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Abstract 24 

We investigated the three-dimensional vorticity dynamics of the flows generated by revolving 25 

wings using a volumetric 3-component velocimetry (V3V) system. The three-dimensional 26 

velocity and vorticity fields were represented with respect to the base axes of rotating 27 

Cartesian reference frames, and the second invariant of the velocity gradient was evaluated 28 

and used as a criterion to identify two core vortex structures. The first structure was a 29 

composite of leading, trailing and tip-edge vortices attached to the wing edges, whereas the 30 

second structure was a strong tip vortex tilted from leading-edge vortices and shed into the 31 

wake together with the vorticity generated at the tip edge. Using the fundamental vorticity 32 

equation, we evaluated the convection, stretching and tilting of vorticity in the rotating wing 33 

frame to understand the generation and evolution of vorticity. Based on these data, we 34 

propose that the vorticity generated at the leading edge is carried away by strong tangential 35 

flow into the wake and travels downwards with the induced downwash. The convection by 36 

spanwise flow is comparatively negligible. The three-dimensional flow in the wake also 37 

exhibits considerable vortex tilting and stretching. Together these data underscore the 38 

complex and interconnected vortical structures and dynamics generated by revolving wings. 39 

 40 

1 Introduction 41 

 The flapping wings of insects operate at high angles of attack and generate strong 42 

unsteady aerodynamic and three-dimensional phenomena (Maxworthy 1981; Willmott et al. 43 

1997; Sane 2003; Kim and Gharib 2010). Unlike conventional fixed wings which stall at high 44 

angles of attack due to instability of the vortex structures on the wing, insect wings in 45 

flapping or revolving motions are able to generate high forces and stable flows in a sustained 46 

manner throughout the duration of their motion. Recently, several studies have focused on the 47 

mechanisms that underlie the high force generation and stable vortices on flapping/revolving 48 

wings (Willmott et al. 1997; Birch and Dickinson 2001; Lentink and Dickinson 2009b).  49 
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 Together these studies show that the stable attachment of a prominent leading-edge 50 

vortex (LEV) significantly enhances the lift production as compared to conventional 51 

translating wings (Ellington et al. 1996; VandenBerg and Ellington 1997; Usherwood and 52 

Ellington 2002; Birch et al. 2004). However, the mechanisms underlying the stability of the 53 

LEV have been the subject of some debate prompting researchers to use diverse experimental 54 

and theoretical approaches to address this question (e.g., Ellington et al. 1996, Birch and 55 

Dickinson 2001, Minotti, 2005, Shyy and Liu 2007). Using smoke flow visualization, 56 

Ellington and coworkers (Ellington et al. 1996) demonstrated the presence of spanwise flow 57 

within the core of a spiral LEV generated by a flapping wing at Re ~ 3000, similar to that 58 

proposed by Maxworthy (1981). They proposed that, similar to the axial flow in the vortex 59 

core of Delta wings, the spanwise transport of momentum out of the LEV was critical in 60 

keeping the LEV small but stable in flapping wings. Numerical investigations of this flow by 61 

Liu and Kawachi (1998) and Lan and Sun (2001) further detailed these phenomena. On the 62 

analytical front, Minotti (2005) used inviscid potential theory to derive a theoretical 63 

framework that demonstrated a balance between the vorticity generated by the leading edge 64 

and that transported by spanwise flow. To test the hypothesis that spanwise transport of 65 

vorticity mediated by an axial flow keeps it small and stable, Birch and coworkers (Birch and 66 

Dickinson 2001; Birch et al. 2004) placed orthogonal plates along the wing span to limit the 67 

span wise flow at Re ~ 200. They found that even under these conditions, the wing continued 68 

to generate a stable LEV. To explain this discrepancy, Birch and Dickinson proposed that 69 

strong downward flow induced by the flapping wings limits the growth of the LEV (Birch 70 

and Dickinson 2001). These results were in agreement with computational fluid dynamics-71 

based simulations of flows under similar conditions (Shyy and Liu 2007).  72 

 To experimentally test the hypothesis that spanwise flow contributes to stabilization 73 

of the leading edge vortex, Beem et.al. (2012) used swept and translating, rather than 74 

revolving, wings to generate spanwise flows but did not observe significant differences in the 75 

time required for break-off and downstream convection of the vortex as compared to wings of 76 

lower sweep angles which generate less spanwise flow. Specifically, for cases of low sweep 77 
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angles, they observed the tip vortex and the LEV as being unconnected structures with a 78 

pronounced gap region. Reminiscent of the Birch and Dickinson (2001) study, the flow 79 

induced by the tip vortex caused a pronounced downwash that prevented flow separation near 80 

the tip. For large sweep angles however, the LEV and tip vortices were more connected and 81 

inter-dependent. However, they did notice significant differences in the flow topologies of the 82 

LEV and tip vortices. These results indicated that in the swept wing case, spanwise flow may 83 

not have much influence on the LEV stabilization and attachment. To what extent do these 84 

observations apply to flapping wings? Recently, using dynamically-scaled robotic wings, 85 

Lentink and Dickinson (2009 a,b) showed that LEV stability is determined by their Rossby 86 

numbers (a ratio of inertial force to rotational accelerations, Lentink and Dickinson, 2009b), 87 

rather than Reynolds numbers (a ratio of inertial to viscous forces) which only affect the LEV 88 

integrity (Fig. 5 in Lentink and Dickinson 2009b). Using 3D flow visualization, Kim and 89 

Gharib (2010) showed that spanwise flow is widely distributed in the wake, and suggested 90 

that its generation may be attributed to the vorticity tilted from the LEV.  91 

 It is evident from the above-described research that force and flow generation by 92 

flapping wings is distinctly three-dimensional in nature, and thus traditional DPIV which can 93 

only image a plane at a time is limited in its ability to rigorously quantify such flows. 94 

Developments in the area of three-dimensional particle tracking (e.g. Troolin and Longmire 95 

2009; Pereira et al. 2000; Kim and Gharib 2010; Flammang et al. 2011) provide the means to 96 

address the above questions relating to flows around flapping wings. Here, we used a 97 

technique called volumetric 3-component velocimetry (V3V) to quantify the three-98 

dimensional flows around wings revolving at high angles of attack. From the velocity and 99 

vorticity fields, we identified the vortex structure from the second invariant of the velocity 100 

gradient. By calculating different terms of the vorticity equation, we also quantified the 101 

components due to vortex tilting/stretching and convection and thus account for the various 102 

terms underlying the balance of leading-edge vorticity.  103 

 104 
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2 Material and methods 105 

2.1 Experimental setup and procedure 106 

 All experiments reported here were conducted with a dynamically scaled mechanical 107 

wing, which was inspired by nature to reproduce the flow and study the aerodynamics in 108 

natural fliers (similar setups are described in Sane, 2001, DiLeo 2007). The wing, which was 109 

capable of two-degrees-of-freedom rotations about vertical and wing longitudinal axes, was 110 

used to produce the revolving motion at a constant angular speed (Ω = 55 degs s
-1

). The angle 111 

of attack (AOA) was fixed at 45°. Both degrees of freedom were driven by DC motors 112 

(Maxon Motor AG, Sachseln, Switzerland). The motion control system used here has been 113 

previously detailed in Zhao et al. (2009). The constant angular velocity with fixed angle of 114 

attack (AOA) meant that time-dependent effects due to wing acceleration such as added mass 115 

could be ignored as they were negligible (Dickinson et al. 1999; Sane and Dickinson 2002).  116 

 The wing and the gearbox were immersed in the center of a tank (61 × 61 × 305 cm 117 

width × height × length) filled with mineral oil (kinematic viscosity  8 cSt at 20ºC, density 118 

850 kg m
3
). A rectangular wing platform was used with a length of 8cm (from wing tip to 119 

center of rotation) and aspect ratio of 7 (two times wing length/mean chord length). The wing 120 

was made from a transparent polymer sheet with uniform thickness of 0.53 mm, which 121 

remained rigid during the experiments. The wing was located approximately 3 wing lengths 122 

away from the wall of the tank and therefore any wall effects were negligible according to 123 

Sane (2011). 124 

 The Reynolds number in this study (rectangular wing) was 220 using: 125 

 126 

𝑅𝑒̅̅̅̅ =  
4π𝑅2

𝜐(𝐴𝑅)𝑇
       (1) 127 

 128 

where the characteristic velocity is the wing tip velocity (
2π

𝑇
𝑅) and the characteristic length is 129 

the wing mean chord length (𝑐 =
2𝑅

𝐴𝑅
), 𝑅 is the wing length, 𝐴𝑅 is wing aspect ratio, 𝑇 is 130 
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period of one full revolution (6.5 s), and 𝜐 is the kinematic viscosity of the fluid.  131 

2.2 Volumetric 3-component velocimetry process 132 

 We used a flow measurement technique, known as volumetric 3-component 133 

velocimetry (V3V; TSI Inc., Shoreview, MN, USA), first described by Periera et al. (2000), 134 

to investigate the three-dimensional flow structure around revolving wings. A similar system 135 

has been used in other studies (e.g., Flammang et al. 2011). A schematic of the experimental 136 

setup can be seen in Fig. 1. We used air bubbles pumped out of a porous ceramic filter as 137 

seeding particles (Similar methods were used Birch and Dickinson 2001, and Zhao et al., 138 

2011). Experiments were conducted after large bubbles rose to the surface leaving behind 139 

only small bubbles with an average size of 20-50 microns. Using Stokes law, this corresponds 140 

to a rise velocity of air bubbles in mineral oil of less than 0.17 mm/s (for more description, 141 

refer to Zhao et al., 2011). Pairs of sequential images were taken simultaneously by three 4 142 

megapixel digital cameras synchronized with an Nd:YAG pulse laser illuminating the air 143 

bubbles inside the measurement volume.  144 

 The fixed coordinate frame (𝐗̂, 𝐘̂, 𝐙̂) is attached to the measurement volume defined 145 

by the V3V system (Fig. 2a, b). The measurement volume, formed by the intersection of the 146 

field of view of the three cameras, was 14 × 14 × 10 cm
3
 along the 𝐗̂, 𝐘̂ and 𝐙̂ directions. 147 

This volume was sufficient to allow the entire wing to remain within the camera view over a 148 

100° rotation. The axis of rotation was positioned at 2cm distance from the back plane of the 149 

measurement volume (Fig. 2b) to ensure that there were no laser reflections from the shaft 150 

and gearbox. A total of 10 frames, phase-locked to the wing angular position (θ), were 151 

captured, allowing consistent captures of a sequence of 10 frames equally spaced at constant 152 

Δθ=10°, for a total span of 100°. In this study, we focus only on the steady flow structures of 153 

the revolving wing. Hence, in each experiment the image capturing was triggered after one 154 

full revolution of the wing to reduce the transient phenomena due to the wing accelerating 155 

from rest (Fig. 3). The influence of the vorticity wake from the 1
st
 revolution is considered 156 

negligible on the flow in the 2
nd

 revolution. The 10 frames showed identical flow structure 157 
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with minimal variations, by which we could conservatively assume the flow to have settled 158 

into a stable mode. However, the wake generated by the wing was not fully within the 159 

volume for some early frames; therefore, to better demonstrate the wake in the center of the 160 

volume, results from the 8
th

 frame are shown.  161 

 Each velocity field was calculated from an ensemble-average of 10 separate images 162 

captured during 10 runs with identical wing motions. The particle detection, particle tracking, 163 

and velocity field interpolation were carried out using InsightV3V software (TSI Inc., 164 

Shoreview, MN, USA). The software interpolated (using Gaussian weighting based on vector 165 

distance from the grid node) the randomly distributed velocity vectors obtained from the 166 

particle tracking algorithm into a 45 × 45 ×  31 rectangular mesh grid (Δ𝑥  = Δ𝑦  = Δ𝑧  = 167 

3.15mm) for the three components of velocity at each frame.  168 

 The uncertainty in the instantaneous velocity fields came primarily from spatial 169 

uncertainty pertaining to accurately identifying the exact location of the particle centroids.  170 

Temporal uncertainty is negligible in comparison since the jitter in the laser pulse timing is 171 

10ns, and the timing resolution of the synchronizer is 1ns. Spatial uncertainty results from 172 

mean-bias and RMS errors and has been shown by Pereira and Gharib (2002) to be on the 173 

order of 1% for the streamwise and spanwise velocity components and 4% for the vertical 174 

component. 175 

2.3 Data analysis  176 

 The velocity fields thus obtained were analyzed using custom MATLAB codes (The 177 

Mathworks, Natick, MA, USA). Because the wing revolved around a fixed axis, all the 178 

quantities were calculated with respect to the base axes of a set of rotating Cartesian frames 179 

(𝐞̂𝑡 , 𝐞̂𝑦 , 𝐞̂𝑟 ), rather than a single fixed Cartesian coordinate frame (𝐗̂, 𝐘̂, 𝐙̂) (Fig.4). The 180 

tangential (𝐞̂𝑡) and radial (𝐞̂𝑟) axes in the rotating Cartesian coordinate frames depend on the 181 

azimuthal angle (ϕ) of the fluid particle being analyzed (ϕ, Fig. 4) with the vertical axis (𝐞̂y) 182 

kept parallel to wing rotation axis (𝐘̂). Note that both the fixed (𝐗̂ ,  𝐘̂ ,  𝐙̂) and rotating 183 

(𝐞̂𝑡, 𝐞̂𝑦, 𝐞̂𝑟) reference frames were independent of the wing position.  184 
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 In the fixed Cartesian reference system, the radial vorticity generated by the wing at a 185 

given wing position may get confounded with the tangential vorticity at another wing 186 

position. This can be avoided by converting the coordinate system to a rotating Cartesian 187 

coordinate frame. The original Cartesian mesh grid and velocity field output from V3V 188 

Insight software were converted into base vectors in the rotating Cartesian coordinate frames 189 

using the rotation matrix, J(ϕ), such that the velocity components in rotating Cartesian l (ut, 190 

uy, ur) and fixed Cartesian frame (ux, uy, uz) are related by: 191 

 192 

𝐮(t, y, r) = (

ut
uy
ur
) = J𝐮(x, y, z) = J (

ux
uy
uz
) = (

sin(ϕ)ux − cos (ϕ)uz
uy

cos (ϕ)ux + sin (ϕ)uz

).  (2) 193 

 194 

The same relation also applies to other quantities (e.g., vorticity, vortex tilting and stretching).  195 

 We calculated the velocity/vorticity gradient tensor with respect to the base vectors in 196 

the rotating Cartesian frame. Using chain rule, the gradient tensor in rotating and fixed 197 

Cartesian frames are related by 198 

 199 

∇(t,y,r)𝐮(t, y, r) = J∇(t,y,r)𝐮(x, y, z) = J∇(x,y,z)𝐮(x, y, z)J
T    (3) 200 

 201 

where∇(t,y,r)  and ∇(x,y,z)  represent the gradient operation in rotating and fixed Cartesian 202 

frames, respectively. ∇(t,y,r)𝐮(t, y, r)  is the velocity gradient tensor in rotating Cartesian 203 

frame, which is (we neglect the subscript in the rest of paper for convenience): 204 

 205 

∇𝐮(t, y, r) =

(

 
 

∂ut

∂t

∂ut

∂y

∂ut

∂r

∂uy

∂t

∂uy

∂y

∂uy

∂r

∂ur

∂t

∂ur

∂y

∂ur

∂r )

 
 

     (4) 206 

 207 

The above relation also applies to the vorticity gradient ∇𝛚 . The wing orientation was 208 

determined by tracking four vertices of the wing platform and estimating their spatial 209 
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locations using the calibration process developed for the particle identification. 210 

 The velocity field, vorticity distribution and vortex structure of the flow were 211 

presented by plotting the isosurface for each component of the corresponding quantity 212 

separately. Vorticity magnitude isosurfaces were plotted with three different colors (RGB: 213 

red, green and blue) indicating the magnitude of positive (red) and negative (blue) 214 

components of radial vorticity and negative (green) component of tangential vorticity. Thus, 215 

this technique offers clear visualization of both vorticity magnitude and direction within a 216 

single isosurface plot. All of the other components (e.g., vertical vorticity) were represented 217 

by black coloring.  218 

 The vortex core structure was evaluated by calculating the second invariant of the 219 

velocity gradient, or Q value, calculated using (Jeong and Hussain 1995): 220 

 221 

𝑄 = −
1

2
(𝜆1 + 𝜆2 + 𝜆3)     (5) 222 

 223 

where 𝜆1 ,  𝜆2  and 𝜆3  are the eigenvalues of 𝑆2  and Ω2 , where 𝑆  and Ω  are the symmetric 224 

(
1

2
(∇𝐮 + ∇𝐮𝑇)) and antisymmetric (

1

2
(∇𝐮 − ∇𝐮𝑇)) part of velocity gradient tensor ∇𝐮.  225 

 Results were non-dimensionalized using the following characteristic values: velocity 226 

by wing tip velocity (𝛀R), vorticity by wing rotation vorticity (2𝛀) and time by half period of 227 

one wing revolution (π/ 𝛀). All dimensionless quantities are denoted by superscript 
+
. 228 

 229 

2.4 Vorticity equation in rotating frame 230 

 The standard Navier-Stokes equation for an incompressible fluid may be given by the 231 

following pair of equations: 232 

 233 

D𝐮

D𝜏
= −∇𝑝 + υ∇2𝐮     (6) 234 

∇ ∙ 𝐮 = 0,     (7) 235 
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 236 

where 𝐮  velocity vector, 𝜏  is time, 𝑝  is pressure, υ  is kinematic viscosity. The vorticity 237 

equation can be derived by taking a curl of (6), which eliminates the pressure term to give, 238 

 239 

∂𝛚

∂𝜏
= ∇ × (𝐮 × 𝛚) + υ∇2𝛚,     (8) 240 

 241 

which upon expansion gives, 242 

 243 

∂𝛚

∂𝜏
= (𝛚 ∙ ∇)𝐮 − (𝐮 ∙ ∇)𝛚 + (∇ ∙ 𝛚)𝐮 − (∇ ∙ 𝐮)𝛚 + υ∇2𝛚  (9) 244 

 245 

In this equation, ∇ ∙ 𝐮 = 𝟎 due to the incompressibility condition and ∇ ∙ 𝛚 = 0 because it is 246 

a divergence of a curl of velocity. Rearranging the remaining terms, we get 247 

 248 

D𝛚

D𝜏
=
∂𝛚

∂𝜏
+ (𝐮 ∙ ∇)𝛚 = (𝛚 ∙ ∇)𝐮 + υ∇2𝛚   (10) 249 

 250 

In a rotational Cartesian frame,  251 

 252 

𝛚 = 𝛚′ + 2𝛀       253 

𝐮 = 𝐮′ + 𝛀 × 𝐫      254 

D𝛚

D𝜏
=
D𝛚′

D𝜏
+ 𝛀 ×𝛚         (11) 255 

∇2𝛚 = ∇2𝛚′       256 

∇= ∇′        257 

 258 

where the superscript ' denotes the relative quantities observed in the rotating frame, 𝐫, is the 259 

radial vector with the length from the fluid element to the axis of rotation. Note that 
D𝛚

D𝜏
 and 260 

D𝛚′

D𝜏
 are the absolute and relative rate of change of vorticity (𝛚) observed in fixed and rotating 261 



 11 

frames, respectively. Also, it can be shown that 𝛀 ×𝛚 is equal to (𝛚 ∙ ∇)(𝛀 × 𝐫). Thus, the 262 

vorticity equation in the rotating frame may be written as 263 

 264 

D𝛚′

D𝜏
=
∂𝛚′

∂𝜏
+ (𝐮′ ∙ ∇)𝛚′ = [(𝛚′ + 2𝛀) ∙ ∇]𝐮′ + υ∇2𝛚′,   (12) 265 

 266 

where the rate of vorticity change in the rotational frame ( 𝛚̇′ =
∂𝛚′

∂𝜏
) is equal to the 267 

summation of vorticity convection (−(𝐮′ ∙ ∇)𝛚′), vortex tilting and stretching ((𝛚 ∙ ∇)𝐮′) and 268 

vorticity diffusion (υ∇2𝛚′). We then separated tilting and stretching components by 269 

 270 

(𝛚 ∙ ∇)𝐮′ = [(𝛚 ∙ ∇)𝐮′]⊥ + [(𝛚 ∙ ∇)𝐮
′]∥,    (13) 271 

 272 

where [(𝛚 ∙ ∇)𝐮]⊥ is the tilting component and [(𝛚 ∙ ∇)𝐮]∥ is the stretching component, and 273 

subscript ⊥  and ∥  denote the projections perpendicular and parallel to the direction of 274 

vorticity. Note that, (𝛚 ∙ ∇)𝐮′ includes the vortex tilting and stretching due to wing rotation 275 

2𝛀 and relative vorticity 𝛚′. 276 

 Next, we looked specifically at the radial component, which describes the leading-277 

edge (and trailing-edge) vortices generated by the revolving motion.  278 

 279 

ω̇r
′ = (𝛚 ∙ ∇)ur

′ − (𝐮′ ∙ ∇)ωr
′ + υ∇2ωr

′ ,    (14) 280 

 281 

where ur
′ = ur and ωr

′ = ωr. The convection term can be expanded as  282 

 283 

(𝐮′ ∙ ∇)ωr
′ =

∂ωr
′

∂t
ut
′ +

∂ωr
′

∂y
uy
′ +

∂ωr
′

∂r
ur
′ ,    (15) 284 

 285 

where ut
′ = ut − 2Ωr and uy

′ = uy. Note that 
∂ωr

′

∂t
ut
′ and 

∂ωr
′

∂y
uy
′  describe the vorticity transport 286 

by tangential and vertical flow; 
∂ωr

′

∂r
ur
′  describes the transport by spanwise flow, which was 287 

acknowledged in the previous studies as the key mechanism to keep the leading-edge vortex 288 
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stable (e.g., Ellington et al. 1996). Lastly, the tilting and stretching term can be expanded as 289 

 290 

(𝛚 ∙ ∇)ur
′ =

∂ur
′

∂t
ωt
′ +

∂ur
′

∂y
ωy
′ +

∂ur
′

∂r
ωr
′    (16) 291 

 292 

where ωt
′ = ωt  and  ωy

′ = ωy − 2Ω. Note that 
∂ur
′

∂t
ωt
′  and 

∂ur
′

∂y
ωy
′  describe the vortex tilting 293 

from tangential and vertical components; and 
∂ur
′

∂r
ωr
′  describes the radial vortex stretching. 294 

 Based on the measured velocity field, all the terms in the vorticity equation described 295 

above could be evaluated. We used MATLAB for all the analysis. Derivatives of the velocity 296 

and vorticity were calculated using central differencing. No smooth rendering was applied to 297 

calculate velocity, vorticity and vortex tilting and stretching terms during post-processing. 298 

However, we did smooth the convection terms, which was subject to greater noise due to the 299 

vorticity gradient, which was magnified by ambient velocity (2Ωr) factor in the tangential 300 

direction (Eq. 15). Specifically, the convection terms at a meshgrid were smoothed out by 301 

(weighted) averaging it with the six nearest neighboring points, and the process was iterated 302 

five times.  303 

 304 

3 Results and Discussions 305 

3.1 Velocity and vorticity fields 306 

 The three-dimensional velocity and vorticity data is shown in Figs. 5 through 7. 307 

Figure 5 shows the spatial locations of the 2D slices represented in Figs. 6 and 7, in the 308 

context of the measurement volume. In the velocity isosurface plots (Fig. 6a-c), we represent 309 

radial components (Fig. 6a) with red (base to tip) and blue (tip to base), the tangential 310 

components (Fig. 6b) with green (direction of wing motion) and orange (opposite direction of 311 

wing motion), and vertical components (Fig. 6c) with purple (upward) and yellow 312 

(downward) colors.  313 
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 Several interesting features are identified. First, the spanwise components of the flow 314 

are distributed both along the wing tip and downstream to the wake (Fig. 6a, d). The 315 

tangential flow in the direction of wing motion (Fig. 6b) is greater than other two components 316 

of the flow, and reaches maximum at approximately 80% of the wing span (Fig. 7g). A small 317 

upwash (purple) is also found along the leading edge and tip corner (Fig. 6c). Second, there is 318 

negligible spanwise flow at the leading edge towards the middle of span (Fig. 6e) or near the 319 

wing base (Fig. 6f), although it does gain some strength towards the tip and further into the 320 

wake (Fig. 6a, d, e). Third, a reverse spanwise flow is observed layered above this flow (Fig. 321 

6a, d). The downwash, on the other hand, is distributed both below the wing surface and in 322 

the wake behind the wing.  323 

 The isosurfaces associated with individual vorticity components in the axes of the 324 

rotating Cartesian frame are shown in Fig. 7a-c. The radial vorticity (ω𝑟, corresponding to 325 

LEV and TEV) is generated at the wing edges and surface and extends into the wake 326 

downstream (Fig. 7a) to form two parallel vortex sheets of opposite sign. The spanwise and 327 

reverse spanwise flows are separated by a strong shear layer (negative tangential vorticity, 328 

green (Fig 7b). In comparison, positive tangential vorticity is distributed along the trailing-329 

edge (Fig. 7d-f) and also extends somewhat into the wake, together with the negative 330 

components, forming two counter-rotating vortex sheets with a more dominant negative 331 

component. Together, the picture that emerges from these observations is similar to results 332 

obtained at Re ~3000 (modeled after the hawk moth Manduca sexta, Ellington et al, 1996) as 333 

well as Re ~200 (modeled after the fruit fly Drosophila melanogaster, Birch and Dickinson 334 

2001). Although we saw a LEV localized at the leading edge similar to Ellington et al (1996), 335 

we did not measure significant flow through the core (Birch and Dickinson 2001). We found 336 

upward vorticity components (+ω𝑦) near the wing tip (Fig. 7c, g), as they shed into the wake, 337 

and merged with the tangential vorticity in the tip vortex. There are also downward vorticity 338 

components (−ω𝑦) close to the wing surface, perhaps due to the no-slip condition on the 339 

wing span.  340 

 To identify specific vortex structures, we plotted the total vorticity magnitude 341 
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isosurfaces with RGB colors indicating the vorticity direction (Fig. 8). Based on the Q-value 342 

criteria for these flows, we identified the two major vortex structures on the wing (Fig 8b) 343 

which include the leading edge and trailing edge vortices and the tip vortex. The top structure 344 

consists of a combination of negative radial (LEV, blue) and negative tangential (TV, green) 345 

vorticity and extends into the wake (Fig. 8a). The bottom structure consists of positive radial 346 

(TEV, red) and positive tangential vorticity (representative color not shown in Fig. 8a). The 347 

top and bottom vortex structures connect at wing tip and form a horseshoe-like structure that 348 

is attached to the wing (represented by the dashed line in Fig. 8b, see also Liu, 2009). From 349 

the top portion of this structure, a long tube-like tip vortex structure extends tangentially into 350 

the wake. At the relatively low Reynolds number of 220, these vortex structures are coherent 351 

and stable, and do not disintegrate, unlike similar structures at higher Reynolds numbers 352 

(Lentink and Dickinson 2009). The horseshoe vortex structure (Fig. 8b) likely influences the 353 

observed tangential flow (Fig. 6b) in the wing wake; while the arc formed by LEV and TV 354 

core (Fig. 8b) likely influences the downwash (Fig. 6c). 355 

 Spanwise flow within the vortex core is thought to be critical for maintaining a stable 356 

LEV in flapping/revolving wings (e.g. Ellington et al. 1996; Lentink and Dickinson 2009). 357 

Because our experiments were conducted at a Reynolds numbers of 220, the magnitude of 358 

spanwise flow within the LEV core was small, however its magnitude was greater behind the 359 

wing, consistent with the observations of Birch et al. (2004). Thus, at these Reynolds 360 

numbers, the stability of LEV appears to not be guided by the spanwise flow within the core. 361 

 Our results show both the co-occurrence and inter-dependence of the spanwise flow 362 

and tangential vorticity in the wake, which supports the possibility that the spanwise flow is 363 

induced by the vortices. However, Lentink and Dickinson (2009b) raised another possibility 364 

that the spanwise flow behind the LEV is mediated by the centripetal acceleration through a 365 

process called centrifugal pumping. It explains the well-sustained spanwise (or radial) flow 366 

observed in rotating discs by conservation of mass. In this process, a fluid particle traveling 367 

with the spanwise flow undergoes Coriolis force supported by the viscous frictional force 368 

resulted from the tangential flow gradient (Lentink and Dickinson 2009b). Therefore, this 369 
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mechanism requires a viscous region with considerable tangential velocity gradients. 370 

However, this region is not quite prominent in the current study and it may require further 371 

experiments to validate the possibility of centrifugal pumping. On the other hand, the 372 

observation of reverse spanwise flow (along negative radial axes, Fig. 6a, d) in the wake 373 

downstream clearly indicates the shed tangential vorticity should dominate other mechanisms 374 

on the cause of spanwise flow within that region.  375 

 376 

3.2 Vortex tilting and stretching 377 

We calculated vortex tilting and stretching using the measured flow dynamics (Eq. 13). 378 

Because the results were consistent between different frames; only 8
th

 frame is shown here. In 379 

Fig. 9ai, bi, red regions represent a positive tilting/stretching in the radial component of 380 

vorticity, which reduces the strength of the LEV with negative radial components. As will be 381 

shown in section 3.3, the attenuation of the LEV by vortex tilting and stretching is important 382 

to the vortex dynamics. 383 

In the tangential and vertical components, the tilting effects have a wider influence than 384 

stretching (Fig. 9aii-iii, bii-iii). In the region corresponding to LEV and TEV vortex sheet 385 

(Fig. 7a), a strong and consistent tangential tilting is observed. Leading (−ω𝑟) and trailing 386 

edge (+ω𝑟) vortices are tilted into negative and positive tangential vorticity (ω𝑡), across the 387 

two vortex sheets extended into the wake, consistent with the observation that negative 388 

tangential and negative radial vorticity combine at the LEV vortex sheet (top portion of the 389 

shell-like isosurface, Fig. 8a). In addition to the contribution of the vortex tilting to tangential 390 

vorticity components, there is also direct generation of tangential vorticity at the wing tip 391 

edge. These combine to give the net observed tangential vorticity in the shed tip vortex. 392 

Another possible source of the tangential vorticity is the spanwise flow creating positive ω𝑡 393 

due to the no-slip condition, as suggested by Kim and Gharib (2010).  394 

 395 
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3.3 Vorticity dynamics  396 

 To investigate the radial vorticity dynamics (LEV and TEV) in the wing rotating 397 

frame, and its effect on the stability of the vortex structures, we calculated and compared the 398 

individual terms of convection, stretching/tilting and diffusion in Eq. 14, 15 and 16. First, we 399 

found that the contribution of the convection along tangential and vertical direction to the 400 

vorticity change (Fig. 10a, b) is significant. In comparison, the contribution due to convection 401 

by spanwise flow is quite low and may be neglected as it is even smaller than the diffusion 402 

term (Fig. 11).  403 

Together, these observations suggest that the convection by tangential flow carries away 404 

the negative radial vorticity generated at the leading edge (increase of positive radial 405 

vorticity, region 1 in Fig. 10a) and convects it into a region behind the wing (increase of 406 

negative radial vorticity, region 3 in Fig. 10a). In contrast, the downwash convects the 407 

vorticity out from this region, but brings it into a region between the LEV and the TEV vortex 408 

sheets (increase of negative radial vorticity, region 4, Fig. 10bi, ii). Because the positive 409 

radial vorticity (TEV) is convected into region 2 by the downwash and away from the wing 410 

by tangential flow, the net vorticity in this region remains mostly unaltered.  411 

The vortex tilting and stretching terms ((𝛚 ∙ ∇)ur
′ ) have a smaller magnitude than the 412 

convection term (Fig. 10c) with an isosurface value lower than the one used for the 413 

convection term. In both regions 3 and 4, tilting/stretching create positive radial vorticity. In 414 

Eq. 16, the term 
∂ur
′

∂r
ωr
′ , which compresses the leading edge vorticity, contributes most to the 415 

total tilting/stretching ((𝛚 ∙ ∇)ur
′). This compression (along 𝐞̂r) by the spanwise flow gradient 416 

creates positive radial vorticity and hence reduces the strength of the LEV, with a smaller 417 

contribution from the vorticity tilted from tangential vorticity (
∂ur

′

∂t
ωt
′). 418 

In comparison to convection and tilting/stretching, the vorticity diffusion (or dissipation) 419 

is generally negligible except at regions with very dense vorticity (Fig. 11). Even at these 420 

regions, contribution from diffusion is lower than other terms, and its effect on the overall 421 

vorticity dynamics may be ignored.  422 
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 The overall phenomenon described above can thus be summarized as follows (Fig. 423 

12): the vorticity dynamics and balance lead to discrete and coherent flow structures in the 424 

near-field and wake. The negative radial vorticity (LEV) generated at the leading edge 425 

(region 1) is first convected backward into the wake by tangential flow and then downward 426 

by vertical flow (region 3). It continues to be convected into a region between the LEV and 427 

the TEV vortex sheet (region 4), and is compressed by the gradient of spanwise flow and 428 

tilted into other components of vorticity. It should be noted here that this phenomenon applies 429 

to the flow at the majority of the wing span away from the wing tip and base edges. However, 430 

the relative magnitude of each component changes: the convection by vertical flow is 431 

significantly reduced close to the wing tip because the downwash is small in the region of the 432 

tip vortex; on the other hand, the convection by tangential flow becomes weaker close to the 433 

wing base because of the low local wing velocity (r). The tilting/stretching term is most 434 

significant close to 75% of the wing span, and decreases towards the wing base and wing tip. 435 

 The experimental results described above quantify the vortex dynamics in fair detail 436 

and hence may be able to shed some insights into the mechanisms of stability of the LEV. In 437 

previous studies, there are two major hypotheses: 1) spanwise flow, within the LEV core or 438 

behind it, convects the lead-edge vorticity into the tip vortex that sheds into wake and 439 

prevents it from overgrowth (Ellington et al. 1996; VandenBerg and Ellington 1997; Lentink 440 

and Dickinson 2009b); this corresponds to the term 
∂ωr

′

∂r
ur
′  in Eq. 15. 2) downwash induced 441 

by wake vortices limits the growth by reducing the effective angle of attack (Birch and 442 

Dickinson 2001). The first hypothesis assumed that spanwise flow convects substantial 443 

vorticity into the tip vortex which is then shed into the wake, therefore balancing the new 444 

vorticity being generated. However, as shown here, at a low Reynolds number, the spanwise 445 

convection (
∂ωr

′

∂r
ur
′ ) is small compared to the convection in the other two directions, and is 446 

unlikely to significantly affect the LEV strength. On the other hand, the negative radial 447 

vorticity in region 4 (Fig 10) is reduced by the compression effect (proportional to the 448 

gradient of spanwise flow, 
∂ur
′

∂r
ωr
′ ). Thus, our data support the second hypothesis that 449 
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downwash limits the strength of the LEV by convecting it downward from the LEV vortex 450 

sheet to a region between the LEV and TEV vortex sheets, where it is compressed and tilted 451 

to other components of vorticity (e.g., tip vorticity).  452 

 453 

4 Conclusions  454 

Using a V3V system, we studied the velocity and vorticity fields generated by a 455 

revolving wing and evaluated the vorticity equation to interpret the vorticity dynamics. The 456 

results show a strong correlation between the velocity and the vorticity fields, implying the 457 

velocity is mostly induced by vorticity. The results also suggest strong three-dimensional 458 

phenomena of the flow, as there exists substantial vortex tilting and stretching. As one of the 459 

results, part of the radial vorticity is tilted into tangential vorticity, and shed into the wake. By 460 

comparing different terms in the vorticity equation, we found convection in tangential and 461 

vertical directions are responsible for a majority of the vorticity change, where those in the 462 

spanwise direction are negligible. In comparison, vortex tilting and stretching have a smaller 463 

effect than convection, but reduce the radial vorticity accumulated by vertical convection in a 464 

particular region.  465 

In sum, the results in this paper advance the understandings on flapping/revolving wing 466 

aerodynamics, and are fundamental to future studies including more complex parameters 467 

(e.g., varying wing geometry, aspect ratio and angle of attack). The results and methods may 468 

also be extended from revolving to flapping wings to study and quantify the time-dependent 469 

unsteady phenomenon (e.g., interaction with the wake, effect of wing rotation and added 470 

mass effect introduced in Dickinson et al., 1999). 471 
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Figure captions 539 

 540 

Fig. 1. Schematic of the experimental setup showing the locations of the V3V camera, laser, 541 

robotic flapper, and the measurement volume. 542 

 543 

Fig. 2. Schematics showing the measurement volume and the fixed coordinate frame (𝐗̂, 𝐘̂, 𝐙̂) 544 

(a), and schematics showing the top view of the experimental setup, measurement volume 545 

and the wing motion. The wing starts at 𝐗̂ axis and rotates clockwise (b).  546 

 547 

Fig. 3. Wing angular velocity profile indicating the image capture window.  548 

 549 

Fig. 4. Rotating Cartesian coordinate system. Vectors are written in the base axes of a rotating 550 

Cartesian coordinate frame (𝐞̂𝐭, 𝐞̂𝐲, 𝐞̂𝐫). The tangential (𝐞̂𝐭) and radial (𝐞̂𝐭) axes vary with the 551 

azimuth angles (𝛟) of the particles (blue dot). 552 

 553 

Fig. 5. Schematic showing the locations of slices exhibited in Figs. 6 and 7. 554 

 555 

Fig. 6. Velocity components in the rotating Cartesian frame. Isosurfaces of (a) radial 556 

component (spanwise flow), with dimensionless isosurface value ur
+ = ±0.13; (b) tangential 557 

component (transverse flow) with dimensionless isosurface value ut
+  = ±0.39, (c) vertical 558 

component (up/down wash), with dimensionless isosurface value uy
+  = 0.08 and -0.20. 559 

Chordwise slices located at (d) 80%, (e) 55%, and (f) 30% of the wing span as shown in Fig. 560 

5. Color represents (reverse) spanwise flow and arrows represent tangential and vertical flow. 561 

 562 

Fig. 7. Vorticity components in the rotating Cartesian frame. Isosurfaces of (a) radial 563 

component (lead-edge and trailing-edge vorticity). (b) tangential component (tip vorticity). 564 

(c) vertical component. ωr
+ = ωt

+ = ωy
+ = ± 0.8. Spanwise slices located at (d) trailing edge, 565 
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(e) 20 after the trailing edge, and (f) 40 after the trailing edge as shown in Fig. 5. Colors 566 

represent tangential vorticity and arrows represent spanwise and vertical flow. Horizontal 567 

slice (g) located as shown in Fig. 5. Color represents vertical vorticity and arrows represent 568 

tangential and spanwise flow. 569 

 570 

Fig. 8. Isosurfaces of color-coded vorticity magnitude and vortex structure. Vorticity 571 

magnitude (ω+ = 1.5) viewed at two different angles, (ai) is looking down on the wing, while 572 

(aii) is looking up on the wing. Isosurfaces are color-coded to reflect the direction of 573 

vorticity. RGB values of the isosurface color correspond to the magnitudes of the vorticity 574 

components: trailing-edge vorticity (+ω𝑟), red; leading-edge vorticity, (−ω𝑟), blue and tip 575 

vorticity, (−ω𝑡), green. (b) Vortex structure evaluated by the isosurface of Q value. Q+ = 576 

0.25. Isosurfaces are color-coded following the same rule in (a). 577 

 578 

Fig. 9. Isosurfaces of vortex tilting and stretching in rotating Cartesian frame. (a) Vortex 579 

tilting: (ω ∙ ∇u′)⊥r
+  = (ω ∙ ∇u′)⊥t

+  = (ω ∙ ∇u′)⊥y
+  = ±3. (ai) radial component, (aii) tangential 580 

component, (aiii) vertical component. (b) Vorticity stretching: (ω ∙ ∇u′)∥r
+  = (ω ∙ ∇u′)∥t

+  = 581 

(ω ∙ ∇u′)∥y
+  = ±3, (bi) radial component, (bii) tangential component, (biii) vertical component.  582 

 583 

Fig. 10. Isosurfaces of individual terms in vorticity equation (ai, bi and ci) and corresponding 584 

cylindrical slices at 75% of wing span (aii, bii and cii). (ai) and (aii): vorticity convection by 585 

tangential flow 
∂ωr

′

∂t
ut
′ . (bi) and (bii): vorticity convection by vertical flow 

∂ωr
′

∂y
uy
′ . (ci) and 586 

(cii) total vortex tilting and stretching ω ∙ ∇ur
′  The isosurfaces in (a) and (b) are shown at 587 

dimensionless value 8, and that in (c) is shown at dimensionless value 3. Regions 1, 2, 3 and 588 

4 are indicated in both isosurfaces and cylindrical slices. In (cii), the locations for LEV and 589 

TEV are also plotted. 590 

 591 

Fig. 11. Isosurface of diffusion term ∇2ωr and corresponding cylindrical slice. (a) isosurface 592 

shown at dimensionless value ±3. (b) Cylindrical slice at 75% of the wing span. 593 
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 594 

Fig. 12. Schematic demonstrating the vorticity dynamics. Region 1-4 are corresponding to 595 

those in Fig. 10. Blue and red arrows represent convection of negative and positive radial 596 

vorticities. A background contour of radial vorticity is also plotted to illustrate the 597 

distribution of the LEV and the TEV.  598 

 599 
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