
IEEE TRANSACTIONS ON ROBOTICS, VOL. 27, NO. 5, OCTOBER 2011 849

Translational and Rotational Damping of Flapping
Flight and Its Dynamics and Stability at Hovering

Bo Cheng and Xinyan Deng

Abstract—Body movements of flying insects change their effec-
tive wing kinematics and, therefore, influence aerodynamic force
and torque production. It was found that substantial aerodynamic
damping is produced by flapping wings through a passive mech-
anism termed “flapping countertorque” during fast yaw turns.
We expand this study to include the aerodynamic damping that
is produced by flapping wings during body translations and ro-
tations with respect to all its six principal axes—roll, pitch, yaw,
forward/backward, sideways, and heave. Analytical models were
derived by the use of a quasi-steady aerodynamic model and blade-
element analysis by the incorporation of the effective changes of
wing kinematics that are caused by body motion. We found that
aerodynamic damping, in all these cases, is linearly dependent on
the body translational and angular velocities and increases with
wing-stroke amplitude and frequency. Based on these analytical
models, we calculated the stability derivatives that are associated
with the linearized flight dynamics at hover and derived a complete
6-degree-of-freedom (6-DOF) dynamic model. The model was then
used to estimate the flight dynamics and stability of four different
species of flying insects as case studies. The analytical model that
is developed in this paper is important to study the flight dynam-
ics and passive stability of flying animals, as well as to develop
flapping-wing micro air vehicles (MAVs) with stable and maneu-
verable flight, which is achieved through passive dynamic stability
and active flight control.

Index Terms—Biologically inspired robots, biomimetics,
dynamics, flapping wing, flight stability.

I. INTRODUCTION

F LAPPING-WING insects fly with unprecedented maneu-
verability and stability compared with conventional air-

craft [1], [2]. In comparison with fixed and rotary wing air-
craft, flapping-wing fliers take advantage of more complicated
aerodynamic mechanisms in low-speed flows [3], which have
been well studied in recent years by the usage of experimental
(e.g., [4]–[10]) or computational (e.g., [11]–[13]) techniques.
On the other hand, high-speed videography (e.g., [2], [14]) pro-
vides detailed observations of insect flight kinematics and helps
us to understand flight dynamics and control. However, the ob-
served free-flight behavior can offer only a “closed-loop” view
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of overall flight dynamics, which has resulted from a complex
synthesis of sensing, control, and actuation systems. Therefore,
it is desirable to have an understanding of “open-loop” flight
dynamics.

Through the use of computational fluid dynamics meth-
ods [15], [16], most previous studies showed that insect flight is
inherently unstable and that the active modulation of wing kine-
matics might be the key to achieve the observed maneuverability
and stability [2], [17]. However, recent studies on the turning dy-
namics of animal flight [18], [19] showed that during low-speed
yaw turns, flapping-wing fliers that range in size from fruit flies
to large birds are subject to substantial passive damping through
an aerodynamic mechanism termed “flapping countertorque”
(FCT). FCT is generated as a result of the asymmetries of wing
motion that are induced by body yaw angular velocity during
saccades. As an inherent property, FCT helps the flapping-wing
fliers to slow down body rotation during rapid maneuvers, thus,
reducing the required active torque that is produced by the asym-
metries of wing motion. As a tradeoff, however, flapping-wing
fliers must overcome extensive aerodynamic damping to accel-
erate or to initiate a maneuver [18].

Not only body yaw rotation, but body movement as well, in
general, will induce counterforce/countertorque that acts against
it. For example, simulation results [18] have shown that substan-
tial aerodynamic damping exists also for body roll and pitch ro-
tations. It was also found that in forward flight, relative airspeed
will induce a drag that is opposite from the flight direction that
varies linearly with airspeed [20]. Buelthoff et al. [21] showed
that the turning rate of a saccade is inversely related to the for-
ward velocity, which might reflect an aerodynamic constraint on
the flight dynamics. Therefore, a comprehensive understanding
of how body translations and rotations influence the aerody-
namic force/torque production is crucial for further exploration
of flapping-wing flight dynamics.

This paper is organized as follows. In Section II, by the inves-
tigation of the geometric changes of wing motion that are caused
by different types of body movements (translations along and
rotations about the principal axes of the body frame), we de-
rive analytical models to estimate the aerodynamic damping
that is produced during maneuvers along each principle axis.
In Section III, based on these analytical models, we calculate the
stability derivatives that are associated with flight dynamics at
hover. A complete mathematical model of 6-degree-of-freedom
(6-DOF) flight dynamics is then provided. The predictions by
the derived analytical models are compared with the existing ex-
perimental and computational results. The effects of unsteady
aerodynamic mechanisms and other modeling issues are then
discussed in Section IV. Finally, in Section V, conclusions and
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Fig. 1. Schematic view of coordinate systems and kinematics. (a) Stroke plane
frame coordinates that originated from wing base (blue dot). Wing kinematics
are specified by the stroke angle φ and the (geometric) angle of attack α0 , which
is defined as the angle between the wing chord and the tangential of the wing’s
trajectory (relative to the stroke plane). (b) Body coordinate frame has the same
orientation as the stroke plane frame but with the origin that is located at the
center of mass (red dot). Body kinematics are specified by the translational
velocity (u, v, w) along and angular (p, q, r) velocity about three principal axes
of the body frame. The total forces (X, Y, Z ) and torques (L, M, N ) that are
produced by the wing pair are also shown. Note that the wing velocity rφ̇
is positive during upstroke and negative during downstroke, according to the
definition of the stroke angle.

future research directions are presented. Detailed mathematical
derivations are presented in Appendix A, and we present the ex-
perimental results by the use of four different species of insect
flight data in Appendix B.

II. THEORETICAL ESTIMATIONS OF AERODYNAMIC DAMPING

In this section, we will derive analytical models to estimate
the aerodynamic damping that acts against the body movement
of flapping-wing fliers. The aerodynamic forces are calculated
by the use of quasi-steady aerodynamic models [6], [10] and
blade-element analysis. We consider one pair of wings with
symmetrical kinematics relative to the body. The body motion
changes the effective wing kinematics (relative to the global
frame) and, therefore, affects the aerodynamic force and torque
produced. Geometrically, the body motion changes the wing
kinematics in the following three ways:

1) effective angle of attack;
2) chordwise wing velocity;
3) spanwise wing velocity.
We are able to incorporate these changes into force/torque

production by the use of blade-element analysis. In this section,
the analytical models are derived by the assumption that the
angle of attack is the major parameter that determines force
coefficients. The effects of other kinematic parameters and of
neglected aerodynamic mechanisms are discussed in Section IV
with necessary modifications to the model that we derived.

The coordinate systems and conventions of body and wing
kinematics that are used in this study are shown in Fig. 1. Note
that in this study, we construct the body frame and the stroke
plane frame with the same orientation; therefore, translational
velocity components in the body frame (u, v, w) are equivalent
to those in the stroke plane frame (vxs , vys , vzs). In Section II-A–
E, we derive the models of aerodynamic damping with respect
to body translations along and rotations about three principal
axes of the stroke plane frame [see Fig. 1(a)].

Fig. 2. Schematic view of wing kinematic parameters during translations and
rotations of the stroke plane. The total sectional wing velocity (U, green arrows)
is composed of wing flapping rφ̇ (blue arrows) and body-motion-induced ve-
locity (red arrows). ψ represents the directional change of the sectional velocity,
and α and α0 are the effective and geometric angles of attack, respectively. (a)
Moving backward. (b) Moving to the right. (c) Vertical ascent. (d) Roll rotation.
(e) Pitch rotation. (f) Yaw rotation.

A. During Forward/Backward Translation

Forward/backward body translation along the roll axis xs of
the stroke plane [see Fig. 2(a)] changes both the direction and
the magnitude of local wing velocity without affecting the geo-
metric angle of attack. It adds or subtracts the chordwise wing
velocity by vxscos(φ) and the spanwise velocity by vxs |sin(φ)|
[see Fig. 2(a)]. Before we proceed, we will first define two nondi-
mensional parameters that will prove useful in our analysis. The
chordwise tip velocity ratio [22] is defined as

μx =
vxs cos(φ)
R(dφ/dt)

(1)

where the subscript x indicates that the translation is along the
roll axis, and Vxs is the velocity. μ describes the ratio of the
chordwise wing-tip velocity that results from body translations
and wing flapping. A positive value indicates an enhancement
of the chordwise velocity. Similarly, the spanwise tip velocity
ratio is defined as

γx = − vxs sin(φ)
R(|dφ/dt|) . (2)

It describes the ratio of the spanwise velocity (resulting from
body translation) and the chordwise velocity (resulting from
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wing flapping). A positive value corresponds to a spanwise flow
from wing base to tip. Through standard blade-element analysis,
Dickson and Dickinson [22] give the aerodynamic force that acts
on a wing as

F (t̂) =
1
8
ρR3 c̄Φ2n2CF (α)

(
dΦ̂
dt̂

)2 (
r̂2
2 (S)

+2r̂1
1 (S)μx + μ2

x ) (3)

at nondimensional time t̂ (t̂ = tn), where F is the magnitude of
a specific force component (lift, drag, and normal force), CF (α)
is the corresponding force coefficient, α is the effective angle of
attack (we denote the geometric angle of attack as α0), dφ̂/dt̂ is
the nondimensional flapping velocity of the wing, Φ and n are,
respectively, the wing-flapping amplitude and frequency, and
r̂1
1 (S) and r̂2

2 (S) are, respectively, the nondimensional first and
second moments of the wing area.

Next, we calculate the total aerodynamic force that acts on
the wings by the careful investigation of the changes of the
angle of attack and wing velocity that are induced by body
movement (see Appendix A). We find that the stroke-averaged
lift is unaltered by forward/backward translations (by ignoring
higher order terms). However, there exists a stroke-averaged
drag that acts opposite to the direction of translation, which is
given by

X̄ = −ρR2 c̄Φnr̂1
1 (S)CD (α0) cos2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣u. (4)

We termed it “flapping counterforce” (FCF). Meanwhile, the
net drag force (4) induces a pitch moment around the center of
mass with a moment arm l1 (i.e., the distance between the wing
base and the center of mass), and we can find a stroke-averaged
pitch torque that is given by

M̄ = −ρR2 c̄Φnr̂1
1 (S)l1CD (α0) cos2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣u. (5)

B. During Lateral Translation

Similar to forward/backward translation, lateral body trans-
lation along the pitch axis ys of the stroke plane [see Fig. 2(b)]
changes both the direction and the magnitude of local wing ve-
locity without changing the geometric angle of attack. It adds
or subtracts the chordwise wing velocity by vys |sin(φ)| and the
spanwise velocity by vyscos(φ). The chordwise and spanwise
tip velocity ratios, here, are given, respectively, by

μy =
vys sin(φ)
R(dφ/dt)

(6)

and

γy = (−1)i vys cos(φ)
R(|dφ/dt|) (7)

where the subscript y indicates that the translation is along the
pitch axis, vys is the velocity, and i equals 0 for the left wing
and 1 for the right wing.

We can see that during lateral translation to the right [see
Fig. 2(b)], the spanwise flow is always from wing base to tip
for the left wing (positive γy ) and from tip to base for the right
wing (negative γy ). μy is positive when the wing flaps to the
right [e.g., the left wing’s second half of downstroke, as shown
in Fig. 2(b)], and negative when it flaps to the left. By the
consideration of the changes of body translation on the total
force production (see Appendix A), we can collectively show
that the stroke-averaged force (FCF) is acting opposite to the
direction of lateral translation and is given by

Ȳ = −ρR2 c̄Φnr̂1
1 (S)CD (α0) sin2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣v. (8)

A roll torque is also produced about the center of mass, and its
stroke-averaged value can be calculated by

L̄ = ρR2 c̄Φnr̂1
1 (S)l1CD (α0) sin2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣v. (9)

C. During Vertical Translation

As shown in Fig. 2(c), the translational velocity along the
vertical axis zs changes the direction of flapping velocity at a
wing section by

ψ = arctan
(

vzs

r|dφ/dt|

)
(10)

where r is the spanwise position of wing section, and vzs is the
translational velocity along the zs axis. Therefore, the effective
angle of attack is modified by ψ. (Positive ψ corresponds to a
reduction of angle of attack.) The magnitude of the total wing
velocity at a wing section is

U =
r|dφ/dt|
cos(ψ)

=

√(
r
dφ

dt

)2

+ v2
zs . (11)

Next, if we approximate the normal force coefficient by

CN (α0 + ψ) ≈ CN (α0) +
dCN (α)

dα |α=α0

ψ

≈ CN (α0) +
dCN (α)

dα |α=α0

(
vzs

r|dφ/dt|

)
(12)

and then apply the blade-element theory, we have the net lift
change of a wing pair (see Appendix A):

Z(t) = −1
2
ρR2 c̄Φn

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣ cos(α0)
dCN (α)

dα |α=α0

r̂1
1 (S)w

(13)
at nondimensional time t̂. The stroke-averaged value is

Z̄ = −1
2
ρR2 c̄r̂1

1 (S)Φn
dCN (α)

dα |α=α0

cos(α0)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣w (14)

that acts opposite from the direction of translation.
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D. During Roll Rotation

During a roll rotation [e.g., see Fig. 2(d)], the effective angle
of attack α of the inner wing (left wing in this figure) is increased
(or lowered) when the one of the outer wing is lowered (or
increased). The change of the angle of attack is identical at all
wing sections and is given by

ψ = (−1)i arctan
(

ωxs cos(φ)
|dφ/dt|

)
≈ (−1)i

(
ωxs cos(φ)
|dφ/dt|

)
(15)

where i equals 1 for the inner wing and 0 for the outer wing,
and ωxs is the angular velocity about the roll axis of the stroke
plane. The total wing velocity at a wing section is

U =
r|dφ/dt|
cos(ψ)

= r

√(
dφ

dt

)2

+ ω2
xs . (16)

More specifically, the angular velocity about the roll axis in-
duces a downward velocity at the left half of the stroke plane,
thereby, increasing the inner (left) wing’s angle of attack. Simi-
larly, it induces an upward velocity at the right half of the stroke
plane and reduces the angle of attack of the outer (right) wing.
Therefore, the inner wing is expected to produce a larger mag-
nitude of force than the outer wing. If we approximate the force
coefficient as in (12), through the blade-element analysis, the
net roll torque around the center of mass is

L(t̂) ≈ −1
2
ρR4 c̄r̂3

3 (S)
dCN (α)

dα |α0

cos(α0) cos2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣ Φn

(17)
at nondimensional time t̂, where r̂3

3 (S) is the nondimensional
third moment of the wing area. Note that, during a roll (or pitch)
rotation around the center of mass, there will be a small amount
of the translational velocity of the stroke plane (because of the
distance between the wing base and the center of mass), which
is neglected here (see Section IV). The averaged value over one
wing stroke is

L̄ ≈ −1
2
ρR4 c̄r̂3

3 (S)
dCN (α)

dα |α0

cos(α0) cos2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣Φnp

(18)
which is a restoring torque (FCT) that acts opposite from the
direction of rotation.

E. During Pitch Rotation

During a pitch rotation [e.g., see Fig. 2(e)], the pitch angu-
lar velocity induces an upward velocity at the ventral (anterior)
half of the stroke plane and reduces the effective angle of attack
α during the ventral-to-middle and middle-to-ventral strokes.
Similarly, it induces a downward velocity at the dorsal (poste-
rior) half of the stroke plane and increases the effective angle of
attack during the dorsal-to-middle and middle-to-dorsal strokes.
The change of the angle of attack is identical at all wing sections
and is given by

ψ ≈ arctan
(

ωys sin(φ)
|dφ/dt|

)
≈

(
ωys sin(φ)
|dφ/dt|

)
(19)

where ωys is the angular velocity about the pitch axis of the
stroke plane. The magnitude of the total wing velocity at a wing
section (r) is

U =
r|dφ/dt|
cos(ψ)

= r

√(
dφ

dt

)2

+ ω2
ys . (20)

Again, by the application of the blade-element model (see
Appendix A), we can find a stroke-averaged restoring torque
(FCT) that acts in the opposite direction of pitch rotation

M̄ ≈ −1
2
ρR4 c̄r̂3

3 (S)
dCN (α)

dα |α0

cos(α0) sin2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣Φnq.

(21)

F. During Yaw Rotation

The aerodynamic damping during yaw rotation is well de-
scribed in the previous studies [18], [19], [23]. The instanta-
neous resorting yaw torque (FCT) and its stroke-averaged value
are given by

N(t̂) = −ρR4 c̄r̂3
3 (S)ΦCD (α0)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣ nr (22)

N̄ = −ρR4 c̄r̂3
3 (S)ΦCD (α0)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣nr (23)

where ωzs is the yaw angular velocity in the stroke plane
frame.

Our calculation indicates that for each type of rotation, the
stroke-averaged FCT acts strictly opposite to the directions
of rotation (collinear with the rotation axis). In other words,
there is no resultant torque about any axis that is perpendic-
ular to the rotation axis, and this is consistent with previous
simulation results [18]. Note that although the stroke plane
frame and the body frame are originated from different posi-
tions (see Fig. 1), the moment arms about the principal axes
are identical in the calculations made earlier (see Appendix A);
therefore, FCTs are expressed directly in the body coordinate
frame.

III. STABILITY DERIVATIVES AND LINEARIZED FLIGHT

DYNAMICS DURING HOVER

A detailed description of linearized flight dynamics can be
found in [24] and [25]. See [26] for related studies about lin-
earized hovering flight dynamics. An analytical investigation is
given in the present context that is based on the mathematical
models of stroke-averaged FCT and FCF. We first consider the
insect body that is oriented with a fixed pitch angle χ0 (free
body angle) relative to the horizontal stroke plane (see Fig. 1).
As previously introduced, the stroke plane frame (xs , ys , zs)
is fixed relative to the body with the origin that is located at
the wing base (see Fig. 1). We defined the body frame (xb ,
yb , zb ) having the same orientation with the stroke plane frame
but with the origin that is located at the center of mass (see
Fig. 1). The distance between the wing base and the center of
mass is specified by l1 . If the insect body is modeled as a rigid
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body, its complete dynamics are described by the Newton–Euler
equations of motion [27], which comprise six equations with
translational velocity (u, v, w) and angular velocity (p, q, r) as
unknowns. With the addition of another six kinematic equations
that describes the body position (x, y, z) and orientation (φb ,
θb , ψb ) (the subscripts are used to differentiate the angles that
are used in body and wing kinematics) relative to the Earth-
fixed frame, a complete system of equations includes 12 cou-
pled nonlinear ordinary differential equations that incorporate
the aerodynamic forces (x, y, z) and torques (L, M, N), act-
ing along or around the body axes. Because the body position
(x, y, z) and heading angle ψb do not affect the aerodynamic
steady state, they can be considered separately with appropriate
equations [24]. Therefore, the following autonomous system of
equations can be extracted from the full system (12 kinematic
and dynamic equations of motion) to study the flight dynamics
in the absence of control inputs:

u̇ = −(wq − vr) +
X

m
+ g sin θb (24a)

v̇ = −(ur − wp) +
Y

m
− g cos θb sin φb (24b)

ẇ = −(vp − uq) +
Z

m
− g cos θb cos φb (24c)

Ixx ṗ − Ixz ṙ = (Iyy − Izz )qr + Ixz pq + L (24d)

Iyy q̇ = (Izz − Ixx)pr + Ixz (r2 − p2) + M (24e)

Izz ṙ − Ixz ṗ = (Ixx − Iyy )pq − Ixz qr + N (24f)

φ̇b = p + q sin φb tan θb + r cos φb tan θb (24g)

θ̇b = q cos φb − rφb (24h)

where the state vector x is equal to (u,w, q, θb , v, p, r, φb)T ∈
R8 ; m is the body mass; Ixx , Iyy , and Izz are the moments of
inertia about the body axes (xb , yb , zb ); and Ixz is the product
of inertia (Iyz and Ixy are zero, since the xz plane is a plane of
symmetry).

To analyze the near-hover flight dynamics, we can linearize
the equations of motion by the use of small perturbation theory.
A crucial step in the linearization process is to approximate the
aerodynamic forces and torques as the analytical functions of
the perturbed motion variables (i.e., stability derivatives multi-
plied by the corresponding disturbance quantity of the motion
variables), as well as to obtain the stability derivatives. A com-
plete description of this method can be found in [24]. Because
the aerodynamics are mainly affected by velocities, we consider
only the first derivatives with respect to time (e.g., Xu ) and ne-
glect the effects of the second derivatives (e.g., Xu̇ ) and other
nonlinear terms (see Section IV), which is justified in most flight
conditions [24], [28].

In the previous studies of longitudinal dynamics, Taylor and
Thomas [25] measured the stability derivatives from the teth-
ered desert locust Schistocerca gregaria in an open-circuit low-
speed wind tunnel; alternatively, Sun and coworkers used com-

TABLE I
ANALYTICAL ESTIMATIONS OF NONDIMENSIONAL STABILITY DERIVATIVES

WITH NONZERO VALUES

putational fluid dynamics to calculate stability derivatives in
hovering insect models [15], [16]. In this study, because we
have already obtained the analytical estimations of aerodynamic
damping during body translations and rotations (FCTs and
FCFs), we are able to derive the estimations of stability deriva-
tives by the use of those models. Table I summarizes the nondi-
mensional forms of stability derivatives with nonzero values.
Notably, the axis xs (ys) does not coincide with the axis xb (yb )
(see Fig. 1); therefore, a rotation around xb (yb ) corresponds to
a rotation around xs (ys) plus a linear translation of the stroke
plane. We neglected the effect of this translation for simplifica-
tion (see Section IV).

Other stability derivatives are expected to be zero (e.g., Xv ,
Np ), based on FCT and FCF models. It is important that we
assume the near-hover condition, which leaves the lift and drag
coefficients dependent on only the angle of attack (as discussed
in the previous section). For now, the stability derivatives are
ready to be calculated with the use of proper morphological and
wing kinematic data.

We assume hovering reference conditions

pe = qe = re = ue = ve = we = θb e = φb e = 0 (25)

and the reference values of the aerodynamic forces and moments
are

Xe = Ye = Le = Me = Ne = 0, Ze =
g

m
. (26)
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Finally, the linearized equations of motion in the matrix form
are written as follows:

ẋ = Ax =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu

m
0 0 q 0 0 0 0

0
Zw

m
0 0 0 0 0 0

C3Mu 0 C3Mq 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0
Yv

m
0 0 −g

0 0 0 0 C4Lv C4Lp C1Nr 0

0 0 0 0 C1Lv C1Lp C1Nr 0

0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

(27)

where x = (δu, δw, δq, δθb , δv, δp, δr, δφb)T

C1 =
Ixz

IxxIzz − I2
xz

C2 =
Ixx

IxxIzz − I2
xz

C3 =
1

Iyy

C4 =
Izz

IxxIzz − I2
xz

(28)

are constants of body moments of inertia, and A is the sys-
tem matrix of the linearized dynamics. Note that by choosing
a reference-body frame with the same orientation as the stroke
plane frame (see Fig. 1) and then using the estimations of sta-
bility derivatives (see Table I), we can decouple the hovering
dynamics into longitudinal (described by [u,w, q, θb ]T ) and lat-
eral (described by [v, p, r, φb ]T ) dynamics, as illustrated by the
structure of the system matrix A.

With the system matrix A determined, the linearized flight
dynamics during hover can be evaluated by looking at the
corresponding eigenvalues and eigenvectors. Next, we evalu-
ate the stability derivatives and calculate the system matrix,
by the usage of real insect morphological and kinematic data
(see Table II in Appendix B). We choose the data from four
different species with dissimilar flight dynamics [19]: fruit fly
(Drosophila melanogaster), hawkmoth (Manduca sexta), stalk-
eyed fly (Cyrtodiopsis dalmanni), and bumblebee (Bombus).

By the usage of the analytical estimations given in Table I,
nondimensional stability derivatives (with nonzero values) are
calculated. The results are summarized in Table III in Appendix
B. With the stability derivatives known, the system matrix A
in (27) is calculated, and the eigenvalues and corresponding
eigenvectors can then be obtained accordingly (see Tables IV
and V in Appendix B).

Notably, all four types of insects that are investigated ex-
hibit similar natural modes of motion during hover in terms of
longitudinal and lateral dynamics. The longitudinal dynamics

consist of a fast stable subsidence mode (mode 1), an unstable
oscillatory mode (mode 2), and a slow stable subsidence mode
(mode 3), which agree with the previous computational fluid
dynamics (CFD) results [15]. The fast-subsidence mode corre-
sponds to an in-phase coupling of δu and δq, which results in a
pitch-down (-up) motion accompanied by a forward (backward)
translation with decaying magnitudes. In this mode, the forward
translation reduces the pitch-down motion as indicated by a neg-
ative X+

u ; in the meantime, FCF and FCT both act to reduce
the initial disturbances, therefore, resulting in stable subsequent
motions. The unstable oscillatory mode corresponds to a near
out-of-phase coupling of δu+ and δq+ (the phase difference is
greater than 120◦ for all four insects); thus, in the larger part of
an oscillating cycle, the insects pitch up (or down), while mov-
ing forward (or backward). In this mode, an initial pitch-down
velocity is enhanced by a backward translation, thus magnify-
ing the initial disturbances and leading to the instability. The
slow-subsidence mode (mode 3) corresponds to a damped as-
cending/descending motion as the FCF in the vertical direction
acts to reduce velocity.

Similar to the longitudinal dynamics, the lateral dynamics
consist of two subsidence modes with relative fast (mode 4)
and slow (mode 6) convergences and an unstable oscillatory
mode (mode 5). The fast-subsidence mode corresponds to a
highly damped yaw rotation (the larger value of nondimensional
eigenvalues means less wing-beat time to reduce the initial dis-
turbance; see Table IV in Appendix B) with an out-of-phase
coupling of δv and δp. The initial rolling disturbance is reduced
by the roll torque that is generated by the out-of-phase lateral
velocities (as indicated by a positive L+

v ) and results in a stable
motion. The yaw rotation is out-of-phase with the roll rotation.
The slow-subsidence mode has a similar out-of-phase coupling
of δv and δp, but with less-damped yaw rotation, which is now
in phase with the roll rotation. The unstable oscillatory mode
has a near in-phase coupling of δv and δp (the phase difference
is less than 51◦ for all four insects), where lateral translation acts
to enhance the initial rolling and leads to an unstable subsequent
motion.

Despite the similarities of flight dynamics between the four
insects, we find that the hawk moth has relatively faster
natural modes of motion compared with other insects (see
Table IV in Appendix B) in terms of wing-beat time. Assuming
a motion of the natural mode (mode 4), for example, the hawk
moth is able to passively reduce 63% of its initial yaw veloc-
ity in less than one wing beat (1/λ+

4 ≈ 0.95), but the fruit fly
needs about one and a half wing beats, and the bumblebee and
stalk-eyed fly need about three. This is consistent with the mea-
surements that are compiled on free-flying insects exhibiting
low-speed yaw turns [19], which suggests that the large-winged
hawk moth has a deceleration half-life of less than one wing beat.

Compared with the CFD results by Sun and coworkers [15],
[16], our analytical model predicts similar natural modes of
motion in longitudinal dynamics. In lateral dynamics, however,
though both studies found a fast-subsidence mode, Zhang and
Sun [16] found the slow-oscillatory mode to be stable (we found
it unstable) and the slow-divergence mode to be unstable (we
found it stable). This discrepancy reflects the differences of



CHENG AND DENG: TRANSLATIONAL AND ROTATIONAL DAMPING OF FLAPPING FLIGHT AND ITS DYNAMICS 855

stability derivatives that are calculated between these two stud-
ies. Therefore, it is important for us to investigate the effects
of the neglected aerodynamic mechanisms in the FCT and FCF
models, which are used to calculate the stability derivatives.

IV. DISCUSSION

A. Effects of Chordwise and Spanwise Tip Velocity Ratios

As mentioned previously, body translations and rotations
bring three types of geometric changes to wing kinematics; they
are the angle of attack α, chordwise tip velocity ratio μ [defined
by (1) and (6)], and spanwise tip velocity ratio γ [defined by
(2) and (7)]. In Section II, analytical models were obtained by
the assumption that spanwise and chordwise flows modify only
the sectional wing velocities without changing force coefficients
(which depend only on the angle of attack). This is an appro-
priate assumption when modeling FCT during body rotations
because force coefficients are unaffected in these situations.
However, as shown by Dickson and Dickinson [22], uniform
chordwise velocities (because of body translation) across the
wingspan change both lift and drag force coefficients; there-
fore, a revised quasi-steady aerodynamic model is required to
include this effect in forward/backward body translations. Fur-
thermore, a recent CFD study [16] showed that additional span-
wise flow that is caused by body lateral translation increases
the strength of leading edge vortex when the flow is from wing
base to tip and decreases it when from tip to base. Therefore, the
wing with base-to-tip spanwise flow generates larger force than
the one with tip-to-base spanwise flow. Similar phenomenon is
also found in authors’ laboratory by the usage of robotic wing
experiments of translating flapping wings (unpublished). For
example, body lateral translation to the left leads to an increase
(decrease) of force produced by right (left) wing. Although the
specific reason for this phenomenon is still not well known, all
of these studies suggest that the force production is strongly
dependent on the spanwise flow, which might require consid-
eration in the current analysis. Therefore, in the following, a
tentative model is given, by the assumption that the force coef-
ficients are dependent on μ and γ. First, we approximate force
coefficients by the use of first-order Taylor expansion

CF (α, μ, γ)≈CF (α, 0, 0)+
∂CF (α, 0, 0)

∂μ
μ +

∂CF (α, 0, 0)
∂γ

γ

(29)
where CF (α, 0, 0) are identical to CF (α), which are those
measured in [6], and ∂CF (α, 0, 0)/∂μ and ∂CF (α, 0, 0)/∂γ
represent the partial derivatives of force coefficients to μ and γ,
respectively. By the use of (29), we can show that the FCF during
body forward/backward translation can now be calculated by
(see Appendix A)

X̄ = −ρR2 c̄Φn

⎡
⎣r̂1

1 (S)CD (α0) cos2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣
+

1
2

∂CD

∂μx
cos2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣r̂2
2 (S)

⎤
⎦u. (30)

Note that the additional term [compared with (4)] results from
the change of the drag force coefficient because of μx . In the
meantime, the pitch torque around the center of mass (when
moving forward/backward) is

M̄ = ρR2 c̄Φn

⎡
⎣1

2
∂CL

∂γx
sin2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣r̂3
3 (S)R

− r̂1
1 (S)l1CD (α0) cos2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣
−1

2
l1

∂CD

∂μx
cos2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣r̂2
2 (S)

⎤
⎦ u (31)

where the first term in the parentheses results from the change
of the lift force coefficient because of γx ; the second and third
terms represent the pitch moment induced by the drag (FCT)
with a moment arm l1 . Similarly, we can show that during lateral
translation

Ȳ = −ρR2 c̄Φn

⎡
⎣r̂1

1 (S)CD (α0) sin2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣
+

1
2

∂CD

∂μy
sin2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣r̂2
2 (S)

⎤
⎦ v (32)

and

L̄ = ρR2 c̄Φn

⎡
⎣−1

2
∂CL

∂γy
cos2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣r̂3
3 (S)R

+ r̂1
1 (S)l1CD (α0) sin2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣
+

1
2
l1

∂CD

∂μy
sin2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣r̂2
2 (S)

⎤
⎦ v. (33)

During lateral translation, the spanwise flow for the left and right
wings is always modified in an opposite manner [as shown in
Fig. 2(b)]. For example, when moving to the right, the flow for
the left wing is enhanced, and for the right wing, it is reduced;
thus, the right wing is expected to generate less lift (or more,
depending on the sign of ∂CL/∂γy ) than the left wing, which
leads to a roll torque.

With the aforementioned modifications to the analytical mod-
els, the value of the stability derivatives X+

u , M+
u , Y +

v , and L+
v

will be changed accordingly. The results are strongly depen-
dent on the values of ∂CD /∂μ and ∂CL/∂γ. An estimation
of ∂CD /∂μ can be obtained by the use of [22, (25) and (26)].
Note that ∂CD /∂μ is a function of α and normally has negative
values, i.e., because a positive μ tends to reduce the force coef-
ficient. Therefore, by taking into account the chordwise change
of the sectional velocity that is induced by body translation, we
find that (30) and (32) predict lower values than those by (4)
and (8). For example, the stability derivatives X+

u and Y +
v are
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reduced by 34% and 36% for fruit fly, i.e., X+
u = −0.98, and

Y +
v = −0.89. However, the variations of X+

u and Y +
v barely

affect the overall dynamics of the system, because the values of
Xu/m and Yv /m in the system matrix (27) are much smaller
than the other dominant terms.

As mentioned, it is still not well known how additional span-
wise flow (which results from body motion) will change the
vortex structure and force production. As found by recent CFD
studies [16], additional spanwise flow from wing base to tip
tends to enhance the lift production, therefore, suggesting that
∂CL/∂γ has positive values. We can see that in (31), during a
forward translation, a nose-up pitching is induced by the drag
force that is directed backward (second and third terms in the
parentheses). The term that is associated with ∂CL/∂γ tends to
create a nose-down torque, thereby reducing the total nose-up
torque. However, the effect of ∂CL/∂γ on the stability deriva-
tive M+

u might be limited, especially, for low-stroke amplitude
insects [term sin2(φ) is small; see (31)].

On the other hand, ∂CL/∂γ may have considerable effect on
Lv because the roll torque is at a maximum during midstrokes
when spanwise flow is most affected by the body lateral veloc-
ity. From (33), we can see that the term that is associated with
∂CL/∂γ tends to produce a torque that is opposite from the
direction of torque that is induced by lateral drag. If it is more
dominant than the drag-induced roll torque, it will result in a
negative L+

v (according to the coordinate system that is defined
in the current study). It can be shown that a negative L+

v will lead
to lateral dynamics containing a stable fast-subsidence mode, a
stable slow-oscillatory mode, and an unstable slow-divergence
mode, which are consistent to those from CFD results on lateral
dynamics. However, no conclusion can be made here because
of the lack of an accurate estimation of ∂CL/∂γ and the un-
derstanding of the effect of additional spanwise flow on force
production.

B. Wing Rotation and Wing–Wake Interaction

It is well known that the translational component of aero-
dynamic force because of delayed stall mechanism [6] con-
tributes to most of the total force, especially around midstrokes.
Near stroke reversals, however, force transients are largely de-
termined by rotational lift (Kramer effect) and wake-capture
mechanisms [3], which are not considered in the analytical mod-
els. Therefore, in this section, we discuss how wing kinematics
are changed (by body movements) during stroke reversals and
how unsteady mechanisms are affected.

As shown in Fig. 3(a), body translations will delay or bring
forward stroke reversals when changing the relative timing
of wing rotation. For example, when moving backward [see
Fig. 3(a.i)], the ventral stroke reversal is delayed, and this leads
to an advanced wing rotation (assuming a symmetrical wing
rotation without body motion). On the other hand, the dorsal
stroke reversal [see Fig. 3(a.ii)] is brought forward and results
in an advanced wing rotation. As shown by Dickinson et al. [6],
an advanced wing rotation will significantly increase the lift pro-
duced because of an enhanced wing–wake interaction after the
stroke reversal. On the contrary, delayed wing rotation reduces

Fig. 3. Schematic illustrations of the effective wing kinematics relative to the
global frame. (a) Body is moving backward. (a.i) Wing kinematics during ventral
stroke reversal—less distance is traveled, which results in delayed rotation.
(a.ii) Wing kinematics during dorsal stroke reversal—additional distance is
traveled because of the overall backward motion, which results in advanced wing
rotation. (b) Wing trajectory during vertical descent—wing moves downward
at both ventral and dorsalstroke reversals. (c) Wing trajectory during nose-up
pitching—wing moves downward at dorsal stroke reversal and upward at ventral
stroke reversal. The solid black line denotes the wing chord, with the filled cycle
that marks the leading edge.

the wing–wake interaction and lowers lift production. There-
fore, we can see that a backward translation will induce a large
pitch-down moment [see the blue arrow in Fig. 3(a)], especially
when the moment arm for the pitch torque is at maximum during
stroke reversals. This indicates that (5) may underestimate the
pitch torque and that a higher value of M+

u is expected. Simi-
lar effects may also take place for lateral translation; however,
since moment arm for the roll torque is at minimum at stroke
reversals, it may have very limited effect, and (9) is still a good
approximation.

Furthermore, body movements also affect the wing–wake
interaction by the induction of effective wing deviations. For
example, during vertical descent, the wing is moving downward
after both ventral and dorsal stroke reversals [see Fig. 3(b)],
therefore, enhancing the wing–wake interaction [9]. However, it
is still not known how descending motion affects the wing–wake
interaction during midstrokes; thus, the overall effect cannot be
determined without further investigations. On the other hand,
during a pitch rotation [e.g., a nose-up pitching in Fig. 3(c)] we
can see that an upward deviation occurs at the ventral stroke
reversal, and a downward deviation occurs at the dorsal stroke
reversal. Therefore, the lift force is enhanced at the dorsal side
and reduced at the ventral side. Because at stroke reversals the
moment arm for the pitch torque is at maximum, we expect that a
large amount of pitch FCT is produced against the pitch rotation.
This is confirmed by results from a dynamically scaled robotic
wing experiment, as shown in Fig. 4(b). (For more details about
robotic wing experiments, see [29].) We can see that the pitch
torque at the beginning upstroke [after ventral stroke reversal
see the blue curve in Fig. 4(b.i)] is reduced, and the one at the
beginning of the downstroke is enhanced [after dorsal stroke re-
versal; see the red curve in Fig. 4(b.i)]. Therefore, the total pitch
FCT [see the green curve in Fig. 4(b.i)] is greatly enhanced,
compared with the prediction by (21). The stroke-averaged
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Fig. 4. FCTs measured in robotic wing experiments (Re = 800). (a.i), (b.i),
and (c.i) Time courses of FCTs (angular velocity at 20◦/stroke), which are shown
by the solid green curves and the filled green cycles on the ordinates, represent
their averages. The predicted torques by the analytical models are shown by a
dotted green curve. The black curves represent the torques measured when there
is no body rotation (undisturbed). (a.ii), (b.ii), and (c.ii) Stroke-averaged values
as a function of the angular velocity. Measured and predicted torques are shown
in black and red, respectively. (a) Roll rotation; torques generated by the left
and right wings are shown by the blue and red curves. The roll torque of the left
wing is plotted oppositely (relative to the horizontal zero axis). Therefore, the
total torque (green) is obtained by subtracting the blue curve from the red curve.
(b) Pitch rotation; torques during up- and downstrokes are shown by the blue
and red curves. The pitch torque during upstroke is plotted oppositely. (c) Yaw
rotation; torques that are generated by the left and right wings are shown by the
blue and red curves. The yaw torque of the left wing is plotted oppositely.

values as a function of the angular velocity are shown in
Fig. 4(b.ii), and the estimation of M+

q accounts for only 30%
of the actual value. Compared with FCT during pitch rotation,
it is less affected during roll rotation because at stroke rever-
sals the moment arm for the roll torque is at minimum; thus,
the prediction by (18) agrees well with the measured one, as
shown in Fig. 4(a.ii) (A plot of instantaneous values is shown
in Fig. 4(a.i).) At last, for a yaw rotation, the stroke plane is
fixed, and there is no induced wing deviation. Therefore, not
surprisingly, the predictions by (22) and (23) agree well with
the experimental results [see Fig. 4(c)].

C. Additional Modeling Error and Effects on the Results

To derive (5) and (9), which are associated with the stability
derivatives M+

q and L+
v , we neglected the translational velocity

of the stroke plane, which is induced by body rotations (roll
and pitch) around the center of mass. During a rotation around
the body roll axis, for example, the stroke plane rotates about
its roll axis and translates along the pitch axis. The latter will
further impart an amount of roll countertorque (similar to the
production of L+

v ) around the center of mass. The amount of

the stability derivative that is neglected can be estimated by

M̃+
q = M+

u

L̂l̂1
2Φr̂2

(34)

L̃+
q = L+

v

L̂l̂1
2Φr̂2

(35)

where L̂ is the ratio of body and wing lengths. By the use of
fruit fly data, we can find M̃+

q ≈ 0.08M+
u . We note that the

effect of M+
q (L+

p ) on the flight dynamics is relatively small.
If we increase the value of M+

q by fourfold, for example, the
changes in the resulting dynamics are still minor (i.e., by the
use of stalk-eyed fly data, we find that the maximum change
of the eigenvalues is within 15%). Therefore, we consider that
the errors in the estimations of stability derivatives M+

q and L+
p

have very limited effects on our results.
Furthermore, how FCTs depend on accelerations is still un-

determined. Although the FCT and FCF models can be used
to estimate the first derivatives with respect to time, e.g., Xu ,
we are unable to estimate the second derivatives, e.g., Xu̇ . For
fixed and rotary aircraft, such stability derivatives are important
under some flight conditions (e.g., short-period mode), in which
the associated time constant is so short that the acceleration be-
comes critical to aerodynamics [28]. However, in hover, it is
still well approximated that the first derivatives dominate the
aerodynamics [24], [28].

As we have seen, a better understanding of the effects of
spanwise flow and wing–wake interaction will help to model
the flight dynamics more accurately. Dynamically scaled robotic
wing experiments or computational studies on qualifying these
effects are desirable in future studies. As an approximation of
the flight dynamics, however, our models provide an applicable
and simple analytical tool, which is important to design the
controllers for the flapping-wing micro air vehicles (MAVs)
(e.g., see [30]), as well as to understand the control strategies
that are adapted by flying insects.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have derived the full 6-DOF body dynamics
of flapping flight near hover by the incorporation of the ana-
lytical models for the newly found FCTs and FCFs, which are
aerodynamic torques and forces that are produced by flapping-
wing fliers from the effects of body rotational and translational
motions. We have found that these damping terms are always in
the opposite direction of motion and are linearly proportional to
the body velocity and wing beat frequency. Experimental results
have been performed to validate these models, which were then
applied to estimate the stability derivatives that are associated
with the 6-DOF flight dynamics, which is linearized at hover.
The flight dynamics of four species of flapping-wing insects
have been analyzed for their dynamic stability on the basis of
our analytical models. We found that, consistent with previous
studies, some subsets of the dynamic modes are passively stable.

The first major contribution of this study is to derive the
principles and theoretical models of the FCTs and FCFs, which
is an important property that is uniquely associated with flapping
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flight. They result in significant damping in system dynamics
and are the inherent properties of flapping flight. As an extension
of our recent work on yaw-turn models, we include, in this
study, all the rotational and translational damping along six
principle axes: roll, pitch, yaw, forward/backward, sideways,
and heave. Analytical models along with experimental results
through robotic wing tests and real insect flight data further
validated the theory. The significant damping in flapping flight
implies passive stability under external disturbances, such as
wind gust, and coupled with active control, it allows the insect
or robotic flyers stable yet maneuverable flight.

The second major contribution of this study is to provide a
revised analytical form of flapping flight dynamics at hover.
It can be used very easily to study the flight dynamics by the
use of the available morphological and kinematic data (as we
did in Section III) and to explain the observed flight behavior
of flapping-wing animals. Similarly, this model can be easily
applied to estimate the dynamics of a flapping-wing MAV pro-
totype and investigate the effects of design parameters (wing
length, center of mass, moment of inertia, etc.) on the flight sta-
bility and performance. In the meanwhile, the estimation of the
damping characteristics (when the robot is translating or rotat-
ing in the air) helps to determine the amount of wing kinematic
changes required that can achieve certain flight performance
(e.g., maximum turning rate, cursing speed, etc.). The knowl-
edge of the flight dynamics is helpful in the design of the control
mechanisms, which can then be chosen to stabilize the unstable
modes. The current model can also be easily expanded to in-
clude control inputs, and then, “closed-loop” dynamics can be
derived accordingly [30].

As a parallel work on the experimental front, the analytical
model derived in this study is applied to estimate the transla-
tional damping characteristics of a pair of life-size robotic insect
wings that are developed in the lab [31]. The analytical results
are in good agreement with the experimental measurements on
the wings. For future works, it is important to apply the theory
and model found in this study to the design and parameter selec-
tion of the flapping-wing robotic insect that can achieve stable
and maneuverable hovering through passive dynamic stability
and active flight control.

Meanwhile, the current analytical model are from simple first-
order analysis; it can be further expanded to include more com-
plicated wing kinematic parameters, such as stroke plane tilt
angle, stroke angle offset, and wing deviation, which are usu-
ally presented in real flying insects [32]. Similarly, as mentioned
at the end of Section IV, additional experiments on dynamically
scaled robotic wings are needed to expand these models by the
incorporation of detailed understanding of the neglected aero-
dynamic effects, such as wake capture and wing rotational force.

APPENDIX A

DERIVATIONS OF ANALYTIC MODELS: FLAPPING

COUNTERFORCE AND FLAPPING COUNTERTORQUE

In this Appendix, we provide detailed derivations of analyti-
cal models for aerodynamic damping during body translations
along and body rotations about the principal axes of the stroke

Fig. 5. Schematic view of FCF production during (a) backward, (b) rightward,
and (c) upward translations. Blue arrows denote the directions of the wing
velocity (solid for the first half of upstroke and dashed for the srcond half of
downstroke), and red arrows denote the body translational velocity.

plane frame. Forces and torques are calculated based on the
quasi-steady aerodynamic model [6], [22].

Fig. 5 summarizes the changes of wing velocity and angle of
attack during body translations. In the following, we derive the
analytical models of FCFs case by case.

FORWARD/BACKWARD TRANSLATION

Based on blade-element analysis, it can be shown that the
mean aerodynamic force that acts on a wing is given by

F (t̂) =
1
8
ρR3 c̄Φ2n2CF (α, μx, γx)

(
dφ̂

dt̂

)2

× (r̂2
2 (S) + 2r̂1

1 (S)μx + μ2
x)

≈ 1
8
ρR3 c̄Φ2n2

[
CF (α0) +

∂CF

∂γx
γx +

∂CF

∂μx
μx

] (
dφ̂

dt̂

)2

× (r̂2
2 (S) + 2r̂1

1 (S)μx + μ2
x) (A1)

where we approximate CF (α, μx, γx) by CF (α0) +
(∂CF /∂γx)γx + (∂CF /∂μx)μx . From Fig. 5(a), we can see
that, during a backward translation, the drag force is reduced
when wing velocity is directed opposite the direction of trans-
lation (during downstrokes, μx is negative) and enhanced when
directed in the same direction of translation (during upstrokes,
μx is positive). Specifically, we note the following.

During downstrokes:
μx : negative for dorsal-to-mid stroke (first half of downstroke)

and negative for mid-to-ventral stroke (second half of down-
stroke);

γx : negative for dorsal-to-mid stroke and positive for mid-to-
ventral stroke.

During upstrokes:
μx : positive for ventral-to-mid stroke (first half of upstroke)

and positive for mid-to-dorsal stroke (second half of upstroke);
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γx : positive for ventral-to-mid stroke and negative for mid-
to-dorsal stroke.

Therefore, the stroke-averaged drag of a wing pair along xs

axis is

FD = X̄ =
1
2
[FD−d1 cos(φ) + FD−d2 cos(φ)

+ FD−u1 cos(φ) − FD−u2 cos(φ)]

= −ρR2 c̄Φn

⎡
⎣r̂1

1 (S)CD (α0) cos2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣
+

1
2

∂CD

∂μx
cos2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣r̂2
2 (S)

⎤
⎦ vxs. (A2)

In the meantime, there is a pitch moment that is produced around
body center of mass resulting from the imbalance of lift force:

τpitch = M̄ =
1
2
[−FL−d1 | sin(φ)| + FL−d2 | sin(φ)|

+ FL−u1 | sin(φ)| − FL−u2 | sin(φ)|]Rrcp + FD l1

= ρR2 c̄Φn

⎡
⎣1

2
∂CL

∂γx
sin2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣r̂3
3 (S)R − r̂1

1 (S)

× l1CD (α0) cos2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣
−1

2
l1

∂CD

∂μx
cos2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣r̂2
2 (S)

⎤
⎦ vxs (A3)

where the subscript d1 denotes the first half of downstroke, u2
denotes the second half of upstroke, and so forth; and the sub-
script L refers to the lift force. We also approximated r̂2

2 (S)rcp

by r̂3
3 (S) according to blade-element analysis.

LATERAL TRANSLATION

We can see in Fig. 5(b) that during a lateral motion to the right
(left), the net drag of a wing pair along the pitch axis ys is always
pointing to the left (right) at any instant of time. Specifically,
we note the following.

During the first half of downstroke:
μy : negative for the left wing and positive for the right wing;
γy : positive for the left wing and negative for the right wing.
Then, the drag force along lateral axis ys is

FD (t̂) = [FD−l(t̂) − FD−r (t̂)]| sin(φ)| (A4)

where the subscript D − l refers to the drag of left wing, and so
forth.

During the second half of downstroke:
μy : positive for the left wing and negative for the right wing;
γy : positive for the left wing and negative for the right wing.
Therefore, we have

FD (t̂) = [−FD−l(t̂) + FD−r (t̂)]| sin(φ)|. (A5)

During the first half of upstroke:
μy : negative for the left wing and positive for the right wing;
γy : positive for the left wing and negative for the right wing.

Therefore, we have

FD (t̂) = [FD−l(t̂) − FD−r (t̂)]| sin(φ)|. (A6)

During the second half of upstroke:
μy : positive for the left wing and negative for the right wing;
γy : positive for the left wing and negative for the right wing.
Therefore, we have

FD (t̂) = [−FD−l(t̂) + FD−r (t̂)]| sin(φ)|. (A7)

The formula for FD (t̂) is (A1) with the subscript x replaced by
y. Then, it can be shown that the averaged drag along axis ys is

FD = Ȳ = −ρR2 c̄Φn

⎡
⎣r̂1

1 (S)CD (α0)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣ sin2(φ)

+
1
2

∂CD

∂μy
sin2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣r̂2
2 (S)

⎤
⎦ vys . (A8)

The roll torque around body center of mass is calculated by

τroll = L̄ = [−FL−l cos(φ) + FL−r cos(φ)]Rrcp + FD l1

= ρR2 c̄Φn

⎡
⎣−1

2
∂CL

∂γy

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣ cos2(φ)r̂3
3 (S)R

+ r̂1
1 (S)l1CD (α0)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣ sin2(φ)

+
1
2
l1

∂CD

∂μy
sin2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣r̂2
2 (S)

⎤
⎦ vys . (A9)

A. Vertical Translation

During a vertical ascent [see Fig. 5(c)], the sectional lift force
is given by

dFL (t̂) =
1
2
ρ(dr)c(r)CN (α0 − ψ) cos(α0)

(
r|dφ/dt|
cos(ψ)

)2

(A10)
where the force coefficient is only dependent on the angle of
attack (chordwise and spanwise tip velocity ratios both equal
zero). The change of the sectional lift force that results from
vertical velocity is

ΔdFL (t̂) =
1
2
ρ(dr)c(r)CN (α0 −ψ) cos(α0)

(
r|dφ/dt|
cos(ψ)

)2

− 1
2
ρ(dr)c(r)CN (α0) cos(α0)

(
r|dφ/dt|

dt

)2

=
1
2
ρ(dr)c(r)

(
r

∣∣∣∣dφ

dt

∣∣∣∣
)2

cos(α0)

×
[
CN (α0 −ψ)

(
1

cos(ψ)

)2

−CN (α0)

]
(A11)

where CN (α0 − ψ) is approximated as in (12). We have

ΔdFL (t̂)≈ −1
2
ρ(dr)c(r)r

∣∣∣∣dφ

dt

∣∣∣∣ cos(α0)
[
dcN (α)

dα |α=α0

vzs

]
.

(A12)
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Fig. 6. Coordinate frames and moment of arms. (a) Schematic view of an insect
body with a wing chord, showing stroke plane reference frame axes roll xs , pitch

ys , and yaw zs ; normal force FN , drag FD , and lift FL ; FN =
√

F 2
D + F 2

c .
The moment of arms relative to the wing base are rx , ry , and rz for roll,
pitch, and yaw torques, respectively. Note that rz = r (spanwise position of
the wing chord), rx = cos(φ)rz , and ry = sin(φ)rz . (b) Insect body with
the body coordinate frame roll xb , pitch yb , and yaw zb . r′x , r′y , and r′z are
distances from the wing section to each of the principal axes of the body frame;
the corresponding orthogonal distances are the same as rx , ry , and rz in (a),
indicating that the moment arms relative to the center of mass are identical to
those relative to the wing base.

Integrate the previous equation over the wingspan, and we have
the net lift change of a wing pair:

ΔFL (t̂) = −1
2
ρR2 c̄Φn

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣ cos(α0)
dCN (α)

dα |α=α0

×
(∫ 1

0
(dr̂)ĉ(r)r̂

)
vzs

= −1
2
ρR2 c̄Φn

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣ cos(α0)
dCN (α)

dα |α=α0

r̂1
1 (S)vzs .

(A13)

The stroke-averaged value is (also applies to descending)

ΔFL = Z̄ = −1
2
ρR2 c̄r̂1

1 (S)Φn
dCN

dα |α=α0

cos(α0)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣vzs .

(A14)
Next, analytical models for FCTs are derived, and the moment
arms for roll, pitch, and yaw torques are shown in Fig. 6.

ROLL ROTATION

As indicated by Fig. 7, rotation around the roll axis xs adds
a downward velocity (always normal to the stroke plane) to the
left wing, while increasing its effective angle of attack α. On
the contrary, it adds an upward velocity to the right wing and
reduces its effective angle of attack.

We write the lifts that are produced at a wing section of left
and right wings, respectively, as

dFL−l(t̂, r) =
1
2
CN (α0 + ψ) cos(α0)ρ(dr)cr2

(
|dφ/dt|
cos(ψ)

)2

(A15)
and

dFL−r (t̂, r) =
1
2
CN (α0 − ψ) cos(α0)ρ(dr)cr2

(
|dφ/dt|
cos(ψ)

)2

(A16)
where α0 is the geometric angle of attack that is determined by
wing kinematics, ψ (15) is the angle between the stroke plane
and the total wing velocity U (16), and the lift coefficient (only

Fig. 7. Schematic view of FCT production for roll rotation. rφ̇ is the velocity
that results from wing motion (blue arrows), rωxs is the velocity that is induced
by body rotation (red arrows), and U is the total velocity (green arrows). The
angle between the stroke plane and the wing chord is denoted as α0 (the
geometric angle of attack, i.e., the angle between the blue arrow and the dashed
line parallel to the wing chord, only shown on top left); the angle between the
stroke plane and the wing velocity is denoted as ψ; the effective angle of attack
α is the angle between the total velocity U and the wing chord. This is a 2-D
projection of a 3-D kinematic pattern, viewed in the chordwise direction from
wing tip to wing base for the left wing and from wing base to wing tip for the
right wing.

a function of the angle of attack) is approximated by CN (α0 +
ψ) sin(ϕ). Then, the roll torques that are produced by left and
right wings (at a wing section) are calculated, respectively, as

dτroll−l(t̂, r)≈ −1
2
CN (α0 + ψ) cos(α0)ρ(dr)cr3

∣∣∣∣dφ

dt

∣∣∣∣
2

cos(φ)

(A17)
and

dτroll−r (t̂, r) ≈
1
2
CN (α0 − ψ) cos(α0)ρ(dr)cr3

∣∣∣∣dφ

dt

∣∣∣∣
2

cos(φ).

(A18)
We approximate CN (a0 ± ψ) as in (12); then, the total roll
torque is

dτroll(t̂, r) = dτroll−l(t̂) + dτroll−r (t̂, r)

= −dCN (α)
dα |α0

ψ cos(α0)ρ(dr)cr3
∣∣∣∣dφ

dt

∣∣∣∣
2

cos(φ).

(A19)

By the integration over the wingspan, we have the total roll
torque that is produced by a wing pair:

τroll(t̂) = −dCN (α)
dα |α0

ψR4 c̄ cos(α0)ρ
∣∣∣∣dφ

dt

∣∣∣∣
2

× cos(φ)
∫ 1

0
r̂3 ĉdr̂

= −1
2
ρR4 c̄r̂3

3 (S)
dCN (α)

dα |α0

cos(α0)

× cos2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣ Φnωxs (A20)

which is the FCT for roll rotation at a nondimensional time t̂.
The averaged value over one wing stroke is

τroll = L̄ = −1
2
ρR4 c̄r̂3

3 (S)

× dCN (α)
dα |α0

cos(α0) cos2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣Φnωxs. (A21)
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Fig. 8. Schematic view of FCT production for pitch rotation. See the legend
of Fig. 7 for details.

Moreover, it is easy to see from Fig. 7 that for up- and down-
strokes of a single wing, the lift-force generation is geometri-
cally symmetric with respect to the midstroke; thus, the averaged
pitch torque is zero over one wing stroke:

τpitch = 0. (A22)

Similarly, the drag-force generation is geometrically symmetric
between up- and downstrokes, and the total yaw torque is zero
when averaged over a complete wing stroke:

τyaw = 0. (A23)

PITCH ROTATION

As shown in Fig. 8, for either the left or the right wing,
the effective angle of attack α is enhanced during the first half
of downstroke (dorsal-to-middle stroke) and the second half
of upstroke (middle-to-dorsal stroke), and it is reduced during
the second half of downstroke (middle-to-ventral stroke) and
the first half of upstroke (ventral-to-middle stroke). Therefore,
when the wing is located at the dorsal half of the stroke plane,
the instantaneous lift at a wing section of a single wing (i.e., left
wing) can be written as

dFL−l−dorsal(t̂, r) =
1
2
CN (α0 + ψ) cos(α0)ρ(dr)cr2

×
(
|dφ/dt|
cos(ψ)

)2

. (A24)

Similarly, when the wing is located at the ventral half of the
stroke plane, the instantaneous lift at a wing section of a single
wing (i.e., left wing) is written as

dFL−l−ventral(t̂′, r) =
1
2
CN (α0 − ψ) cos(α0)ρ(dr)cr2

×
(
|dφ/dt|
cos(ψ)

)2

. (A25)

Then, we have the pitch torques

dτpitch−l−dorsal(t̂, r) = −1
2
CN (α0 + ψ) cos(α0)ρ(dr)cr3

×
(
|dφ/dt|
cos(ψ)

)2

sin(φ) (A26)

and

dτpitch−l−ventral(t̂′, r) =
1
2
CN (α0 − ψ) cos(α0)ρ(dr)cr3

×
(
|dφ/dt|
cos(ψ)

)2

sin(φ). (A27)

Next, we approximate CN (α0 ± ψ), as in (12), and sum (A26)
and (A27) as

dτpitch−l−dorsal(t̂, r) + dτpitch−l−ventral(t̂′, r)

≈ −dCN (α)
dα |α0

ψ cos(α0)ρ(dr)cr3
∣∣∣∣dφ

dt

∣∣∣∣
2

sin(φ). (A28)

By the integration over the wingspan, we have

τpitch−l−dorsal(t̂) + τpitch−l−ventral(t̂′) = −1
2
ρR4 c̄r̂3

3 (S)

× dCN (α)
dα |α0

cos(α0) sin2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣ Φnωys. (A29)

We then have the averaged pitch torque of a wing pair over a
complete stroke:

τpitch =M̄ = τl−pitch + τr−pitch = −1
2
ρR4 c̄r̂3

3 (S)

× dCN (α)
dα |α0

cos(α0) sin2(φ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣Φnωys. (A30)

Furthermore, it is easy to see that during pitch rotation, the
left and right wings have symmetric wing motions (see Fig. 7);
therefore, symmetric torque generations around the roll and
pitch axes are expected:

τroll = 0 (A31)

τyaw = 0. (A32)

YAW ROTATION

During yaw rotation of the stroke plane, there is no change
in the effective angle of attack but only in wing velocities. The
stroke-averaged FCT is [18], [19], [23]

τyaw = N̄ = −ρR4 c̄r̂3
3 (S)ΦnCD (α0)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣ωzs. (A33)

If we approximate CD (α0) by CN (α0) cos(ϕ), it becomes

τyaw = N̄ = −ρR4 c̄r̂3
3 (S)ΦnCN (α0) cos(ϕ)

∣∣∣∣∣dφ̂

dt̂

∣∣∣∣∣ωzs

(A34)
where ωzs is the yaw angular velocity.
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APPENDIX B

TABLE II
INSECT MORPHOLOGICAL AND WING KINEMATIC DATA

TABLE III
NONDIMENSIONAL STABILITY DERIVATIVES

TABLE IV
DIMENSIONAL AND NONDIMENSIONAL EIGENVALUES

Bo Cheng
Pencil

Bo Cheng
Pencil

Bo Cheng
Pencil
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TABLE V
NONDIMENSIONAL EIGENVECTORS FOR DECOUPLED LONGITUDINAL AND LATERAL DYNAMICS
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