces to the most favorable node. Change (a) reduces the number of nodes by one if
the cluster has an internal node, while change (b) increases the number of nodes by one if the
cluster has no internal node. Change (c) applies to clusters without internal nodes. A cluster
reconnection operation consists of analysing all possible changes and selecting the one that yields
elements of best quality.

The last operation is taken from Coupez’s method.!¢ The algorithm we propose is based on the
mesh quality, which is a geometrical quantity. We have observed that performing topological
changes decided on a geometrical criterion is a much better choice than that proposed by Dari
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and Buscaglia,> who used a topological criterion (they checked if the average number of elements
sharing an edge approached the somewhat artificial value of 5-10).

Topological Algorithm

1. Analyse all faces in the mesh. If a face — edge operation yields elements of better quality,
perform it.

2. Analyse all edges in the mesh shared by three tetrahedra, if an edge — face operation yields
elements of better quality, perform it.

3. Analyse all edges in the mesh shared by four tetrahedra, performing octahedral swapping so
as to obtain the best quality.

4. Analyse all clusters in the mesh. If a cluster reconnection operation yields elements of better
quality, perform it.

5. Go back to 1 until the topological structure remains unchanged.

The computer cost is greatly reduced if, instead of analysing the whole mesh, just the
surroundings of the worst elements are considered.

4. NUMERICAL EXAMPLES

4.1. Illustrative examples in 2-D: comparison of non-differentiable and differentiable methods, and
determination of the order of neighborhood

We begin with an example in two dimensions, taking as domain the surface of Lake Nahuel
Huapi, a very large and beautiful lake just in front of our institute. Its irregular boundaries are an
excellent test for mesh generation algorithms in 2-D. This example will clearly show that 2-D mesh
generation can be considered a solved problem. What lies ahead is to achieve the same robustness
in 3-D, and we will show that optimization strategies significantly contribute in this direction.

We have specified as target density a non-uniform one, refined at the south east where Bariloche
City lies. The mesh, generated using the Delaunay algorithm with program ENREDO,2° consists
of 11 172 triangles and 6056 nodes (see Figure 2). The minimum quality measure (equation (2)) for
the as-generated mesh was 0-3445, corresponding to minimum/maximum angles in the mesh of
12:04/148-27°. The purpose of this example is to compare the performance of non-differentiable
and differentiable methods, and to determine adequate values for the order of neighbourhood
NL, for the tolerance ¢ in the non-differentiable method (equation 8), and for the regularization
exponent p (equation (3)). In this academic example the tolerance of the Local Algorithm is
specified as TOL,,, = 1075, No topology optimization is performed.

We first analyse the order of neighbourhood NL. Increasing NL means moving more nodes at
a time to optimize the quality of a badly shaped element, and results in larger (and more costly)
local optimization problems. We have investigated this with the non-differentiable method, and
the results can be found in Table I, in which a comparison with the node-by-node algorithm of
Reference 2 is included. From the results in Table I it is evident that better qualities can be
attained moving several nodes simultaneously (NL > 0) than moving one at a time (node-by-
node), at the expense of implementing more elaborate optimization algorithms.

It is, however, clear that mesh LAKEL is ‘too good’ for our comparison purposes. We will
pursue the analysis with a perturbed mesh LAKE2, which is obtained by random perturbation of
the positions of the internal nodes of the Delaunay mesh LAKE1. The corresponding results can
be found in Table II. Notice the bad quality of mesh LAKE2, and how it improves after
optimization.
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Figure 2. Mesh LAKE1. 11172 triangles and 6056 nodes. Output from the Delaunay generator. The box indicates the
region where the worst element of mesh LAKE? is. The effect of optimization in this region of the mesh can be seen in
Figure 3

Table 1. Analysis of the neighbourhood level NL of affected nodes and comparison of our non-
differentiable method with the node-by-node method of Reference 2!

MESH LAKE!

11172 elements. 6056 nodes. Non-differentiable method

Initial quality: 0-3445 ¢ = (-1, number of iterations M = 100

Min/max angle: 12-04/148-27 Node-by-node
Generation method: Delaunay NL=0 NL=1 NL=2 NL=3 method
Final mesh quality (quality of

the worst element) 0-566 0-639 0-643 0-643 0-542
Final minimum angle (degrees) 16:8 202 20-7 21-6 158
Final maximum angle (degrees) 1230 1203 1203 1203 1235
CPU time (s) on SUN IPX 31 132 223 623 13

* Node-by-node methods usually sweep the nodes a few times [14], in this case we have swept the nodes five times

Several conclusions can be drawn from Table II. First of all it is evident that, although it is
important to move several nodes at a time to achieve good qualities, it is unnecessary to go
beyond a neighbourhood level of 1. This means that the optimization of a mesh can be decoupled,
as we have done, in the successive optimization of small clusters of elements, each cluster centered
in an element of bad quality. It should not be necessary to optimize the whole mesh simulta-
neously as proposed in References 10 and 12, and thus 3-D meshes can be dealt with without



UNSTRUCTURED MESH GENERATION 2063

Table II. Analysis of the neighbourhood level NL of affected nodes and comparison of our
non-differentiable method with the node-by-node method of Reference 2!

MESH LAKE2

11172 elements. 6056 nodes. Non-differentiable method

Initial quality: 0-0055 & = 0-1, number of iterations M = 200

Min/max angle: 0-16/179-0 Node-by-node
Generation method: Delaunay NL=0 NL=1 NL=2 NL=3 method
Final mesh quality (quality of

the worst element) 0594 0630 0-643 0-643 0-530
Final minimum angle (degrees) 17-8 19-4 212 233 15-4
Final maximum angle (degrees) 1253 121:5 120-2 1202 126-3
CPU time (s) on SUN IPX 106 245 471 1330 40

Table III. Analysis of the regularization exponent p (differentiable method) and the tolerance ¢ (non-
differentiable method) and comparison of both methods

MESH LAKE?2. Perturbed.

11172 elements. 6056 nodes. Differentiable method NL = 1, Non-differentiable
Initial quality: 0-0055 number of iterations M = 200 method
Min/max angle: 0-16/179-0 NL =1, M =200
Method: Delaunay p=1 p=3 p=5 p=8 =001 £=03
Final mesh quality (quality of

the worst element) 0-401 0535 0624 0628 0630 0-630
Final minimum angle (degrees) 114 155 194 154 19-4 19-4
Final maximum angle (degrees) 1439 1217 1217 1217 1215 1215
CPU time (s) on SUN IPX 301 339 371 427 236 2768

excessive computing cost. Also, it should be pointed out that the computing time of our non-
differentiable optimization method is quite low (only six times higher for NL = 1) as compared to
that of node-by-node methods that are traditionally considered as cheap, and the final qualities
attained are significantly higher. We should warn that we arrived at this efficiency after a careful
implementation of the method. In particular, the introduction of the tolerance ¢ (see the remarks
in Section 2.3) with the consequent reduction in the dimension of the quadratic problem (5) is
essential for the method to be competitive. Also, as in any steepest-descent method, the line-
search routine must be programmed with care.

Adopting now NL = 1, we compare the performance of the non-differentiable method with
that of the differentiable one; with several values of the regularization exponent p and of the
tolerance &. From the results in Table II1 it is clear that rather high values of p are needed to make
the differentiable method comparable to the non-differentiable one. High values of p render the
local optimization problems ill-conditioned, and in particular sensitive to the specific choice of
the tolerance TOL,,.. If TOL,. is increased from 1073 to 10~ 2 the mesh quality obtained through
the differentiable method with p = 8 chanes from 0-628 to 0-466. On the other hand, if TOL,,. is
increased to 10~ 2 the quality obtained through the non-differentiable method with & = 0-01 only
changes from 0-630 to 0-621. Also notice that the non-differentiable method is faster than the
differentiable one for any ¢ < (-1, and that its results are independent of ¢. We usually adopt
¢ = 005, but it is sometimes necessary to reduce this value. See Section 4.3 for more details about
the selection of &.
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Figure 3. Effect of optimization on nodal positions. Details of the meshes in the region where the worst element of mesh

LAKE?2 (arrow) lies. (a) Mesh LAKET1; (b) Mesh LAKE2; (c) Mesh LAKE?2 after optimizing the cluster of the worst

element with NL = 2. The elements in the optimization cluster are shown in gray. In darker gray are shown those
elements that share the minimum quality in the optimized cluster

As we have already mentioned, the techniques proposed in this paper are only necessary in
three dimensions, as in this case the automatic generators fail to provide valid meshes. The
purpose of the examples above has been to illustrate with 2-D meshes (which can be plotted) the
performance of our methods and to select appropriate values for the numerical parameters. In
Figure 3 we plot the region of mesh LAKE2 where the worst element is, together with the same
region of mesh LAKE!1 and of mesh LAKE?2 after optimizing the cluster of the worst element
(with NL = 2). The worst element of mesh LAKE?2 is needle-like, marked by the arrow. After
optimization, the minimum quality is shared by seven elements (in darker gray, Figure 3(c)),
evidencing that the optimum is at a point of lack of differentiability. Notice that the optimized
cluster is clearly of higher quality than in the as-generated mesh, LAKEIL. In the next section, we
turn to the study of a full 3-D geometry and of meshes obtained with state-of-the-art automatic
generators,

4.2. A detailed example in 3-D: mesh around an aircrafi

We now report an example in three dimensions, namely the construction of a mesh around an
aircraft. The surface mesh, consisting of 4914 nodes and 9820 triangles and generated with
program TRISURF,?! can be seen in Figure 4. The Delaunay method developed by Dari! was
applied to the domain defined by this inner surface and an outer cube with edge length 60 times
the wingspan of the aircraft. The resulting mesh (PLANE1) is a good example of the performance
of state-of-the-art 3-D mesh generators: From a total of 290 306 tetrahedral elements, there are
139 with qualities under 0-01. The quality of the worst element is negative, — 0-39, meaning that
during the boundary recovery step of the Delaunay method some overlapping of elements
occurred. From our viewpoint, this mesh is just the output of the first part of the generation
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Figure 4. Surface mesh of an aircraft, consisting of 4914 nodes and 9820 triangles

process, the second one being the optimization procedure. Geometrical optimization alone
drastically improves the quality of this mesh. One iteration of the non-differentiable method
suffices to unfold the mesh and eliminate the overlapping. After 100 iterations with NL = 1 and
¢ = 005 mesh PLANE2 was obtained, with a minimum quality of 0-031 (see mesh statistics in
Table IV). The evolution of the mesh quality with iterations can be seen in Figure 5. In mesh
PLANE], there are 821 elements with quality under 0-2, while in mesh PLANE2 this number has
reduced to 606.

Topological optimization (seec Section 3) was applied to mesh PLANE? (resulting after 100
geometrical optimization iterations). The mesh quality increased as a result of this operation from
0-031 to 0-121, while the number of elements with quality below 0-2 decreased to 32. The mesh was
further optimized through 100 + 100 additional geometrical optimization iterations, with
a topological optimization in between. The evolution of the mesh quality along the optimization
process can be seen in Figures 5(a) and 5(b). The final or ‘fully optimized’ mesh (mesh PLANED3)
has a quite good quality of 0-176, and its statistics can be found in Table IV.

4.3. More examples

The second example we address is a quite small mesh (just 4824 elements and 896 nodes)
around a sphere. It serves as an example of optimization of a mesh generated with the
advancing-front method. The domain consists of a cylinder with a spherical hole at its center. The
cylinder’s height is 80 and its radius 40. The radius of the hole is 1. The mesh size far away from
the hole was defined as 30, relative to the mesh size at the hole (the volume of an equilateral
tetrahedron having the mesh size specified at the hole boundary would be 0-01). The as-generated
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Table IV. Effect of optimization on the quality of a mesh around an aircraft.

MESH AROUND AN AIRCRAFT As generated  Geometrically optimized Fully optimized
Generation method: Delaunay (PLANE1) (PLANE2) (PLANED3)
Number of nodes 50329 50329 50290
Number of elements 290306 290306 289700
Geometrical optimizations performed 0 1 3
Topological optimizations performed 0 0 2
Quality of the worst element - 039 0031 0176
Minimum angle of the mesh (degrees) <0 121 587
Maximum angle of the mesh (degrees) > 180 176:6 1618
Number of elements with quality below 0-2 821 606 3
Cumulative CPU time (s) on SUN IPX 1200 1440 2004

needed to construct mesh

Note: Geometrical optimization method is non-differentiable, NL = 1, &£ = 0-05, and M = 100. ‘Fully optimized’ means
a sequence of three geometrical optimizations, with two topological optimizations in between. The minimum/maximum
angles of the mesh are calculated considering both edge-to-edge and face-to-face angles within all tetrahedra of the mesh
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Figure 5. Mesh around an aircraft. Evolution of mesh quality with geometrical optimization iterations. The effect of
performing topological optimization after 100 and 200 geometrical iterations is also made evident. (a) Quality of the worst
element versus iterations; (b) number of elements with quality below 0-2 versus iterations
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Figure 6. Distribution of angles in mesh CHF1 before (a) and after (b) optimization. The range [0-180] degrees has been
divided into 60 three-degree-wide intervals. To each interval the number of angles falling in it has been assigned. Notice
how the tails near 0 and 180° are removed by optimization

mesh has minimum/maximum angles of 0-0824°/179-23°, clearly indicating the existence of
almost-singular elements. We refer to this mesh as CHF 1. The effect of optimization is quite
impressive: The quality of the worst element increases from 197 1073 to 040, and the min-
imum/maximum dihedral angles improve to 19°/144-7°. The distribution of angles in mesh CHF1
before and after optimization can be found in Figure 6. We are now carrying out an analysis
about the impact of such quality improvement on solid mechanics calculations, which will be
reported in the near future.

The last example is a mesh around the keel of a competition sailboat. A detail of the surface
mesh can be seen in Figure 7. The volume mesh was generated using a Delaunay-based method
and consists of 206 549 elements and 37 947 nodes. It will be labeled as KEEL1. The quality of this
mesh is strictly zero, with angles of 0° and of 180°. The number of elements with quality below 0-2
is 1339, The evolution of the mesh during optimization can be seen in Figure 8. We performed
a sequence of 100 + 100 + 100 geometrical optimization iterations, with topological optimiza-
tions in between. The final mesh, KEEL2, has a quality of 0-174, with dihedral angles of more
than 7-22 and less than 162:4°. The number of elements with quality below 0-2 in mesh KEEL2
is 2. The beneficial effect of mesh optimization is again evident. Quite surprisingly, to obtain
a reasonable performance in CPU time (900 s on a SUN IPX) we had to reduce ¢ to 0-005. The
tuning of ¢ is straightforward: If it is observed that the dimension of E, systematically exceeds
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Figure 7. Surface mesh of the keel of a competition sailboat (detail)

10 or 20 during the first global iterations, then reduce ¢ to make the calculation of the search
direction (equation (5)) cheaper, at the expense of increasing the number of Local Iterations (cf.
Section 2.3).

5. CONCLUSIONS

A new optimization method for unstructured 3-D finite element meshes has been presented. The
method is based upon non-differentiable optimization techniques that emphasize the impact on
numerical computations of one or very few badly shaped elements within the domain. These
low-quality elements are generated by most of the existing automatic mesh generators, and can be
avoided applying our method to the as-generated mesh. Several improvements to the raw
algorithm have been discussed, which render it computationally effective. The viewpoint of
considering 3-D mesh generation as a two-step process beginning with an initial mesh generation
followed by optimization, as previously proposed by Dari and Buscaglia,? has thus been
thoroughly investigated in this work and proved to be a valuable tool for the generation of
unstructured meshes in arbitrary domains.

Finally, let us remark that the final mesh obtained through our optimization method indeed
depends on the original node distribution and mesh topology. A complete control on the grid
quality can only be attained if effective, quality-oriented algorithms are applied along all of the
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Figure 8. Evolution of the quality of mesh KEEL1 during optimization. Two topological optimizations were performed
after 100 and 200 geometrical optimization iterations, respectively: (a) Evolution of the quality of the worst element; (b)
number of elements with quality below 0-2

mesh generation process (surface meshing, density definition, node insertion, element creation
and optimization).
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APPENDIX

Derivatives of the quality function
Two-dimensional case: The quality of an element K is Qg = 20-7846 V. /P% and thus

VVy 2VgVPg
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Let x, y be the two space co-ordinates, let the three nodal points of the triangle be labelled
A =(xa,ya), B=(xpys) and C=(xc,yc), and let L,g=|A —B|, Lac=[A—-C|, and
Lgc = |B — C|j. It is clear that

Py = Lag + Lac + Lgc

and that
Ve = (x8 — xa)(yc — ¥a) ; (xc — xa)(y8 — ya)
Now, the gradients of these quantities with respect to the co-ordinates of the nodes are
OVk/0xa (y8 — y0)/2
0Vk/0ya (xc — xp)/2
W, = OV /0xs _ (yc — ya)/2
OVk/0Oys (xa — xc)/2
0Vx/0xc (ya — y8)/2
Vx/0xc (xB — x4)/2
0Pg/0xA (xa — xB)/Lap + (xa — xc)/Lac
0Pg/0ya (ya — yB)/Lag + (ya — yc)/Lac
VP, = 0Pg/0xp - (x8 — xa)/Lap + (x8 — Xc)/Lpc
0P/0ys (ya — y8)/Lap + (¥8 — ¥c)/Lac
0Pg/0xc (xc — xa)/Lac + (xc — xp)/Lgc
0Px/0yc (yc = ya)/Lac + (yc — y8)/Lxc

Three-dimensional case. The quality of an element K is Qx = 1832:82 V¢ /P3 and thus
_ or (Vi 3VgVPg
VQg = 1832 82< Pl pi )

Let x, y, z be the three space co-ordinates, let the four nodal points of the tetrahedron be labeled
A = (Xa,Ya,2a), B =(xp,¥8,28), C =(Xc, Ve, 2¢) and D = (xp, yp,zp), and let L,z = ||A — B,
Lac = ||A — C}, and so on. It is clear that

Pyg = Lag + Lac + Lap + Lgc + Lgp + Lep

and that

_(D—A)B-AAC-A)
B 6

Now, the derivatives of these quantities with respect to the co-ordinates of node A are (permuta-
tion of indices allows to calculate the rest of the derivatives)

Vk

% _(ys— ¥o)(zc — zp) — (yc — yp) (28 — 2p)
Oxp 6
Vg _ (zB — yp)(xc — Xp) — (2c — zp) (X8 — Xp)
Oya 6
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a_V_x - (x8 — xp)(¥c — ¥) — (xc — Xp)(¥y8 — yp)

6ZA 6
QP_K=(xA_xB)+xA_xC +xA—'xD
axA LAB LAC LAD
?ﬂ=(YA_yB)+yA_yC+YA_yD
0ya Lag Lac Lo
oP ~ ~ -
ok _ (za — 23) + ZAa " Zc + Za— 2p
0z Lag Lac Lap
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